Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- .gitattributes +1 -29
- .gitignore +13 -0
- .pre-commit-config.yaml +53 -0
- Makefile +13 -0
- README.md +39 -35
- app.py +177 -0
- pyproject.toml +13 -0
- requirements.txt +16 -0
- src/.DS_Store +0 -0
- src/about.py +75 -0
- src/custom-eval-results/provider_modelname_temple/base_meta.json +7 -0
- src/custom-eval-results/provider_modelname_temple/gen_meta.json +9 -0
- src/data.py +84 -0
- src/display/css_html_js.py +131 -0
- src/display/formatting.py +27 -0
- src/display/utils.py +90 -0
- src/envs.py +25 -0
- src/leaderboard/read_evals.py +160 -0
- src/populate.py +73 -0
- src/results.json +535 -0
- src/submission/check_validity.py +85 -0
- src/submission/submit.py +83 -0
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
.gitattributes
CHANGED
@@ -8,8 +8,6 @@
|
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.mds filter=lfs diff=lfs merge=lfs -text
|
13 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
14 |
*.model filter=lfs diff=lfs merge=lfs -text
|
15 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
@@ -27,7 +25,6 @@
|
|
27 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
28 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
31 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
32 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
@@ -35,29 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
35 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
36 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
37 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
38 |
-
|
39 |
-
*.pcm filter=lfs diff=lfs merge=lfs -text
|
40 |
-
*.sam filter=lfs diff=lfs merge=lfs -text
|
41 |
-
*.raw filter=lfs diff=lfs merge=lfs -text
|
42 |
-
# Audio files - compressed
|
43 |
-
*.aac filter=lfs diff=lfs merge=lfs -text
|
44 |
-
*.flac filter=lfs diff=lfs merge=lfs -text
|
45 |
-
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
46 |
-
*.ogg filter=lfs diff=lfs merge=lfs -text
|
47 |
-
*.wav filter=lfs diff=lfs merge=lfs -text
|
48 |
-
# Image files - uncompressed
|
49 |
-
*.bmp filter=lfs diff=lfs merge=lfs -text
|
50 |
-
*.gif filter=lfs diff=lfs merge=lfs -text
|
51 |
-
*.png filter=lfs diff=lfs merge=lfs -text
|
52 |
-
*.tiff filter=lfs diff=lfs merge=lfs -text
|
53 |
-
# Image files - compressed
|
54 |
-
*.jpg filter=lfs diff=lfs merge=lfs -text
|
55 |
-
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
56 |
-
*.webp filter=lfs diff=lfs merge=lfs -text
|
57 |
-
# Video files - compressed
|
58 |
-
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
-
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
-
DOUBAO_ENDPOINT="ep-20250117120525-pp8fp"
|
61 |
-
DOUBAO_1_5_ENDPOINT="ep-20250122173512-4tqwl"
|
62 |
-
DOUBAO_API_KEY="43e9209b-5c60-478e-8f2f-1b6077f5dc57"
|
63 |
-
DOUBAO_1_5_256K_ENDPOINT="ep-20250123113810-mxjq2"
|
|
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
11 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
scale-hf-logo.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
auto_evals/
|
2 |
+
venv/
|
3 |
+
__pycache__/
|
4 |
+
.env
|
5 |
+
.ipynb_checkpoints
|
6 |
+
*ipynb
|
7 |
+
.vscode/
|
8 |
+
|
9 |
+
eval-queue/
|
10 |
+
eval-results/
|
11 |
+
eval-queue-bk/
|
12 |
+
eval-results-bk/
|
13 |
+
logs/
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
default_language_version:
|
16 |
+
python: python3
|
17 |
+
|
18 |
+
ci:
|
19 |
+
autofix_prs: true
|
20 |
+
autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
|
21 |
+
autoupdate_schedule: quarterly
|
22 |
+
|
23 |
+
repos:
|
24 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
25 |
+
rev: v4.3.0
|
26 |
+
hooks:
|
27 |
+
- id: check-yaml
|
28 |
+
- id: check-case-conflict
|
29 |
+
- id: detect-private-key
|
30 |
+
- id: check-added-large-files
|
31 |
+
args: ['--maxkb=1000']
|
32 |
+
- id: requirements-txt-fixer
|
33 |
+
- id: end-of-file-fixer
|
34 |
+
- id: trailing-whitespace
|
35 |
+
|
36 |
+
- repo: https://github.com/PyCQA/isort
|
37 |
+
rev: 5.12.0
|
38 |
+
hooks:
|
39 |
+
- id: isort
|
40 |
+
name: Format imports
|
41 |
+
|
42 |
+
- repo: https://github.com/psf/black
|
43 |
+
rev: 22.12.0
|
44 |
+
hooks:
|
45 |
+
- id: black
|
46 |
+
name: Format code
|
47 |
+
additional_dependencies: ['click==8.0.2']
|
48 |
+
|
49 |
+
- repo: https://github.com/charliermarsh/ruff-pre-commit
|
50 |
+
# Ruff version.
|
51 |
+
rev: 'v0.0.267'
|
52 |
+
hooks:
|
53 |
+
- id: ruff
|
Makefile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.PHONY: style format
|
2 |
+
|
3 |
+
|
4 |
+
style:
|
5 |
+
python -m black --line-length 119 .
|
6 |
+
python -m isort .
|
7 |
+
ruff check --fix .
|
8 |
+
|
9 |
+
|
10 |
+
quality:
|
11 |
+
python -m black --check --line-length 119 .
|
12 |
+
python -m isort --check-only .
|
13 |
+
ruff check .
|
README.md
CHANGED
@@ -1,42 +1,46 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
## Dataset Structure
|
28 |
-
|
29 |
-
An example of a Web-Bench datum is as follows:
|
30 |
-
|
31 |
-
```
|
32 |
-
id: (str) Task id, init | task-n
|
33 |
-
project: (str) Task project name
|
34 |
-
description: (str) Task details description
|
35 |
-
date: (str) Task publish date, filter contaminated model
|
36 |
-
level: (str) Task level: easy | moderate | challenging
|
37 |
```
|
38 |
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Web Bench Leaderboard
|
3 |
+
emoji: 🥇
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
app_file: app.py
|
8 |
+
pinned: true
|
9 |
+
license: apache-2.0
|
10 |
+
short_description: Duplicate this leaderboard to initialize your own!
|
11 |
+
sdk_version: 5.19.0
|
12 |
---
|
13 |
|
14 |
+
# Start the configuration
|
15 |
+
|
16 |
+
Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
|
17 |
+
|
18 |
+
Results files should have the following format and be stored as json files:
|
19 |
+
```json
|
20 |
+
{
|
21 |
+
"config": {
|
22 |
+
"model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
|
23 |
+
"model_name": "path of the model on the hub: org/model",
|
24 |
+
"model_sha": "revision on the hub",
|
25 |
+
},
|
26 |
+
"results": {
|
27 |
+
"task_name": {
|
28 |
+
"metric_name": score,
|
29 |
+
},
|
30 |
+
"task_name2": {
|
31 |
+
"metric_name": score,
|
32 |
+
}
|
33 |
+
}
|
34 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
```
|
36 |
|
37 |
+
Request files are created automatically by this tool.
