File size: 7,941 Bytes
0a0b2ac 4e4be4d c12bb45 4e4be4d c12bb45 92fbaac c12bb45 4e97977 c12bb45 4e97977 c12bb45 4e97977 0435223 c12bb45 c7713b9 0435223 648d7fd 0435223 401d235 f49869f 0435223 401d235 0435223 d857c74 0435223 c7713b9 0435223 a6882d9 086a9df 0435223 086a9df 0435223 086a9df 0435223 086a9df 0435223 413f4a2 5e43eea c38b36f c7713b9 5e43eea c6299bb 5e43eea 4a3fef6 ad878d3 a274f8b cfa4a7d 85a4161 ffc5e34 a274f8b ffc5e34 5e43eea 764479c 904ac9d 764479c 904ac9d 764479c 982a1ab 764479c 5e43eea c7713b9 6831418 c7713b9 413f4a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
---
license: cc-by-3.0
language:
- en
size_categories:
- 1M<n<10M
pretty_name: BIOSCAN-5M
tags:
- Multimodal_dataset
- Large_dcale_dataset
- Image
- DNA_barcode
- Taxonomy
- Biodiversity
- LLMs
- BERT
- Clustering
- Multimodal_retrieval_learning
- Zero_shot_transfer_learning
- Geo_location
- Specimen_size
- Insect
- Species
maintainers:
- https://huggingface.co/Gharaee
author:
name: Zahra Gharaee
github: https://github.com/zahrag
hf: https://huggingface.co/Gharaee
dataset_loader_script: dataset.py
dataset_split_names:
- pretarin
- train
- validation
- test
- val_unseen
- test_unseen
- key_unseen
- other_heldout
---
[](https://huggingface.co/Gharaee)
# Dataset Card for BIOSCAN-5M

## Overview
As part of an ongoing worldwide effort to comprehend and monitor insect biodiversity, we present the BIOSCAN-5M Insect dataset to the machine learning community. BIOSCAN-5M is a comprehensive dataset containing multi-modal information for over 5 million insect specimens,
and it significantly expands existing image-based biological datasets by including taxonomic labels, raw nucleotide barcode sequences, assigned barcode index numbers, geographical information, and specimen size.
### Large-Scale Foundation Model Training
#### BIOSCAN-5M is partitioned to support both closed-world and open-world biodiversity learning:
- **Closed-world (train, val, test):**
Samples with known species names for supervised classification.
- **Open-world (key_unseen, val_unseen, test_unseen):**
Placeholder species but known genera, enabling generalization to unseen species.
- **Novelty detection (other_heldout):**
Unknown species and genus, suitable for open-set detection.
- **Pretraining (pretrain):**
Unlabeled data for self- or semi-supervised learning at scale.
#### Supported Tasks
- **Task I: DNA-based Taxonomic Classification**
Predict taxonomic labels from raw DNA barcode sequences.
- **Task II: Zero-Shot Transfer Learning**
Evaluate whether unlabeled models can organize data into semantically meaningful clusters—across modalities like image and DNA—using learned representations.
- **Task III: Multimodal Retrieval Learning**
Retrieve matching specimens across modalities (e.g., image ↔ DNA ↔ Text) using shared embeddings.
### Citation
If you make use of the BIOSCAN-5M dataset and/or its code repository, please cite the following paper:
```
cite as:
@inproceedings{gharaee2024bioscan5m,
title={{BIOSCAN-5M}: A Multimodal Dataset for Insect Biodiversity},
booktitle={Advances in Neural Information Processing Systems},
author={Zahra Gharaee and Scott C. Lowe and ZeMing Gong and Pablo Millan Arias
and Nicholas Pellegrino and Austin T. Wang and Joakim Bruslund Haurum
and Iuliia Zarubiieva and Lila Kari and Dirk Steinke and Graham W. Taylor
and Paul Fieguth and Angel X. Chang
},
editor={A. Globerson and L. Mackey and D. Belgrave and A. Fan and U. Paquet and J. Tomczak and C. Zhang},
pages={36285--36313},
publisher={Curran Associates, Inc.},
year={2024},
volume={37},
url={https://proceedings.neurips.cc/paper_files/paper/2024/file/3fdbb472813041c9ecef04c20c2b1e5a-Paper-Datasets_and_Benchmarks_Track.pdf},
}
```
## Dataset Features
Each configuration loads specimen images along with associated metadata fields:
- **`image`**
RGB JPEG images of individual insect specimens.
