Commit
·
da0475a
1
Parent(s):
c16ac20
first attempt
Browse files
p3.py
ADDED
|
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 BigScience Contributors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""P3"""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import datasets
|
| 19 |
+
import glob
|
| 20 |
+
import json
|
| 21 |
+
import os
|
| 22 |
+
from collections import defaultdict
|
| 23 |
+
import tensorflow as tf
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
_CITATION = """\
|
| 27 |
+
TODO"""
|
| 28 |
+
|
| 29 |
+
_DESCRIPTION = """\
|
| 30 |
+
TODO
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
_LICENSE = "Apache License 2.0"
|
| 34 |
+
|
| 35 |
+
_HOMEPAGE = "https://github.com/bigscience-workshop/promptsource"
|
| 36 |
+
|
| 37 |
+
_DATA_PATH = "./data/"
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def load_cached_task(cache_dir, split):
|
| 41 |
+
# TODO(Victor): this info.*.json is actually done twice... -> factorize
|
| 42 |
+
with tf.io.gfile.GFile(os.path.join(cache_dir, f"info.{split}.json")) as f:
|
| 43 |
+
split_info = json.load(f)
|
| 44 |
+
features = split_info["features"]
|
| 45 |
+
|
| 46 |
+
# Use `FixedLenSequenceFeature` for sequences with variable length.
|
| 47 |
+
def _feature_config(shape, dtype):
|
| 48 |
+
if dtype in ("int32", "bool"):
|
| 49 |
+
# int32 and bool are stored as int64 in the tf.train.Example protobuf.
|
| 50 |
+
dtype = "int64"
|
| 51 |
+
if shape and shape[0] is None:
|
| 52 |
+
return tf.io.FixedLenSequenceFeature(
|
| 53 |
+
shape[1:], dtype, allow_missing=True
|
| 54 |
+
)
|
| 55 |
+
return tf.io.FixedLenFeature(shape, dtype)
|
| 56 |
+
|
| 57 |
+
feature_description = {
|
| 58 |
+
feat: _feature_config(**desc) for feat, desc in features.items()
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
tfrecords = os.path.join(
|
| 62 |
+
cache_dir, f"{split}.tfrecord-*-of-*{split_info['num_shards']}"
|
| 63 |
+
)
|
| 64 |
+
ds = tf.data.TFRecordDataset(tf.io.gfile.glob(tfrecords))
|
| 65 |
+
ds = ds.map(
|
| 66 |
+
lambda pb: tf.io.parse_single_example(pb, feature_description),
|
| 67 |
+
num_parallel_calls=tf.data.experimental.AUTOTUNE
|
| 68 |
+
)
|
| 69 |
+
# Cast features back to the types from the info JSON since some features
|
| 70 |
+
# must be cast for storage (e.g., in32 is stored as int64).
|
| 71 |
+
ds = ds.map(
|
| 72 |
+
lambda x: {k: tf.cast(v, features[k]["dtype"]) for k, v in x.items()},
|
| 73 |
+
num_parallel_calls=tf.data.experimental.AUTOTUNE
|
| 74 |
+
)
|
| 75 |
+
return ds
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def find_task_splits_and_features():
|
| 79 |
+
"""Find the available tasks under ./data and their available splits and features."""
|
| 80 |
+
task_and_their_splits = defaultdict(dict)
|
| 81 |
+
for stats in glob.glob(f"{_DATA_PATH}/*/stats.*.json"):
|
| 82 |
+
folder_path = os.path.dirname(stats)
|
| 83 |
+
task_name = folder_path.split("/")[-1]
|
| 84 |
+
split_name = os.path.basename(stats).split(".")[1]
|
| 85 |
+
|
| 86 |
+
if not os.path.exists(f"{folder_path}/COMPLETED"):
|
| 87 |
+
continue
|
| 88 |
+
|
| 89 |
+
with open(stats, "r") as f:
|
| 90 |
+
split_stats = json.load(f)
|
| 91 |
+
nb_examples = split_stats["examples"]
|
| 92 |
+
|
| 93 |
+
if nb_examples > 0:
|
| 94 |
+
with open(os.path.join(folder_path, f"info.{split_name}.json")) as f:
|
| 95 |
+
split_info = json.load(f)
|
| 96 |
+
features = split_info["features"]
|
| 97 |
+
|
| 98 |
+
# All splits under the same task have the same features dictionary (and thus the same features list)
|
| 99 |
+
if task_and_their_splits[task_name] == {}:
|
| 100 |
+
task_and_their_splits[task_name] = {
|
| 101 |
+
"splits": [],
|
| 102 |
+
"features": [],
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
task_and_their_splits[task_name]["splits"].append(split_name)
|
| 106 |
+
if task_and_their_splits[task_name]["features"] == []:
|
| 107 |
+
task_and_their_splits[task_name]["features"] = sorted(list(features.keys()))
|
| 108 |
+
else:
|
| 109 |
+
assert task_and_their_splits[task_name]["features"] == sorted(list(features.keys()))
|
| 110 |
+
return task_and_their_splits
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
TASK_SPLITS_AND_FEATURES = find_task_splits_and_features()
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
class P3Config(datasets.BuilderConfig):
|
| 118 |
+
"""BuilderConfig for P3."""