|
38 |
+
|
39 |
+
If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
|
40 |
|
41 |
+
# Code logic for more complex edits
|
42 |
|
43 |
+
You'll find
|
44 |
+
- the main table' columns names and properties in `src/display/utils.py`
|
45 |
+
- the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
|
46 |
+
- the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
|
app.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
+
import pandas as pd
|
4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
|
7 |
+
from src.about import (
|
8 |
+
CITATION_BUTTON_LABEL,
|
9 |
+
CITATION_BUTTON_TEXT,
|
10 |
+
EVALUATION_QUEUE_TEXT,
|
11 |
+
INTRODUCTION_TEXT,
|
12 |
+
LLM_BENCHMARKS_TEXT,
|
13 |
+
TITLE,
|
14 |
+
)
|
15 |
+
from src.display.css_html_js import custom_css, block_css, js
|
16 |
+
from src.display.utils import (
|
17 |
+
BENCHMARK_COLS,
|
18 |
+
COLS,
|
19 |
+
EVAL_COLS,
|
20 |
+
EVAL_TYPES,
|
21 |
+
AutoEvalColumn,
|
22 |
+
ModelType,
|
23 |
+
fields,
|
24 |
+
WeightType,
|
25 |
+
)
|
26 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
27 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
28 |
+
from src.submission.submit import add_new_eval
|
29 |
+
|
30 |
+
|
31 |
+
def restart_space():
|
32 |
+
API.restart_space(repo_id=REPO_ID)
|
33 |
+
|
34 |
+
### Space initialisation
|
35 |
+
try:
|
36 |
+
print(EVAL_REQUESTS_PATH)
|
37 |
+
snapshot_download(
|
38 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
39 |
+
)
|
40 |
+
except Exception:
|
41 |
+
restart_space()
|
42 |
+
try:
|
43 |
+
print(EVAL_RESULTS_PATH)
|
44 |
+
snapshot_download(
|
45 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
46 |
+
)
|
47 |
+
except Exception:
|
48 |
+
restart_space()
|
49 |
+
|
50 |
+
|
51 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
52 |
+
|
53 |
+
(
|
54 |
+
finished_eval_queue_df,
|
55 |
+
running_eval_queue_df,
|
56 |
+
pending_eval_queue_df,
|
57 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
58 |
+
|
59 |
+
def init_leaderboard(dataframe):
|
60 |
+
if dataframe is None or dataframe.empty:
|
61 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
62 |
+
print(f"dataframe {dataframe}")
|
63 |
+
return Leaderboard(
|
64 |
+
value=dataframe,
|
65 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
66 |
+
select_columns=SelectColumns(
|
67 |
+
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
68 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
69 |
+
label="Select Columns to Display:",
|
70 |
+
),
|
71 |
+
search_columns=[AutoEvalColumn.model.name],
|
72 |
+
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
+
filter_columns=[
|
74 |
+
ColumnFilter(AutoEvalColumn.provider.name, type="dropdown", label="Provider"),
|
75 |
+
# ColumnFilter(
|
76 |
+
# AutoEvalColumn.pass2.name,
|
77 |
+
# type="slider",
|
78 |
+
# min=0.01,
|
79 |
+
# max=100,
|
80 |
+
# label="Select the number of Pass@2",
|
81 |
+
# ),
|
82 |
+
ColumnFilter(AutoEvalColumn.openness.name, type="checkboxgroup", label="Openness"),
|
83 |
+
],
|
84 |
+
bool_checkboxgroup_label="Hide models",
|
85 |
+
interactive=False,
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
demo = gr.Blocks(css=custom_css, js=js, elem_classes="custom-block")
|
90 |
+
with demo:
|
91 |
+
block = gr.Blocks(css=block_css, elem_classes="custom-block")
|
92 |
+
with block:
|
93 |
+
gr.HTML(TITLE)
|
94 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
95 |
+
|
96 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
97 |
+
with gr.TabItem("🏅 Benchmark", elem_id="llm-benchmark-tab-table1", id=1):
|
98 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
99 |
+
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table2", id=2):
|
100 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
101 |
+
|
102 |
+
with gr.TabItem("🚀 Submit", elem_id="llm-benchmark-tab-table3", id=3):
|
103 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
104 |
+
# with gr.Column():
|
105 |
+
# with gr.Row():
|
106 |
+
|
107 |
+
|
108 |
+
# with gr.Column():
|
109 |
+
# with gr.Accordion(
|
110 |
+
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
111 |
+
# open=False,
|
112 |
+
# ):
|
113 |
+
# with gr.Row():
|
114 |
+
# finished_eval_table = gr.components.Dataframe(
|
115 |
+
# value=finished_eval_queue_df,
|
116 |
+
# headers=EVAL_COLS,
|
117 |
+
# datatype=EVAL_TYPES,
|
118 |
+
# row_count=5,
|
119 |
+
# )
|
120 |
+
# with gr.Accordion(
|
121 |
+
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
122 |
+
# open=False,
|
123 |
+
# ):
|
124 |
+
# with gr.Row():
|
125 |
+
# running_eval_table = gr.components.Dataframe(
|
126 |
+
# value=running_eval_queue_df,
|
127 |
+
# headers=EVAL_COLS,
|
128 |
+
# datatype=EVAL_TYPES,
|
129 |
+
# row_count=5,
|
130 |
+
# )
|
131 |
+
|
132 |
+
# with gr.Accordion(
|
133 |
+
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
134 |
+
# open=False,
|
135 |
+
# ):
|
136 |
+
# with gr.Row():
|
137 |
+
# pending_eval_table = gr.components.Dataframe(
|
138 |
+
# value=pending_eval_queue_df,
|
139 |
+
# headers=EVAL_COLS,
|
140 |
+
# datatype=EVAL_TYPES,
|
141 |
+
# row_count=5,
|
142 |
+
# )
|
143 |
+
# with gr.Row():
|
144 |
+
# gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
145 |
+
|
146 |
+
# with gr.Row():
|
147 |
+
# with gr.Column():
|
148 |
+
# model_name_textbox = gr.Textbox(label="Model name")
|
149 |
+
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
150 |
+
# with gr.Column():
|
151 |
+
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
152 |
+
# submit_button = gr.Button("Submit Eval")
|
153 |
+
# submission_result = gr.Markdown()
|
154 |
+
# submit_button.click(
|
155 |
+
# add_new_eval,
|
156 |
+
# [
|
157 |
+
# model_name_textbox,
|
158 |
+
# base_model_name_textbox,
|
159 |
+
# revision_name_textbox,
|
160 |
+
# ],
|
161 |
+
# submission_result,
|
162 |
+
# )
|
163 |
+
|
164 |
+
# with gr.Row():
|
165 |
+
# with gr.Accordion("📙 Citation", open=False):
|
166 |
+
# citation_button = gr.Textbox(
|
167 |
+
# value=CITATION_BUTTON_TEXT,
|
168 |
+
# label=CITATION_BUTTON_LABEL,
|
169 |
+
# lines=20,
|
170 |
+
# elem_id="citation-button",
|
171 |
+
# show_copy_button=True,
|
172 |
+
# )
|
173 |
+
|
174 |
+
scheduler = BackgroundScheduler()
|
175 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
176 |
+
scheduler.start()
|
177 |
+
demo.queue(default_concurrency_limit=40).launch()
|
pyproject.toml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.ruff]
|
2 |
+
# Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
|
3 |
+
select = ["E", "F"]
|
4 |
+
ignore = ["E501"] # line too long (black is taking care of this)
|
5 |
+
line-length = 119
|
6 |
+
fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
|
7 |
+
|
8 |
+
[tool.isort]
|
9 |
+
profile = "black"
|
10 |
+
line_length = 119
|
11 |
+
|
12 |
+
[tool.black]
|
13 |
+
line-length = 119
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
APScheduler
|
2 |
+
black
|
3 |
+
datasets
|
4 |
+
gradio
|
5 |
+
gradio[oauth]
|
6 |
+
gradio_leaderboard==0.0.13
|
7 |
+
gradio_client
|
8 |
+
huggingface-hub>=0.18.0
|
9 |
+
matplotlib
|
10 |
+
numpy
|
11 |
+
pandas
|
12 |
+
python-dateutil
|
13 |
+
tqdm
|
14 |
+
transformers
|
15 |
+
tokenizers>=0.15.0
|
16 |
+
sentencepiece
|
src/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
src/about.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from enum import Enum
|
3 |
+
|
4 |
+
@dataclass
|
5 |
+
class Task:
|
6 |
+
benchmark: str
|
7 |
+
metric: str
|
8 |
+
col_name: str
|
9 |
+
|
10 |
+
|
11 |
+
# Select your tasks here
|
12 |
+
# ---------------------------------------------------
|
13 |
+
class Tasks(Enum):
|
14 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
+
task0 = Task("anli_r1", "acc", "ANLI")
|
16 |
+
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
17 |
+
|
18 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
19 |
+
# ---------------------------------------------------
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
# Your leaderboard name
|
24 |
+
TITLE = """<h1 align="center" id="space-title">Web-Bench Leaderboard</h1>"""
|
25 |
+
|
26 |
+
CONTAINER = """
|
27 |
+
<div id="main-container" style="display: flex; justify-content: center; align-items: center;">
|
28 |
+
</div>
|
29 |
+
"""
|
30 |
+
|
31 |
+
# What does your leaderboard evaluate?
|
32 |
+
INTRODUCTION_TEXT = """
|
33 |
+
|
34 |
+
**Web-Bench** is a benchmark designed to evaluate the performance of LLMs in actual Web development. Web-Bench contains 50 projects, each consisting of 20 tasks with sequential dependencies. The tasks implement project features in sequence, simulating real-world human development workflows. When designing Web-Bench, we aim to cover the foundational elements of Web development: Web Standards and Web Frameworks. Given the scale and complexity of these projects, which were designed by engineers with 5-10 years of experience, each presents a significant challenge. On average, a single project takes 4–8 hours for a senior engineer to complete. On our given benchmark agent (Web-Agent), SOTA (Claude 3.7 Sonnet) achieves only 25.1\% Pass@1.
|
35 |
+
"""
|
36 |
+
|
37 |
+
# Which evaluations are you running? how can people reproduce what you have?
|
38 |
+
LLM_BENCHMARKS_TEXT = f"""
|
39 |
+
## More Information
|
40 |
+
|
41 |
+
More information could be found in [Paper](https://arxiv.org/abs/2505.07473) or [Github](https://github.com/bytedance/web-bench)
|
42 |
+
|
43 |
+
"""
|
44 |
+
|
45 |
+
EVALUATION_QUEUE_TEXT = """
|
46 |
+
We welcome community submissions of new model evaluation results. Those submissions will be listed as 'External', and authors must upload their generated outputs for peer review.
|
47 |
+
|
48 |
+
## Evaluation
|
49 |
+
|
50 |
+
Evaluation [Setup](https://github.com/bytedance/web-bench?tab=readme-ov-file#-set-up) and [Usage](https://github.com/bytedance/web-bench?tab=readme-ov-file#-usage). This will generate a markdown report summarizing the results.
|
51 |
+
|
52 |
+
|
53 |
+
## Submission
|
54 |
+
|
55 |
+
To submit your results, create a **Pull Request** in the [Community Tab](https://huggingface.co/spaces/bytedance-research/Web-Bench-Leaderboard/discussions) to add them to the [src/custom-eval-results](https://huggingface.co/spaces/bytedance-research/Web-Bench-Leaderboard/tree/main/src/custom-eval-results) folder in this repository:
|
56 |
+
- Create a new folder named with your provider and model names (e.g., [provider_modelname_template](https://huggingface.co/spaces/bytedance-research/Web-Bench-Leaderboard/tree/main/src/custom-eval-results/provider_modelname_temple), using underscores to separate parts).
|
57 |
+
- Each folder stores the evaluation results of only one model.
|
58 |
+
- Add a `base_meta.json` file with the following fields:
|
59 |
+
- `Model`: the name of your model
|
60 |
+
- `ModelLink`: the link to the model page
|
61 |
+
- `Provider`: the name of the provider
|
62 |
+
- `Openness`: the openness of the model
|
63 |
+
- `Agent`: the agent used for evaluation, `Web-Agent` or your custom agent name
|
64 |
+
- Put your generated reports (e.g. `eval-20250513-102235`) in your folder.
|
65 |
+
- The title of the PR should be: [Community Submission] Model: org/model, Username: your_username.
|
66 |
+
|
67 |
+
We will review your submission and merge it upon acceptance.
