Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
| import argparse | |
| import json | |
| import logging | |
| import os | |
| import shutil | |
| import urllib.request | |
| import multiprocessing | |
| from os.path import join as pj | |
| import torch | |
| import numpy as np | |
| from huggingface_hub import create_repo | |
| from datasets import load_dataset, load_metric | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer | |
| from ray import tune | |
| logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S') | |
| PARALLEL = bool(int(os.getenv("PARALLEL", 1))) | |
| RAY_RESULTS = os.getenv("RAY_RESULTS", "ray_results") | |
| def internet_connection(host='http://google.com'): | |
| try: | |
| urllib.request.urlopen(host) | |
| return True | |
| except: | |
| return False | |
| def get_metrics(): | |
| metric_accuracy = load_metric("accuracy", "multilabel") | |
| metric_f1 = load_metric("f1", "multilabel") | |
| # metric_f1.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]], average='micro') | |
| # metric_accuracy.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]]) | |
| def compute_metric_search(eval_pred): | |
| logits, labels = eval_pred | |
| predictions = np.argmax(logits, axis=-1) | |
| return metric_f1.compute(predictions=predictions, references=labels, average='micro') | |
| def compute_metric_all(eval_pred): | |
| logits, labels = eval_pred | |
| predictions = np.argmax(logits, axis=-1) | |
| return { | |
| 'f1': metric_f1.compute(predictions=predictions, references=labels, average='micro')['f1'], | |
| 'f1_macro': metric_f1.compute(predictions=predictions, references=labels, average='macro')['f1'], | |
| 'accuracy': metric_accuracy.compute(predictions=predictions, references=labels)['accuracy'] | |
| } | |
| return compute_metric_search, compute_metric_all | |
| def main(): | |
| parser = argparse.ArgumentParser(description='Fine-tuning language model.') | |
| parser.add_argument('-m', '--model', help='transformer LM', default='roberta-base', type=str) | |
| parser.add_argument('-d', '--dataset', help='', default='cardiffnlp/tweet_topic_multi', type=str) | |
| parser.add_argument('--dataset-name', help='huggingface dataset name', default='citation_intent', type=str) | |
| parser.add_argument('-l', '--seq-length', help='', default=128, type=int) | |
| parser.add_argument('--random-seed', help='', default=42, type=int) | |
| parser.add_argument('--eval-step', help='', default=50, type=int) | |
| parser.add_argument('-o', '--output-dir', help='Directory to output', default='ckpt_tmp', type=str) | |
| parser.add_argument('-t', '--n-trials', default=10, type=int) | |
| parser.add_argument('--push-to-hub', action='store_true') | |
| parser.add_argument('--use-auth-token', action='store_true') | |
| parser.add_argument('--hf-organization', default=None, type=str) | |
| parser.add_argument('-a', '--model-alias', help='', default=None, type=str) | |
| parser.add_argument('--summary-file', default='metric_summary.json', type=str) | |
| parser.add_argument('--skip-train', action='store_true') | |
| parser.add_argument('--skip-eval', action='store_true') | |
| opt = parser.parse_args() | |
| assert opt.summary_file.endswith('.json'), f'`--summary-file` should be a json file {opt.summary_file}' | |
| # setup data | |
| dataset = load_dataset(opt.dataset, opt.dataset_name) | |
| network = internet_connection() | |
| # setup model | |
| tokenizer = AutoTokenizer.from_pretrained(opt.model, local_files_only=not network) | |
| model = AutoModelForSequenceClassification.from_pretrained( | |
| opt.model, | |
| num_labels=len(dataset['train'][0]['label']), | |
| local_files_only=not network, | |
| problem_type="multi_label_classification" | |
| ) | |
| tokenized_datasets = dataset.map( | |
| lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=opt.seq_length), | |
| batched=True) | |
| # setup metrics | |
| compute_metric_search, compute_metric_all = get_metrics() | |
| if not opt.skip_train: | |
| # setup trainer | |
| trainer = Trainer( | |
| model=model, | |
| args=TrainingArguments( | |
| output_dir=opt.output_dir, | |
| evaluation_strategy="steps", | |
| eval_steps=opt.eval_step, | |
| seed=opt.random_seed | |
| ), | |
| train_dataset=tokenized_datasets["train"], | |
| eval_dataset=tokenized_datasets["validation"], | |
| compute_metrics=compute_metric_search, | |
| model_init=lambda x: AutoModelForSequenceClassification.from_pretrained( | |
| opt.model, return_dict=True, num_labels=dataset['train'].features['label'].num_classes) | |
| ) | |
| # parameter search | |
| if PARALLEL: | |
| best_run = trainer.hyperparameter_search( | |
| hp_space=lambda x: { | |
| "learning_rate": tune.loguniform(1e-6, 1e-4), | |
| "num_train_epochs": tune.choice(list(range(1, 6))), | |
| "per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]), | |
| }, | |
| local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials, | |
| resources_per_trial={'cpu': multiprocessing.cpu_count(), "gpu": torch.cuda.device_count()}, | |
| ) | |
| else: | |
| best_run = trainer.hyperparameter_search( | |
| hp_space=lambda x: { | |
| "learning_rate": tune.loguniform(1e-6, 1e-4), | |
| "num_train_epochs": tune.choice(list(range(1, 6))), | |
| "per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]), | |
| }, | |
| local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials | |
| ) | |
| # finetuning | |
| for n, v in best_run.hyperparameters.items(): | |
| setattr(trainer.args, n, v) | |
| trainer.train() | |
| trainer.save_model(pj(opt.output_dir, 'best_model')) | |
| best_model_path = pj(opt.output_dir, 'best_model') | |
| else: | |
| best_model_path = opt.output_dir | |
| # evaluation | |
| model = AutoModelForSequenceClassification.from_pretrained( | |
| best_model_path, | |
| num_labels=dataset['train'].features['label'].num_classes, | |
| local_files_only=not network) | |
| trainer = Trainer( | |
| model=model, | |
| args=TrainingArguments( | |
| output_dir=opt.output_dir, | |
| evaluation_strategy="no", | |
| seed=opt.random_seed | |
| ), | |
| train_dataset=tokenized_datasets["train"], | |
| eval_dataset=tokenized_datasets["test"], | |
| compute_metrics=compute_metric_all, | |
| model_init=lambda x: AutoModelForSequenceClassification.from_pretrained( | |
| opt.model, return_dict=True, num_labels=dataset['train'].features['label'].num_classes) | |
| ) | |
| summary_file = pj(opt.output_dir, opt.summary_file) | |
| if not opt.skip_eval: | |
| result = {f'test/{k}': v for k, v in trainer.evaluate().items()} | |
| logging.info(json.dumps(result, indent=4)) | |
| with open(summary_file, 'w') as f: | |
| json.dump(result, f) | |
| if opt.push_to_hub: | |
| assert opt.hf_organization is not None, f'specify hf organization `--hf-organization`' | |
| assert opt.model_alias is not None, f'specify hf organization `--model-alias`' | |
| url = create_repo(opt.model_alias, organization=opt.hf_organization, exist_ok=True) | |
| # if not opt.skip_train: | |
| args = {"use_auth_token": opt.use_auth_token, "repo_url": url, "organization": opt.hf_organization} | |
| trainer.model.push_to_hub(opt.model_alias, **args) | |
| tokenizer.push_to_hub(opt.model_alias, **args) | |
| if os.path.exists(summary_file): | |
| shutil.copy2(summary_file, opt.model_alias) | |
| os.system( | |
| f"cd {opt.model_alias} && git lfs install && git add . && git commit -m 'model update' && git push && cd ../") | |
| shutil.rmtree(f"{opt.model_alias}") # clean up the cloned repo | |
| if __name__ == '__main__': | |
| main() | |