- **Metadata fields**
- **Indexing fields**
- `processid`: A unique number assigned by BOLD (International Barcode of Life Consortium).
- `sampleid`: A unique identifier given by the collector.
- **Taxonomic labels**
- `phylum`, `class`, `order`, `family`, `subfamily`, `genus`, `species`: Hierarchical taxonomic classification
- **Genetic information**
- `dna_bin`: Barcode Index Number
- `dna_barcode`: DNA barcode sequence
- **Geographic data**
- `country`, `province_state`: Collection location
- `coord-lat`, `coord-lon`: Latitude and longitude coordinates
- **Specimen size data**
- `image_measurement_value`: Measured image property (e.g., pixel area)
- `area_fraction`: Fraction of the image occupied by the specimen
- `scale_factor`: Relative size normalization factor
- **Split and localization**
- `split`: Data partition label (e.g., train, test, val)
- `chunk`: Subdirectory label for scalable storage
## Usage
First, download the `dataset.py` script to your project directory by running the following command:
```python
wget -P /path/to/your/project_directory https://huggingface.co/datasets/bioscan-ml/BIOSCAN-5M/resolve/main/dataset.py
```
Once you've downloaded the script, you can use the `datasets` library to load the dataset. For example:
```python
from datasets import load_dataset
ds = load_dataset("dataset.py", name="cropped_256_eval", split="validation", trust_remote_code=True)
```
> **ℹ️ Note:** The CSV metadata and image package associated with the selected configuration will be automatically downloaded and extracted to `~/.cache/huggingface/datasets/downloads/extracted/` .
### 📑 Configurations
| **`name`** | **Available `split` values** |
|--------------------------------------------- |------------------------------------------------------------------- |
| `cropped_256`, `original_256` | `pretrain`, `train`, `validation`, `test`, `val_unseen`, `test_unseen`, `key_unseen`, `other_heldout` |
| `cropped_256_pretrain`, `original_256_pretrain` | `pretrain` |
| `cropped_256_train`, `original_256_train` | `train` |
| `cropped_256_eval`, `original_256_eval` | `validation`, `test`, `val_unseen`, `test_unseen`, `key_unseen`, `other_heldout` |
> **ℹ️ Note:** If you do not specify the `split` when loading the dataset, all available splits will be loaded as a dictionary.
## Sample Usage
First, download the `usage_demo_bioscan5m.py` script to your project directory by running the following command:
```python
wget -P /path/to/your/project_directory https://huggingface.co/datasets/bioscan-ml/BIOSCAN-5M/resolve/main/usage_demo_bioscan5m.py
```
This script demonstrates how to load and visualize samples from the BIOSCAN-5M dataset.
To run the script, execute:
```bash
python usage_demo_bioscan5m.py
```
This will display 10 dataset samples, each showing the organism image on the right, and the corresponding metadata fields on the left, including taxonomic, geographic, genetic, and size-related information.
<img src="https://cdn-uploads.huggingface.co/production/uploads/64cac7e17221ef3c7e2eed1f/qlC1wtjfa_CqOzD2r07Kr.png" alt="image" width="1000"/>
## Dataset Access
To clone this dataset repository, use the following command:
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/datasets/bioscan-ml/BIOSCAN-5M
```
### Dataset Sources
- **Dataset website:** https://biodiversitygenomics.net/5M-insects/
- **GoogleDrive:** https://drive.google.com/drive/u/1/folders/1Jc57eKkeiYrnUBc9WlIp-ZS_L1bVlT-0
- **GitHub:** https://github.com/zahrag/BIOSCAN-5M
- **Zenodo:** https://zenodo.org/records/11973457
- **Kaggle:** https://www.kaggle.com/datasets/zahragharaee/bioscan-5m/data
- **Paper:** https://arxiv.org/abs/2406.12723

|