|
68 |
+
|
69 |
+
**Tips**: `gen_meta.json` will be created after our review.
|
70 |
+
|
71 |
+
"""
|
72 |
+
|
73 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
74 |
+
CITATION_BUTTON_TEXT = r"""
|
75 |
+
"""
|
src/custom-eval-results/provider_modelname_temple/base_meta.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Provider": "Temple",
|
3 |
+
"Openness": "Closed",
|
4 |
+
"Thinking": false,
|
5 |
+
"Agent": "Web-Agent",
|
6 |
+
"ModelLink": "Your ModelLink"
|
7 |
+
}
|
src/custom-eval-results/provider_modelname_temple/gen_meta.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Pass@2": 23.799999999999997,
|
3 |
+
"Pass@1": 17.169999999999998,
|
4 |
+
"Error@1": 8.15,
|
5 |
+
"Version": "v1.0.0",
|
6 |
+
"Source": "🔶 External",
|
7 |
+
"Model": "test",
|
8 |
+
"PRLink": ""
|
9 |
+
}
|
src/data.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from pathlib import Path
|
3 |
+
import os
|
4 |
+
|
5 |
+
def get_first_level_dirs(dir_a):
|
6 |
+
# 检查目标目录是否存在
|
7 |
+
if not os.path.isdir(dir_a):
|
8 |
+
raise ValueError(f"目录不存在: {dir_a}")
|
9 |
+
|
10 |
+
# 遍历 dir_a 下的所有条目,筛选出一级文件夹
|
11 |
+
first_level_dirs = []
|
12 |
+
for entry in os.listdir(dir_a):
|
13 |
+
entry_path = os.path.join(dir_a, entry)
|
14 |
+
# 仅保留是目录且非符号链接的条目(避免误判软链接)
|
15 |
+
if os.path.isdir(entry_path) and not os.path.islink(entry_path):
|
16 |
+
first_level_dirs.append(entry) # 保存文件夹名称(或改为 entry_path 保存完整路径)
|
17 |
+
|
18 |
+
return first_level_dirs
|
19 |
+
|
20 |
+
def read_json_files(filename=None):
|
21 |
+
"""
|
22 |
+
读取当前目录下的 JSON 文件
|
23 |
+
|
24 |
+
参数:
|
25 |
+
filename (str, optional): 指定要读取的文件名(例如 "data.json"),默认读取所有 JSON 文件
|
26 |
+
|
27 |
+
返回:
|
28 |
+
如果指定 filename: 返回对应文件的解析内容(字典/list)
|
29 |
+
如果未指定 filename: 返回字典 {文件名: 内容}(例如 {"data": {...}})
|
30 |
+
"""
|
31 |
+
current_dir = Path.cwd()
|
32 |
+
result = {}
|
33 |
+
|
34 |
+
try:
|
35 |
+
# 读取单个文件
|
36 |
+
if filename:
|
37 |
+
file_path = current_dir / 'src' / filename
|
38 |
+
print("JSON数据加载成功:", current_dir, file_path)
|
39 |
+
|
40 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
41 |
+
return json.load(f)
|
42 |
+
|
43 |
+
# 批量读取所有 JSON 文件
|
44 |
+
for json_file in current_dir.glob("*.json"):
|
45 |
+
with open(json_file, "r", encoding="utf-8") as f:
|
46 |
+
result[json_file.stem] = json.load(f)
|
47 |
+
return result
|
48 |
+
|
49 |
+
except FileNotFoundError:
|
50 |
+
print(f"错误:文件 {filename} 不存在")
|
51 |
+
except json.JSONDecodeError:
|
52 |
+
print(f"错误:文件 {filename} 不是有效的 JSON 格式")
|
53 |
+
except Exception as e:
|
54 |
+
print(f"未知错误:{str(e)}")
|
55 |
+
return None
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
def get_custom_data():
|
60 |
+
dir_list = Path.cwd() / 'src' / 'custom-eval-results'
|
61 |
+
res = []
|
62 |
+
for dir in dir_list.iterdir():
|
63 |
+
print('dirname', dir.name != 'provider_modelname_temple', dir.name)
|
64 |
+
if dir.is_dir() and dir.name != 'provider_modelname_temple':
|
65 |
+
# base_meta
|
66 |
+
print("dirname", dir.name)
|
67 |
+
with open(dir / 'base_meta.json', "r", encoding="utf-8") as f:
|
68 |
+
base_meta = json.load(f)
|
69 |
+
with open(dir / 'gen_meta.json', "r", encoding="utf-8") as f:
|
70 |
+
gen_meta = json.load(f)
|
71 |
+
|
72 |
+
base_meta.update(gen_meta)
|
73 |
+
print(base_meta)
|
74 |
+
base_meta['Model'] = f"<a target=\"_blank\" href=\"{base_meta['ModelLink']}\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">{base_meta['Model']}</a>",
|
75 |
+
base_meta['Type'] = '🔶 External'
|
76 |
+
base_meta['Source'] = f"<a target=\"_blank\" href=\"{base_meta['PRLink']}\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">Pull Request</a>" if base_meta['PRLink'] else '',
|
77 |
+
res.append(base_meta)
|
78 |
+
return res
|
79 |
+
|
80 |
+
|
81 |
+
# # 示例用法
|
82 |
+
# if __name__ == "__main__":
|
83 |
+
|
84 |
+
# print(get_custom_data())
|
src/display/css_html_js.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_css = """
|
2 |
+
|
3 |
+
.markdown-text {
|
4 |
+
font-size: 16px !important;
|
5 |
+
}
|
6 |
+
|
7 |
+
.hide-container:not([id^="component-"]) {
|
8 |
+
display: none;
|
9 |
+
}
|
10 |
+
|
11 |
+
#component-0 {
|
12 |
+
max-width: 1546px;
|
13 |
+
margin: 0 auto;
|
14 |
+
}
|
15 |
+
|
16 |
+
#models-to-add-text {
|
17 |
+
font-size: 18px !important;
|
18 |
+
}
|
19 |
+
|
20 |
+
#citation-button span {
|
21 |
+
font-size: 16px !important;
|
22 |
+
}
|
23 |
+
|
24 |
+
#citation-button textarea {
|
25 |
+
font-size: 16px !important;
|
26 |
+
}
|
27 |
+
|
28 |
+
#citation-button > label > button {
|
29 |
+
margin: 6px;
|
30 |
+
transform: scale(1.3);
|
31 |
+
}
|
32 |
+
|
33 |
+
#leaderboard-table {
|
34 |
+
margin-top: 15px
|
35 |
+
}
|
36 |
+
|
37 |
+
#leaderboard-table-lite {
|
38 |
+
margin-top: 15px
|
39 |
+
}
|
40 |
+
|
41 |
+
#search-bar-table-box > div:first-child {
|
42 |
+
background: none;
|
43 |
+
border: none;
|
44 |
+
}
|
45 |
+
|
46 |
+
#search-bar {
|
47 |
+
padding: 0px;
|
48 |
+
}
|
49 |
+
|
50 |
+
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
51 |
+
#leaderboard-table td:nth-child(2),
|
52 |
+
#leaderboard-table th:nth-child(2) {
|
53 |
+
max-width: 400px;
|
54 |
+
overflow: auto;
|
55 |
+
white-space: nowrap;
|
56 |
+
}
|
57 |
+
|
58 |
+
.tab-buttons button {
|
59 |
+
font-size: 20px;
|
60 |
+
}
|
61 |
+
|
62 |
+
#scale-logo {
|
63 |
+
border-style: none !important;
|
64 |
+
box-shadow: none;
|
65 |
+
display: block;
|
66 |
+
margin-left: auto;
|
67 |
+
margin-right: auto;
|
68 |
+
max-width: 600px;
|
69 |
+
}
|
70 |
+
|
71 |
+
#scale-logo .download {
|
72 |
+
display: none;
|
73 |
+
}
|
74 |
+
#filter_type{
|
75 |
+
border: 0;
|
76 |
+
padding-left: 0;
|
77 |
+
padding-top: 0;
|
78 |
+
}
|
79 |
+
#filter_type label {
|
80 |
+
display: flex;
|
81 |
+
}
|
82 |
+
#filter_type label > span{
|
83 |
+
margin-top: var(--spacing-lg);
|
84 |
+
margin-right: 0.5em;
|
85 |
+
}
|
86 |
+
#filter_type label > .wrap{
|
87 |
+
width: 103px;
|
88 |
+
}
|
89 |
+
#filter_type label > .wrap .wrap-inner{
|
90 |
+
padding: 2px;
|
91 |
+
}
|
92 |
+
#filter_type label > .wrap .wrap-inner input{
|
93 |
+
width: 1px
|
94 |
+
}
|
95 |
+
#filter-columns-type{
|
96 |
+
border:0;
|
97 |
+
padding:0.5;
|
98 |
+
}
|
99 |
+
#filter-columns-size{
|
100 |
+
border:0;
|
101 |
+
padding:0.5;
|
102 |
+
}
|
103 |
+
#box-filter > .form{
|
104 |
+
border: 0
|
105 |
+
}
|
106 |
+
"""
|
107 |
+
|
108 |
+
block_css = """
|
109 |
+
.custom_block {
|
110 |
+
max-width: 1536px;
|
111 |
+
|
112 |
+
}
|
113 |
+
|
114 |
+
|
115 |
+
"""
|
116 |
+
|
117 |
+
get_window_url_params = """
|
118 |
+
function(url_params) {
|
119 |
+
const params = new URLSearchParams(window.location.search);
|
120 |
+
url_params = Object.fromEntries(params);
|
121 |
+
return url_params;
|
122 |
+
}
|
123 |
+
"""
|
124 |
+
|
125 |
+
js="""
|
126 |
+
function() {
|
127 |
+
const comp = document.querySelector("body > div:nth-child(1) > div.gradio-container.gradio-container-5-19-0.svelte-1reuit1")
|
128 |
+
console.log("comp", comp)
|
129 |
+
comp.style.maxHeight = '1215px'
|
130 |
+
}
|
131 |
+
"""
|
src/display/formatting.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def model_hyperlink(link, model_name):
|
2 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
3 |
+
|
4 |
+
|
5 |
+
def make_clickable_model(model_name):
|
6 |
+
link = f"https://huggingface.co/{model_name}"
|
7 |
+
return model_hyperlink(link, model_name)
|
8 |
+
|
9 |
+
|
10 |
+
def styled_error(error):
|
11 |
+
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
12 |
+
|
13 |
+
|
14 |
+
def styled_warning(warn):
|
15 |
+
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
16 |
+
|
17 |
+
|
18 |
+
def styled_message(message):
|
19 |
+
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
20 |
+
|
21 |
+
|
22 |
+
def has_no_nan_values(df, columns):
|
23 |
+
return df[columns].notna().all(axis=1)
|
24 |
+
|
25 |
+
|
26 |
+
def has_nan_values(df, columns):
|
27 |
+
return df[columns].isna().any(axis=1)
|
src/display/utils.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, make_dataclass
|
2 |
+
from enum import Enum
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
def fields(raw_class):
|
7 |
+
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
8 |
+
|
9 |
+
|
10 |
