Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Delete loading script auxiliary file
Browse files- get_model_list.py +0 -48
get_model_list.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import requests
|
4 |
-
|
5 |
-
import pandas as pd
|
6 |
-
|
7 |
-
|
8 |
-
def download(filename, url):
|
9 |
-
try:
|
10 |
-
with open(filename) as f:
|
11 |
-
json.load(f)
|
12 |
-
except Exception:
|
13 |
-
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
14 |
-
with open(filename, "wb") as f:
|
15 |
-
r = requests.get(url)
|
16 |
-
f.write(r.content)
|
17 |
-
with open(filename) as f:
|
18 |
-
tmp = json.load(f)
|
19 |
-
return tmp
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
models = [
|
24 |
-
"cardiffnlp/roberta-large-tweet-topic-multi-all",
|
25 |
-
"cardiffnlp/roberta-base-tweet-topic-multi-all",
|
26 |
-
"cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-multi-all",
|
27 |
-
"cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-multi-all",
|
28 |
-
"cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all",
|
29 |
-
"cardiffnlp/roberta-large-tweet-topic-multi-2020",
|
30 |
-
"cardiffnlp/roberta-base-tweet-topic-multi-2020",
|
31 |
-
"cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-multi-2020",
|
32 |
-
"cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-multi-2020",
|
33 |
-
"cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-2020"
|
34 |
-
]
|
35 |
-
|
36 |
-
os.makedirs("metric_files", exist_ok=True)
|
37 |
-
|
38 |
-
metrics = []
|
39 |
-
for i in models:
|
40 |
-
model_type = "all (2020 + 2021)" if i.endswith("all") else "2020 only"
|
41 |
-
url = f"https://huggingface.co/{i}/raw/main/metric_summary.json"
|
42 |
-
model_url = f"https://huggingface.co/{i}"
|
43 |
-
metric = download(f"metric_files/{os.path.basename(i)}.json", url)
|
44 |
-
metrics.append({"model": f"[{i}]({model_url})", "training data": model_type, "F1": metric["test/eval_f1"], "F1 (macro)": metric["test/eval_f1_macro"], "Accuracy": metric["test/eval_accuracy"]})
|
45 |
-
|
46 |
-
df = pd.DataFrame(metrics)
|
47 |
-
print(df.to_markdown(index=False))
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|