+
# These classes are for user facing column names,
|
11 |
+
# to avoid having to change them all around the code
|
12 |
+
# when a modif is needed
|
13 |
+
@dataclass
|
14 |
+
class ColumnContent:
|
15 |
+
name: str
|
16 |
+
type: str
|
17 |
+
displayed_by_default: bool
|
18 |
+
hidden: bool = False
|
19 |
+
never_hidden: bool = False
|
20 |
+
|
21 |
+
## Leaderboard columns
|
22 |
+
auto_eval_column_dict = []
|
23 |
+
# Init
|
24 |
+
auto_eval_column_dict.append(["source_value", ColumnContent, ColumnContent("Type", "str", True, never_hidden=True)])
|
25 |
+
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
26 |
+
|
27 |
+
# Model information
|
28 |
+
auto_eval_column_dict.append(["pass2", ColumnContent, ColumnContent("Pass@2", "number", True)])
|
29 |
+
auto_eval_column_dict.append(["pass1", ColumnContent, ColumnContent("Pass@1", "number", True)])
|
30 |
+
auto_eval_column_dict.append(["error1", ColumnContent, ColumnContent("Error@1", "number", True)])
|
31 |
+
auto_eval_column_dict.append(["source", ColumnContent, ColumnContent("Source", "markdown", True, False)])
|
32 |
+
auto_eval_column_dict.append(["provider", ColumnContent, ColumnContent("Provider", "number", False)])
|
33 |
+
auto_eval_column_dict.append(["version", ColumnContent, ColumnContent("Version", "str", False, True)])
|
34 |
+
auto_eval_column_dict.append(["agent", ColumnContent, ColumnContent("Agent", "str", False)])
|
35 |
+
auto_eval_column_dict.append(["openness", ColumnContent, ColumnContent("Openness", "str", False)])
|
36 |
+
auto_eval_column_dict.append(["thinking", ColumnContent, ColumnContent("Thinking", "boolean", True)])
|
37 |
+
|
38 |
+
# We use make dataclass to dynamically fill the scores from Tasks
|
39 |
+
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
40 |
+
|
41 |
+
## For the queue columns in the submission tab
|
42 |
+
@dataclass(frozen=True)
|
43 |
+
class EvalQueueColumn: # Queue column
|
44 |
+
model = ColumnContent("model", "markdown", True)
|
45 |
+
private = ColumnContent("private", "bool", True)
|
46 |
+
status = ColumnContent("status", "str", True)
|
47 |
+
|
48 |
+
## All the model information that we might need
|
49 |
+
@dataclass
|
50 |
+
class ModelDetails:
|
51 |
+
name: str
|
52 |
+
display_name: str = ""
|
53 |
+
symbol: str = "" # emoji
|
54 |
+
|
55 |
+
|
56 |
+
class ModelType(Enum):
|
57 |
+
PT = ModelDetails(name="pretrained", symbol="🟢")
|
58 |
+
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
59 |
+
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
60 |
+
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
61 |
+
Unknown = ModelDetails(name="", symbol="?")
|
62 |
+
|
63 |
+
def to_str(self, separator=" "):
|
64 |
+
return f"{self.value.symbol}{separator}{self.value.name}"
|
65 |
+
|
66 |
+
@staticmethod
|
67 |
+
def from_str(type):
|
68 |
+
if "fine-tuned" in type or "🔶" in type:
|
69 |
+
return ModelType.FT
|
70 |
+
if "pretrained" in type or "🟢" in type:
|
71 |
+
return ModelType.PT
|
72 |
+
if "RL-tuned" in type or "🟦" in type:
|
73 |
+
return ModelType.RL
|
74 |
+
if "instruction-tuned" in type or "⭕" in type:
|
75 |
+
return ModelType.IFT
|
76 |
+
return ModelType.Unknown
|
77 |
+
|
78 |
+
class WeightType(Enum):
|
79 |
+
Adapter = ModelDetails("Adapter")
|
80 |
+
Original = ModelDetails("Original")
|
81 |
+
Delta = ModelDetails("Delta")
|
82 |
+
|
83 |
+
# Column selection
|
84 |
+
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
85 |
+
|
86 |
+
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
87 |
+
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
88 |
+
|
89 |
+
BENCHMARK_COLS = []
|
90 |
+
|
src/envs.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from huggingface_hub import HfApi
|
4 |
+
|
5 |
+
# Info to change for your repository
|
6 |
+
# ----------------------------------
|
7 |
+
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
+
|
9 |
+
OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
+
# ----------------------------------
|
11 |
+
|
12 |
+
REPO_ID = f"{OWNER}/leaderboard"
|
13 |
+
QUEUE_REPO = f"{OWNER}/requests"
|
14 |
+
RESULTS_REPO = f"{OWNER}/results"
|
15 |
+
|
16 |
+
# If you setup a cache later, just change HF_HOME
|
17 |
+
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
+
|
19 |
+
# Local caches
|
20 |
+
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
21 |
+
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
22 |
+
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
23 |
+
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
24 |
+
|
25 |
+
API = HfApi(token=TOKEN)
|
src/leaderboard/read_evals.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
import dateutil
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from src.display.formatting import make_clickable_model
|
11 |
+
from src.display.utils import AutoEvalColumn, ModelType, WeightType
|
12 |
+
from src.submission.check_validity import is_model_on_hub
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class EvalResult:
|
17 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
18 |
+
"""
|
19 |
+
eval_name: str # org_model_precision (uid)
|
20 |
+
full_model: str # org/model (path on hub)
|
21 |
+
org: str
|
22 |
+
model: str
|
23 |
+
results: dict
|
24 |
+
num_params: int = 0
|
25 |
+
date: str = "" # submission date of request file
|
26 |
+
|
27 |
+
@classmethod
|
28 |
+
def init_from_json_file(self, json_filepath):
|
29 |
+
"""Inits the result from the specific model result file"""
|
30 |
+
with open(json_filepath) as fp:
|
31 |
+
data = json.load(fp)
|
32 |
+
|
33 |
+
config = data.get("config")
|
34 |
+
|
35 |
+
# Get model and org
|
36 |
+
org_and_model = config.get("model_name", config.get("model_args", None))
|
37 |
+
org_and_model = org_and_model.split("/", 1)
|
38 |
+
|
39 |
+
if len(org_and_model) == 1:
|
40 |
+
org = None
|
41 |
+
model = org_and_model[0]
|
42 |
+
else:
|
43 |
+
org = org_and_model[0]
|
44 |
+
model = org_and_model[1]
|
45 |
+
result_key = f"{org}_{model}"
|
46 |
+
full_model = "/".join(org_and_model)
|
47 |
+
|
48 |
+
# Extract results available in this file (some results are split in several files)
|
49 |
+
results = {}
|
50 |
+
|
51 |
+
return self(
|
52 |
+
eval_name=result_key,
|
53 |
+
full_model=full_model,
|
54 |
+
org=org,
|
55 |
+
model=model,
|
56 |
+
results=results,
|
57 |
+
)
|
58 |
+
|
59 |
+
def update_with_request_file(self, requests_path):
|
60 |
+
"""Finds the relevant request file for the current model and updates info with it"""
|
61 |
+
request_file = get_request_file_for_model(requests_path, self.full_model)
|
62 |
+
|
63 |
+
try:
|
64 |
+
with open(request_file, "r") as f:
|
65 |
+
request = json.load(f)
|
66 |
+
self.pass2 = request.get("pass2", 0)
|
67 |
+
self.pass1 = request.get("pass1", 0)
|
68 |
+
self.error1 = request.get("error1", 0)
|
69 |
+
self.openness = request.get("openness", 'Closed')
|
70 |
+
self.provider = request.get("provider", 'Unknown')
|
71 |
+
self.source = request.get("source", 'Unknown')
|
72 |
+
self.source_value = request.get("source_value", 'Unknown')
|
73 |
+
self.agent = request.get("agent", 'Web-Agent')
|
74 |
+
self.version = request.get("version", 'v1.0.0')
|
75 |
+
self.thinking = request.get("thinking", True)
|
76 |
+
self.date = request.get("submitted_time", "")
|
77 |
+
except Exception:
|
78 |
+
print(f"Could not find request file for {self.org}/{self.model}")
|
79 |
+
|
80 |
+
def to_dict(self):
|
81 |
+
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
82 |
+
data_dict = {
|
83 |
+
"eval_name": self.eval_name, # not a column, just a save name,
|
84 |
+
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
85 |
+
AutoEvalColumn.pass2.name: self.pass2,
|
86 |
+
AutoEvalColumn.pass1.name: self.pass1,
|
87 |
+
AutoEvalColumn.openness.name: self.openness,
|
88 |
+
AutoEvalColumn.error1.name: self.error1,
|
89 |
+
AutoEvalColumn.provider.name: self.provider,
|
90 |
+
AutoEvalColumn.source.name: self.source,
|
91 |
+
AutoEvalColumn.source_value.name: self.source_value,
|
92 |
+
AutoEvalColumn.version.name: self.version,
|
93 |
+
AutoEvalColumn.agent.name: self.agent,
|
94 |
+
AutoEvalColumn.thinking.name: self.thinking,
|
95 |
+
}
|
96 |
+
|
97 |
+
|
98 |
+
return data_dict
|
99 |
+
|
100 |
+
|
101 |
+
def get_request_file_for_model(requests_path, model_name):
|
102 |
+
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
103 |
+
request_files = os.path.join(
|
104 |
+
requests_path,
|
105 |
+
f"{model_name}_eval_request_*.json",
|
106 |
+
)
|
107 |
+
request_files = glob.glob(request_files)
|
108 |
+
print("")
|
109 |
+
request_file = ""
|
110 |
+
request_files = sorted(request_files, reverse=True)
|
111 |
+
for tmp_request_file in request_files:
|
112 |
+
with open(tmp_request_file, "r") as f:
|
113 |
+
req_content = json.load(f)
|
114 |
+
if (
|
115 |
+
req_content["status"] in ["FINISHED"]
|
116 |
+
):
|
117 |
+
request_file = tmp_request_file
|
118 |
+
return request_file
|
119 |
+
|
120 |
+
|
121 |
+
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
122 |
+
"""From the path of the results folder root, extract all needed info for results"""
|
123 |
+
model_result_filepaths = []
|
124 |
+
|
125 |
+
for root, _, files in os.walk(results_path):
|
126 |
+
# We should only have json files in model results
|
127 |
+
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
128 |
+
continue
|
129 |
+
|
130 |
+
# Sort the files by date
|
131 |
+
try:
|
132 |
+
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
133 |
+
except dateutil.parser._parser.ParserError:
|
134 |
+
files = [files[-1]]
|
135 |
+
|
136 |
+
for file in files:
|
137 |
+
model_result_filepaths.append(os.path.join(root, file))
|
138 |
+
|
139 |
+
eval_results = {}
|
140 |
+
for model_result_filepath in model_result_filepaths:
|
141 |
+
# Creation of result
|
142 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
143 |
+
eval_result.update_with_request_file(requests_path)
|
144 |
+
|
145 |
+
# Store results of same eval together
|
146 |
+
eval_name = eval_result.eval_name
|
147 |
+
if eval_name in eval_results.keys():
|
148 |
+
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
149 |
+
else:
|
150 |
+
eval_results[eval_name] = eval_result
|
151 |
+
|
152 |
+
results = []
|
153 |
+
for v in eval_results.values():
|
154 |
+
try:
|
155 |
+
v.to_dict() # we test if the dict version is complete
|
156 |
+
results.append(v)
|
157 |
+
except KeyError: # not all eval values present
|
158 |
+
continue
|
159 |
+
|
160 |
+
return results
|
src/populate.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from src.display.formatting import has_no_nan_values, make_clickable_model
|
8 |
+
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
9 |
+
from src.leaderboard.read_evals import get_raw_eval_results
|
10 |
+
from src.data import read_json_files, get_custom_data
|
11 |
+
from src.envs import CACHE_PATH
|
12 |
+
|
13 |
+
|
14 |
+
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
15 |
+
"""Creates a dataframe from all the individual experiment results"""
|
16 |
+
|
17 |
+
json_data = read_json_files('results.json')
|
18 |
+
print('read_json_files', json_data)
|
19 |
+
current_dir = Path.cwd()
|
20 |
+
|
21 |
+
for item in json_data:
|
22 |
+
val = { 'Type': '🟢 Base' }
|
23 |
+
item.update(val)
|
24 |
+
|
25 |
+
if len(get_custom_data()) > 0:
|
26 |
+
custom_data = get_custom_data()
|
27 |
+
json_data.extend(custom_data)
|
28 |
+
|
29 |
+
all_data_json = json_data
|
30 |
+
|
31 |
+
print('CACHE_PATH', CACHE_PATH, results_path, current_dir)
|
32 |
+
|
33 |
+
df = pd.DataFrame.from_records(all_data_json)
|
34 |
+
df = df.sort_values(by=[AutoEvalColumn.pass2.name], ascending=False)
|
35 |
+
df = df[cols].round(decimals=2)
|
36 |
+
|
37 |
+
# filter out if any of the benchmarks have not been produced
|
38 |
+
df = df[has_no_nan_values(df, benchmark_cols)]
|
39 |
+
return df
|
40 |
+
|
41 |
+
|
42 |
+
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
43 |
+
"""Creates the different dataframes for the evaluation queues requestes"""
|
44 |
+
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
45 |
+
all_evals = []
|
46 |
+
|
47 |
+
for entry in entries:
|
48 |
+
if ".json" in entry:
|
49 |
+
file_path = os.path.join(save_path, entry)
|
50 |
+
with open(file_path) as fp:
|
51 |
+
data = json.load(fp)
|
52 |
+
|
53 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
54 |
+
|
55 |
+
all_evals.append(data)
|
56 |
+
elif ".md" not in entry:
|
57 |
+
# this is a folder
|
58 |
+
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
|
59 |
+
for sub_entry in sub_entries:
|
60 |
+
file_path = os.path.join(save_path, entry, sub_entry)
|
61 |
+
with open(file_path) as fp:
|
62 |
+
data = json.load(fp)
|
63 |
+
|
64 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
65 |
+
all_evals.append(data)
|
66 |
+
|
67 |
+
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
68 |
+
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
69 |
+
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
70 |
+
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
71 |
+
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
72 |
+
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
73 |
+
return df_finished[cols], df_running[cols], df_pending[cols]
|
src/results.json
ADDED
@@ -0,0 +1,535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"eval_name": "gpt-4o",
|
4 |
+
"Model": "<a target=\"_blank\" href=\"https://platform.openai.com/docs/models/gpt-4o\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">gpt-4o</a>",
|
5 |
+
"Pass@2": 23.799999999999997,
|
6 |
+
"Pass@1": 17.169999999999998,
|
7 |
+
"Error@1": 8.15,
|
8 |
+
"Provider": "OpenAI",
|
9 |
+
"Openness": "Closed",
|
10 |
+
"Thinking": false,
|
11 |
+
"Version": "v1.0.0",
|
12 |
+
"Agent": "Web-Agent",
|
13 |
+
"Source": ""
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"eval_name": "gpt-4o-mini",
|
17 |
+
"Model": "<a target=\"_blank\" href=\"https://platform.openai.com/docs/models/gpt-4o-mini\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">gpt-4o-mini</a>",
|
18 |
+
"Pass@2": 13.04,
|
19 |
+
"Pass@1": 8.48,
|
20 |
+
"Error@1": 7.28,
|
21 |
+
"Provider": "OpenAI",
|
22 |
+
"Openness": "Closed",
|
23 |
+
"Thinking": false,
|
24 |
+
"Version": "v1.0.0",
|
25 |
+
"Agent": "Web-Agent",
|
26 |
+
"Source": ""
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"eval_name": "gpt-4.1",
|
30 |
+
"Model": "<a target=\"_blank\" href=\"https://platform.openai.com/docs/models/gpt-4.1\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">gpt-4.1</a>",
|
31 |
+
"Pass@2": 25.11,
|
32 |
+
"Pass@1": 21.09,
|
33 |
+
"Error@1": 6.52,
|
34 |
+
"Provider": "OpenAI",
|
35 |
+
"Openness": "Closed",
|
36 |
+
"Thinking": false,
|
37 |
+
"Version": "v1.0.0",
|
38 |
+
"Agent": "Web-Agent",
|
39 |
+
"Source": ""
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"eval_name": "o3-mini",
|
43 |
+
"Model": "<a target=\"_blank\" href=\"https://platform.openai.com/docs/models/o3-mini\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">o3-mini</a>",
|
44 |
+
"Pass@2": 14.24,
|
45 |
+
"Pass@1": 9.13,
|
46 |
+
"Error@1": 7.93,
|
47 |
+
"Provider": "OpenAI",
|
48 |
+
"Openness": "Closed",
|
49 |
+
"Thinking": false,
|
50 |
+
"Version": "v1.0.0",
|
51 |
+
"Agent": "Web-Agent",
|
52 |
+
"Source": ""
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"eval_name": "o1",
|
56 |
+
"Model": "<a target=\"_blank\" href=\"https://platform.openai.com/docs/models/o1\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">o1</a>",
|
57 |
+
"Pass@2": 12.389999999999999,
|
58 |
+
"Pass@1": 10.43,
|
59 |
+
"Error@1": 9.89,
|
60 |
+
"Provider": "OpenAI",
|
61 |
+
"Openness": "Closed",
|
62 |
+
"Thinking": false,
|
63 |
+
"Version": "v1.0.0",
|
64 |
+
"Agent": "Web-Agent",
|
65 |
+
"Source": ""
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"eval_name": "gpt-4.1-mini",
|
69 |
+
"Model": "<a target=\"_blank\" href=\"https://platform.openai.com/docs/models/gpt-4.1-mini\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">gpt-4.1-mini</a>",
|
70 |
+
"Pass@2": 23.7,
|
71 |
+
"Pass@1": 20.76,
|
72 |
+
"Error@1": 6.8500000000000005,
|
73 |
+
"Provider": "OpenAI",
|
74 |
+
"Openness": "Closed",
|
75 |
+
"Thinking": false,
|
76 |
+
"Version": "v1.0.0",
|
77 |
+
"Agent": "Web-Agent",
|
78 |
+
"Source": ""
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"eval_name": "gpt-4.1-nano",
|
82 |
+
"Model": "<a target=\"_blank\" href=\"https://platform.openai.com/docs/models/gpt-4.1-nano\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">gpt-4.1-nano</a>",
|
83 |
+
"Pass@2": 12.280000000000001,
|
84 |
+
"Pass@1": 7.07,
|
85 |
+
"Error@1": 6.959999999999999,
|
86 |
+
"Provider": "OpenAI",
|
87 |
+
"Openness": "Closed",
|
88 |
+
"Thinking": false,
|
89 |
+
"Version": "v1.0.0",
|
90 |
+
"Agent": "Web-Agent",
|
91 |
+
"Source": ""
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"eval_name": "o4-mini",
|
95 |
+
"Model": "<a target=\"_blank\" href=\"https://platform.openai.com/docs/models/o4-mini\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">o4-mini</a>",
|
96 |
+
"Pass@2": 22.93,
|
97 |
+
"Pass@1": 13.26,
|
98 |
+
"Error@1": 9.89,
|
99 |
+
"Provider": "OpenAI",
|
100 |
+
"Openness": "Closed",
|
101 |
+
"Thinking": false,
|
102 |
+
"Version": "v1.0.0",
|
103 |
+
"Agent": "Web-Agent",
|
104 |
+
"Source": ""
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"eval_name": "claude-3-7-sonnet-20250219",
|
108 |
+
"Model": "<a target=\"_blank\" href=\"https://www.anthropic.com/news/claude-3-7-sonnet\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">claude-3-7-sonnet-20250219</a>",
|
109 |
+
"Pass@2": 30.98,
|
110 |
+
"Pass@1": 22.5,
|
111 |
+
"Error@1": 8.260000000000002,
|
112 |
+
"Provider": "Anthropic",
|
113 |
+
"Openness": "Closed",
|
114 |
+
"Thinking": false,
|
115 |
+
"Version": "v1.0.0",
|
116 |
+
"Agent": "Web-Agent",
|
117 |
+
"Source": ""
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"eval_name": "claude-3-5-sonnet-20241022",
|
121 |
+
"Model": "<a target=\"_blank\" href=\"https://www.anthropic.com/news/3-5-models-and-computer-use\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">claude-3-5-sonnet-20241022</a>",
|
122 |
+
"Pass@2": 32.39,
|
123 |
+
"Pass@1": 23.04,
|
124 |
+
"Error@1": 9.46,
|
125 |
+
"Provider": "Anthropic",
|
126 |
+
"Openness": "Closed",
|
127 |
+
"Thinking": false,
|
128 |
+
"Version": "v1.0.0",
|
129 |
+
"Agent": "Web-Agent",
|
130 |
+
"Source": ""
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"eval_name": "claude-3-5-haiku-20241022",
|
134 |
+
"Model": "<a target=\"_blank\" href=\"https://www.anthropic.com/news/3-5-models-and-computer-use\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">claude-3-5-haiku-20241022</a>",
|
135 |
+
"Pass@2": 21.740000000000002,
|
136 |
+
"Pass@1": 15.43,
|
137 |
+
"Error@1": 7.61,
|
138 |
+
"Provider": "Anthropic",
|
139 |
+
"Openness": "Closed",
|
140 |
+
"Thinking": false,
|
141 |
+
"Version": "v1.0.0",
|
142 |
+
"Agent": "Web-Agent",
|
143 |
+
"Source": ""
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"eval_name": "claude-3-5-sonnet-20240620",
|
147 |
+
"Model": "<a target=\"_blank\" href=\"https://www.anthropic.com/news/claude-3-5-sonnet\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">claude-3-5-sonnet-20240620</a>",
|
148 |
+
"Pass@2": 30.330000000000002,
|
149 |
+
"Pass@1": 21.959999999999997,
|
150 |
+
"Error@1": 8.799999999999999,
|
151 |
+
"Provider": "Anthropic",
|
152 |
+
"Openness": "Closed",
|
153 |
+
"Thinking": false,
|
154 |
+
"Version": "v1.0.0",
|
155 |
+
"Agent": "Web-Agent",
|
156 |
+
"Source": ""
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"eval_name": "claude-3-7-sonnet-20250219-thinking",
|
160 |
+
"Model": "<a target=\"_blank\" href=\"https://www.anthropic.com/news/claude-3-7-sonnet\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">claude-3-7-sonnet-20250219-thinking</a>",
|
161 |
+
"Pass@2": 35.33,
|
162 |
+
"Pass@1": 25.11,
|
163 |
+
"Error@1": 9.02,
|
164 |
+
"Provider": "Anthropic",
|
165 |
+
"Openness": "Closed",
|
166 |
+
"Thinking": true,
|
167 |
+
"Version": "v1.0.0",
|
168 |
+
"Agent": "Web-Agent",
|
169 |
+
"Source": ""
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"eval_name": "deepseek-r1",
|
173 |
+
"Model": "<a target=\"_blank\" href=\"https://api-docs.deepseek.com/news/news250120\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">deepseek-r1</a>",
|
174 |
+
"Pass@2": 26.200000000000003,
|
175 |
+
"Pass@1": 14.46,
|
176 |
+
"Error@1": 9.89,
|
177 |
+
"Provider": "DeepSeek",
|
178 |
+
"Openness": "Open",
|
179 |
+
"Thinking": false,
|
180 |
+
"Version": "v1.0.0",
|
181 |
+
"Agent": "Web-Agent",
|
182 |
+
"Source": ""
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"eval_name": "deepseek-coder-v2",
|
186 |
+
"Model": "<a target=\"_blank\" href=\"https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">deepseek-coder-v2</a>",
|
187 |
+
"Pass@2": 23.150000000000002,
|
188 |
+
"Pass@1": 16.74,
|
189 |
+
"Error@1": 7.829999999999999,
|
190 |
+
"Provider": "DeepSeek",
|
191 |
+
"Openness": "Open",
|
192 |
+
"Thinking": false,
|
193 |
+
"Version": "v1.0.0",
|
194 |
+
"Agent": "Web-Agent",
|
195 |
+
"Source": ""
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"eval_name": "deepseek-v3-0324",
|
199 |
+
"Model": "<a target=\"_blank\" href=\"https://api-docs.deepseek.com/news/news250325\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">deepseek-v3-0324</a>",
|
200 |
+
"Pass@2": 23.59,
|
201 |
+
"Pass@1": 17.07,
|
202 |
+
"Error@1": 7.93,
|
203 |
+
"Provider": "DeepSeek",
|
204 |
+
"Openness": "Open",
|
205 |
+
"Thinking": false,
|
206 |
+
"Version": "v1.0.0",
|
207 |
+
"Agent": "Web-Agent",
|
208 |
+
"Source": ""
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"eval_name": "gemini-2.0-flash",
|
212 |
+
"Model": "<a target=\"_blank\" href=\"https://ai.google.dev/gemini-api/docs/models#gemini-2.0-flash\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">gemini-2.0-flash</a>",
|
213 |
+
"Pass@2": 20.87,
|
214 |
+
"Pass@1": 15.329999999999998,
|
215 |
+
"Error@1": 7.07,
|
216 |
+
"Provider": "Google",
|
217 |
+
"Openness": "Closed",
|
218 |
+
"Thinking": false,
|
219 |
+
"Version": "v1.0.0",
|
220 |
+
"Agent": "Web-Agent",
|
221 |
+
"Source": ""
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"eval_name": "gemini-pro-1.5",
|
225 |
+
"Model": "<a target=\"_blank\" href=\"https://ai.google.dev/gemini-api/docs/models#gemini-1.5-pro\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">gemini-pro-1.5</a>",
|
226 |
+
"Pass@2": 20.87,
|
227 |
+
"Pass@1": 14.78,
|
228 |
+
"Error@1": 7.28,
|
229 |
+
"Provider": "Google",
|
230 |
+
"Openness": "Closed",
|
231 |
+
"Thinking": false,
|
232 |
+
"Version": "v1.0.0",
|
233 |
+
"Agent": "Web-Agent",
|
234 |
+
"Source": ""
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"eval_name": "gemini-flash-1.5",
|
238 |
+
"Model": "<a target=\"_blank\" href=\"https://ai.google.dev/gemini-api/docs/models#gemini-1.5-flash\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">gemini-flash-1.5</a>",
|
239 |
+
"Pass@2": 17.07,
|
240 |
+
"Pass@1": 12.83,
|
241 |
+
"Error@1": 7.07,
|
242 |
+
"Provider": "Google",
|
243 |
+
"Openness": "Closed",
|
244 |
+
"Thinking": false,
|
245 |
+
"Version": "v1.0.0",
|
246 |
+
"Agent": "Web-Agent",
|
247 |
+
"Source": ""
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"eval_name": "gemini-2.5-pro-03-25",
|
251 |
+
"Model": "<a target=\"_blank\" href=\"https://ai.google.dev/gemini-api/docs/models?hl=zh-cn#gemini-2.5-pro-preview-05-06\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">gemini-2.5-pro-03-25</a>",
|
252 |
+
"Pass@2": 24.02,
|
253 |
+
"Pass@1": 15.67,
|
254 |
+
"Error@1": 8.04,
|
255 |
+
"Provider": "Google",
|
256 |
+
"Openness": "Closed",
|
257 |
+
"Thinking": false,
|
258 |
+
"Version": "v1.0.0",
|
259 |
+
"Agent": "Web-Agent",
|
260 |
+
"Source": ""
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"eval_name": "gemini-2.0-flash-thinking",
|
264 |
+
"Model": "<a target=\"_blank\" href=\"https://ai.google.dev/gemini-api/docs/models?hl=zh-cn#gemini-2.5-pro-preview-05-06\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">gemini-2.0-flash-thinking</a>",
|
265 |
+
"Pass@2": 19.24,
|
266 |
+
"Pass@1": 14.89,
|
267 |
+
"Error@1": 6.959999999999999,
|
268 |
+
"Provider": "Google",
|
269 |
+
"Openness": "Closed",
|
270 |
+
"Thinking": true,
|
271 |
+
"Version": "v1.0.0",
|
272 |
+
"Agent": "Web-Agent",
|
273 |
+
"Source": ""
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"eval_name": "gemma-3-27b",
|
277 |
+
"Model": "<a target=\"_blank\" href=\"https://huggingface.co/google/gemma-3-27b-it\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">gemma-3-27b</a>",
|
278 |
+
"Pass@2": 11.85,
|
279 |
+
"Pass@1": 9.89,
|
280 |
+
"Error@1": 6.2,
|
281 |
+
"Provider": "Google",
|
282 |
+
"Openness": "Open",
|
283 |
+
"Thinking": false,
|
284 |
+
"Version": "v1.0.0",
|
285 |
+
"Agent": "Web-Agent",
|
286 |
+
"Source": ""
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"eval_name": "gemini-2.5-pro-0506",
|
290 |
+
"Model": "<a target=\"_blank\" href=\"https://ai.google.dev/gemini-api/docs/models?hl=zh-cn#gemini-2.5-pro-preview-05-06\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">gemini-2.5-pro-0506</a>",
|
291 |
+
"Pass@2": 31.96,
|
292 |
+
"Pass@1": 20.76,
|
293 |
+
"Error@1": 8.7,
|
294 |
+
"Provider": "Google",
|
295 |
+
"Openness": "Closed",
|
296 |
+
"Thinking": false,
|
297 |
+
"Version": "v1.0.0",
|
298 |
+
"Agent": "Web-Agent",
|
299 |
+
"Source": ""
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"eval_name": "llama-3.3",
|
303 |
+
"Model": "<a target=\"_blank\" href=\"https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">llama-3.3</a>",
|
304 |
+
"Pass@2": 9.569999999999999,
|
305 |
+
"Pass@1": 6.63,
|
306 |
+
"Error@1": 6.2,
|
307 |
+
"Provider": "Meta",
|
308 |
+
"Openness": "Open",
|
309 |
+
"Thinking": false,
|
310 |
+
"Version": "v1.0.0",
|
311 |
+
"Agent": "Web-Agent",
|
312 |
+
"Source": ""
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"eval_name": "llama-4 Scout",
|
316 |
+
"Model": "<a target=\"_blank\" href=\"https://www.llama.com/docs/model-cards-and-prompt-formats/llama4_omni/\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">llama-4 Scout</a>",
|
317 |
+
"Pass@2": 7.720000000000001,
|
318 |
+
"Pass@1": 5,
|
319 |
+
"Error@1": 6.63,
|
320 |
+
"Provider": "Meta",
|
321 |
+
"Openness": "Open",
|
322 |
+
"Thinking": false,
|
323 |
+
"Version": "v1.0.0",
|
324 |
+
"Agent": "Web-Agent",
|
325 |
+
"Source": ""
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"eval_name": "llama-4 Maverick",
|
329 |
+
"Model": "<a target=\"_blank\" href=\"https://www.llama.com/docs/model-cards-and-prompt-formats/llama4_omni/\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">llama-4 Maverick</a>",
|
330 |
+
"Pass@2": 20.87,
|
331 |
+
"Pass@1": 15.98,
|
332 |
+
"Error@1": 7.07,
|
333 |
+
"Provider": "Meta",
|
334 |
+
"Openness": "Open",
|
335 |
+
"Thinking": false,
|
336 |
+
"Version": "v1.0.0",
|
337 |
+
"Agent": "Web-Agent",
|
338 |
+
"Source": ""
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"eval_name": "qwen-max-2025-01-25",
|
342 |
+
"Model": "<a target=\"_blank\" href=\"https://www.alibabacloud.com/help/en/model-studio/what-is-qwen-llm#c2d5833ae4jmo\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">qwen-max-2025-01-25</a>",
|
343 |
+
"Pass@2": 19.02,
|
344 |
+
"Pass@1": 15.870000000000001,
|
345 |
+
"Error@1": 6.3,
|
346 |
+
"Provider": "QWen",
|
347 |
+
"Openness": "Open",
|
348 |
+
"Thinking": false,
|
349 |
+
"Version": "v1.0.0",
|
350 |
+
"Agent": "Web-Agent",
|
351 |
+
"Source": ""
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"eval_name": "qwen-plus-2025-01-25",
|
355 |
+
"Model": "<a target=\"_blank\" href=\"https://www.alibabacloud.com/help/en/model-studio/what-is-qwen-llm#6ad3cd90f0c5r\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">qwen-plus-2025-01-25</a>",
|
356 |
+
"Pass@2": 15.110000000000001,
|
357 |
+
"Pass@1": 11.85,
|
358 |
+
"Error@1": 6.2,
|
359 |
+
"Provider": "QWen",
|
360 |
+
"Openness": "Open",
|
361 |
+
"Thinking": false,
|
362 |
+
"Version": "v1.0.0",
|
363 |
+
"Agent": "Web-Agent",
|
364 |
+
"Source": ""
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"eval_name": "qwen-2.5-72b-instruct",
|
368 |
+
"Model": "<a target=\"_blank\" href=\"https://huggingface.co/Qwen/Qwen2.5-72B-Instruct\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">qwen-2.5-72b-instruct</a>",
|
369 |
+
"Pass@2": 13.700000000000001,
|
370 |
+
"Pass@1": 10.54,
|
371 |
+
"Error@1": 6.63,
|
372 |
+
"Provider": "QWen",
|
373 |
+
"Openness": "Open",
|
374 |
+
"Thinking": false,
|
375 |
+
"Version": "v1.0.0",
|
376 |
+
"Agent": "Web-Agent",
|
377 |
+
"Source": ""
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"eval_name": "qwen-turbo-2024-11-01",
|
381 |
+
"Model": "<a target=\"_blank\" href=\"https://www.alibabacloud.com/help/en/model-studio/what-is-qwen-llm#ede6678dedqbz\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">qwen-turbo-2024-11-01</a>",
|
382 |
+
"Pass@2": 5.11,
|
383 |
+
"Pass@1": 2.6100000000000003,
|
384 |
+
"Error@1": 6.8500000000000005,
|
385 |
+
"Provider": "QWen",
|
386 |
+
"Openness": "Open",
|
387 |
+
"Thinking": false,
|
388 |
+
"Version": "v1.0.0",
|
389 |
+
"Agent": "Web-Agent",
|
390 |
+
"Source": ""
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"eval_name": "mistral-large-2411",
|
394 |
+
"Model": "<a target=\"_blank\" href=\"https://huggingface.co/mistralai/Pixtral-Large-Instruct-2411\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">mistral-large-2411</a>",
|
395 |
+
"Pass@2": 18.7,
|
396 |
+
"Pass@1": 13.04,
|
397 |
+
"Error@1": 7.28,
|
398 |
+
"Provider": "MistralAI",
|
399 |
+
"Openness": "Open",
|
400 |
+
"Thinking": false,
|
401 |
+
"Version": "v1.0.0",
|
402 |
+
"Agent": "Web-Agent",
|
403 |
+
"Source": ""
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"eval_name": "grok-2-1212",
|
407 |
+
"Model": "<a target=\"_blank\" href=\"https://openrouter.ai/x-ai/grok-2-vision-1212\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">grok-2-1212</a>",
|
408 |
+
"Pass@2": 17.169999999999998,
|
409 |
+
"Pass@1": 11.3,
|
410 |
+
"Error@1": 7.93,
|
411 |
+
"Provider": "X-AI",
|
412 |
+
"Openness": "Closed",
|
413 |
+
"Thinking": false,
|
414 |
+
"Version": "v1.0.0",
|
415 |
+
"Agent": "Web-Agent",
|
416 |
+
"Source": ""
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"eval_name": "doubao-pro-1.5-32k",
|
420 |
+
"Model": "<a target=\"_blank\" href=\"https://www.volcengine.com/docs/82379/1554678\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">doubao-pro-1.5-32k</a>",
|
421 |
+
"Pass@2": 22.93,
|
422 |
+
"Pass@1": 16.63,
|
423 |
+
"Error@1": 7.28,
|
424 |
+
"Provider": "Doubao",
|
425 |
+
"Openness": "Closed",
|
426 |
+
"Thinking": false,
|
427 |
+
"Version": "v1.0.0",
|
428 |
+
"Agent": "Web-Agent",
|
429 |
+
"Source": ""
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"eval_name": "doubao-pro-1.5-thinking",
|
433 |
+
"Model": "<a target=\"_blank\" href=\"http://volcengine.com/docs/82379/1536428\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">doubao-pro-1.5-thinking</a>",
|
434 |
+
"Pass@2": 30.220000000000002,
|
435 |
+
"Pass@1": 20.11,
|
436 |
+
"Error@1": 10.56,
|
437 |
+
"Provider": "Doubao",
|
438 |
+
"Openness": "Closed",
|
439 |
+
"Thinking": true,
|
440 |
+
"Version": "v1.0.0",
|
441 |
+
"Agent": "Web-Agent",
|
442 |
+
"Source": ""
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"eval_name": "doubao-pro-1.5-32k-lite",
|
446 |
+
"Model": "<a target=\"_blank\" href=\"https://www.volcengine.com/docs/82379/1554516\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">doubao-pro-1.5-32k-lite</a>",
|
447 |
+
"Pass@2": 5.9799999999999995,
|
448 |
+
"Pass@1": 3.4799999999999995,
|
449 |
+
"Error@1": 6.41,
|
450 |
+
"Provider": "Doubao",
|
451 |
+
"Openness": "Closed",
|
452 |
+
"Thinking": false,
|
453 |
+
"Version": "v1.0.0",
|
454 |
+
"Agent": "Web-Agent",
|
455 |
+
"Source": ""
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"eval_name": "GLM-4-0414",
|
459 |
+
"Model": "<a target=\"_blank\" href=\"https://huggingface.co/THUDM/GLM-4-32B-0414\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">GLM-4-0414</a>",
|
460 |
+
"Pass@2": 9.02,
|
461 |
+
"Pass@1": 7.5,
|
462 |
+
"Error@1": 6.3,
|
463 |
+
"Provider": "Thudm",
|
464 |
+
"Openness": "Open",
|
465 |
+
"Thinking": false,
|
466 |
+
"Version": "v1.0.0",
|
467 |
+
"Agent": "Web-Agent",
|
468 |
+
"Source": ""
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"eval_name": "step-fun-2-16k",
|
472 |
+
"Model": "<a target=\"_blank\" href=\"https://www.stepfun.com/company#step2\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">step-fun-2-16k</a>",
|
473 |
+
"Pass@2": 15.870000000000001,
|
474 |
+
"Pass@1": 13.700000000000001,
|
475 |
+
"Error@1": 6.09,
|
476 |
+
"Provider": "StepFun",
|
477 |
+
"Openness": "Closed",
|
478 |
+
"Thinking": false,
|
479 |
+
"Version": "v1.0.0",
|
480 |
+
"Agent": "Web-Agent",
|
481 |
+
"Source": ""
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"eval_name": "sense-chat-5",
|
485 |
+
"Model": "<a target=\"_blank\" href=\"https://chat.sensetime.com/\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">sense-chat-5</a>",
|
486 |
+
"Pass@2": 12.72,
|
487 |
+
"Pass@1": 8.48,
|
488 |
+
"Error@1": 6.8500000000000005,
|
489 |
+
"Provider": "SenseTime",
|
490 |
+
"Openness": "Closed",
|
491 |
+
"Thinking": false,
|
492 |
+
"Version": "v1.0.0",
|
493 |
+
"Agent": "Web-Agent",
|
494 |
+
"Source": ""
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"eval_name": "360-gpt2-o1",
|
498 |
+
"Model": "<a target=\"_blank\" href=\"https://aiplus.360.cn/tags/360gpt2-o1.html\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">360-gpt2-o1</a>",
|
499 |
+
"Pass@2": 14.46,
|
500 |
+
"Pass@1": 8.260000000000002,
|
501 |
+
"Error@1": 7.39,
|
502 |
+
"Provider": 360,
|
503 |
+
"Openness": "Closed",
|
504 |
+
"Thinking": false,
|
505 |
+
"Version": "v1.0.0",
|
506 |
+
"Agent": "Web-Agent",
|
507 |
+
"Source": ""
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"eval_name": "minimax-text",
|
511 |
+
"Model": "<a target=\"_blank\" href=\"https://huggingface.co/MiniMaxAI/MiniMax-Text-01\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">minimax-text</a>",
|
512 |
+
"Pass@2": 10.76,
|
513 |
+
"Pass@1": 8.48,
|
514 |
+
"Error@1": 6.2,
|
515 |
+
"Provider": "MiniMax",
|
516 |
+
"Openness": "Open",
|
517 |
+
"Thinking": false,
|
518 |
+
"Version": "v1.0.0",
|
519 |
+
"Agent": "Web-Agent",
|
520 |
+
"Source": ""
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"eval_name": "moonshot-kimi-latest",
|
524 |
+
"Model": "<a target=\"_blank\" href=\"https://huggingface.co/moonshotai\" style=\"color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;\">moonshot-kimi-latest</a>",
|
525 |
+
"Pass@2": 11.85,
|
526 |
+
"Pass@1": 5.220000000000001,
|
527 |
+
"Error@1": 10.22,
|
528 |
+
"Provider": "MoonshotAI",
|
529 |
+
"Openness": "Open",
|
530 |
+
"Thinking": false,
|
531 |
+
"Version": "v1.0.0",
|
532 |
+
"Agent": "Web-Agent",
|
533 |
+
"Source": ""
|
534 |
+
}
|
535 |
+
]
|
src/submission/check_validity.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from collections import defaultdict
|
5 |
+
from datetime import datetime, timedelta, timezone
|
6 |
+
|
7 |
+
import huggingface_hub
|
8 |
+
from huggingface_hub import ModelCard
|
9 |
+
from huggingface_hub.hf_api import ModelInfo
|
10 |
+
from transformers import AutoConfig
|
11 |
+
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
+
|
13 |
+
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
14 |
+
"""Checks if the model card and license exist and have been filled"""
|
15 |
+
try:
|
16 |
+
card = ModelCard.load(repo_id)
|
17 |
+
except huggingface_hub.utils.EntryNotFoundError:
|
18 |
+
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
19 |
+
|
20 |
+
# Enforce card content
|
21 |
+
if len(card.text) < 200:
|
22 |
+
return False, "Please add a description to your model card, it is too short."
|
23 |
+
|
24 |
+
return True, ""
|
25 |
+
|
26 |
+
def is_model_on_hub(model_name: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
27 |
+
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
28 |
+
try:
|
29 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code, token=token)
|
30 |
+
if test_tokenizer:
|
31 |
+
try:
|
32 |
+
tk = AutoTokenizer.from_pretrained(model_name, trust_remote_code=trust_remote_code, token=token)
|
33 |
+
except ValueError as e:
|
34 |
+
return (
|
35 |
+
False,
|
36 |
+
f"uses a tokenizer which is not in a transformers release: {e}",
|
37 |
+
None
|
38 |
+
)
|
39 |
+
except Exception as e:
|
40 |
+
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
41 |
+
return True, None, config
|
42 |
+
|
43 |
+
except ValueError:
|
44 |
+
return (
|
45 |
+
False,
|
46 |
+
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
47 |
+
None
|
48 |
+
)
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
return False, "was not found on hub!", None
|
52 |
+
|
53 |
+
|
54 |
+
def get_model_size(model_info: ModelInfo):
|
55 |
+
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
56 |
+
try:
|
57 |
+
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
58 |
+
except (AttributeError, TypeError):
|
59 |
+
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
60 |
+
|
61 |
+
size_factor = 8
|
62 |
+
model_size = size_factor * model_size
|
63 |
+
return model_size
|
64 |
+
|
65 |
+
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
66 |
+
"""Gather a list of already submitted models to avoid duplicates"""
|
67 |
+
depth = 1
|
68 |
+
file_names = []
|
69 |
+
users_to_submission_dates = defaultdict(list)
|
70 |
+
|
71 |
+
for root, _, files in os.walk(requested_models_dir):
|
72 |
+
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
73 |
+
if current_depth == depth:
|
74 |
+
for file in files:
|
75 |
+
if not file.endswith(".json"):
|
76 |
+
continue
|
77 |
+
with open(os.path.join(root, file), "r") as f:
|
78 |
+
info = json.load(f)
|
79 |
+
# Select organisation
|
80 |
+
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
81 |
+
continue
|
82 |
+
organisation, _ = info["model"].split("/")
|
83 |
+
users_to_submission_dates[organisation].append(info["submitted_time"])
|
84 |
+
|
85 |
+
return set(file_names), users_to_submission_dates
|
src/submission/submit.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from datetime import datetime, timezone
|
4 |
+
|
5 |
+
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
+
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
+
from src.submission.check_validity import (
|
8 |
+
already_submitted_models,
|
9 |
+
check_model_card,
|
10 |
+
get_model_size,
|
11 |
+
is_model_on_hub,
|
12 |
+
)
|
13 |
+
|
14 |
+
REQUESTED_MODELS = None
|
15 |
+
USERS_TO_SUBMISSION_DATES = None
|
16 |
+
|
17 |
+
def add_new_eval(
|
18 |
+
model: str,
|
19 |
+
base_model: str,
|
20 |
+
):
|
21 |
+
global REQUESTED_MODELS
|
22 |
+
global USERS_TO_SUBMISSION_DATES
|
23 |
+
if not REQUESTED_MODELS:
|
24 |
+
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
25 |
+
|
26 |
+
user_name = ""
|
27 |
+
model_path = model
|
28 |
+
if "/" in model:
|
29 |
+
user_name = model.split("/")[0]
|
30 |
+
model_path = model.split("/")[1]
|
31 |
+
|
32 |
+
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
33 |
+
|
34 |
+
# Is the model info correctly filled?
|
35 |
+
try:
|
36 |
+
model_info = API.model_info(repo_id=model)
|
37 |
+
except Exception:
|
38 |
+
return styled_error("Could not get your model information. Please fill it up properly.")
|
39 |
+
|
40 |
+
model_size = get_model_size(model_info=model_info)
|
41 |
+
|
42 |
+
modelcard_OK, error_msg = check_model_card(model)
|
43 |
+
if not modelcard_OK:
|
44 |
+
return styled_error(error_msg)
|
45 |
+
|
46 |
+
# Seems good, creating the eval
|
47 |
+
print("Adding new eval")
|
48 |
+
|
49 |
+
eval_entry = {
|
50 |
+
"model": model,
|
51 |
+
"base_model": base_model,
|
52 |
+
"status": "PENDING",
|
53 |
+
"submitted_time": current_time,
|
54 |
+
"private": False,
|
55 |
+
}
|
56 |
+
|
57 |
+
# Check for duplicate submission
|
58 |
+
if f"{model}" in REQUESTED_MODELS:
|
59 |
+
return styled_warning("This model has been already submitted.")
|
60 |
+
|
61 |
+
print("Creating eval file")
|
62 |
+
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
63 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
64 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_False.json"
|
65 |
+
|
66 |
+
with open(out_path, "w") as f:
|
67 |
+
f.write(json.dumps(eval_entry))
|
68 |
+
|
69 |
+
print("Uploading eval file")
|
70 |
+
API.upload_file(
|
71 |
+
path_or_fileobj=out_path,
|
72 |
+
path_in_repo=out_path.split("eval-queue/")[1],
|
73 |
+
repo_id=QUEUE_REPO,
|
74 |
+
repo_type="dataset",
|
75 |
+
commit_message=f"Add {model} to eval queue",
|
76 |
+
)
|
77 |
+
|
78 |
+
# Remove the local file
|
79 |
+
os.remove(out_path)
|
80 |
+
|
81 |
+
return styled_message(
|
82 |
+
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
83 |
+
)
|