|
| 119 |
+
|
| 120 |
+
def __init__(self, splits, features, score_eval, **kwargs):
|
| 121 |
+
"""BuilderConfig for P3.
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
splits: `List[str]`, the lists of splits which are available for this task
|
| 125 |
+
features: `List[str]`, the list of features for this task
|
| 126 |
+
score_eval: `bool`, whether this is task formulated as a rank classification problem
|
| 127 |
+
**kwargs: keyword arguments forwarded to super.
|
| 128 |
+
"""
|
| 129 |
+
# Version history:
|
| 130 |
+
# 0.1 initial commit
|
| 131 |
+
super(P3Config, self).__init__(version=datasets.Version("0.1.0"), **kwargs)
|
| 132 |
+
self.splits = splits
|
| 133 |
+
self.features = features
|
| 134 |
+
self.score_eval = score_eval
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class P3(datasets.GeneratorBasedBuilder):
|
| 138 |
+
"""Subset of P3 used in `Multitask Prompted Training Enables Zero-Shot Task Generalization`"""
|
| 139 |
+
|
| 140 |
+
BUILDER_CONFIGS = [
|
| 141 |
+
P3Config(
|
| 142 |
+
name=task_name,
|
| 143 |
+
splits=splits_and_features["splits"],
|
| 144 |
+
features=splits_and_features["features"],
|
| 145 |
+
score_eval=task_name.endswith("score_eval")
|
| 146 |
+
)
|
| 147 |
+
for task_name, splits_and_features in TASK_SPLITS_AND_FEATURES.items()
|
| 148 |
+
]
|
| 149 |
+
|
| 150 |
+
def _info(self):
|
| 151 |
+
# All features available are: 'inputs', 'inputs_pretokenized', 'targets',
|
| 152 |
+
# 'targets_pretokenized', 'idx', 'is_correct', 'weight', and 'answer_choices'
|
| 153 |
+
_FEAT_MAPPING = {
|
| 154 |
+
"answer_choices": datasets.Sequence(datasets.Value("string")),
|
| 155 |
+
"inputs": datasets.Sequence(datasets.Value("int32")),
|
| 156 |
+
"inputs_pretokenized": datasets.Value("string"),
|
| 157 |
+
"targets": datasets.Sequence(datasets.Value("int32")),
|
| 158 |
+
"targets_pretokenized": datasets.Value("string"),
|
| 159 |
+
"idx": datasets.Sequence(datasets.Value("int32")),
|
| 160 |
+
"weight": datasets.Value("float32"),
|
| 161 |
+
"is_correct": datasets.Value("bool"),
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
features = {}
|
| 165 |
+
for feat_name in self.config.features:
|
| 166 |
+
features[feat_name] = _FEAT_MAPPING[feat_name]
|
| 167 |
+
|
| 168 |
+
return datasets.DatasetInfo(
|
| 169 |
+
description=_DESCRIPTION,
|
| 170 |
+
features=datasets.Features(features),
|
| 171 |
+
supervised_keys=None,
|
| 172 |
+
homepage=_HOMEPAGE,
|
| 173 |
+
citation=_CITATION,
|
| 174 |
+
license=_LICENSE,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
def _split_generators(self, dl_manager):
|
| 178 |
+
split_generators = []
|
| 179 |
+
if "train" in self.config.splits:
|
| 180 |
+
split_generators.append(
|
| 181 |
+
datasets.SplitGenerator(
|
| 182 |
+
name=datasets.Split.TRAIN,
|
| 183 |
+
gen_kwargs={
|
| 184 |
+
"data_folder": os.path.join(_DATA_PATH, self.config.name),
|
| 185 |
+
"split": "train",
|
| 186 |
+
}
|
| 187 |
+
)
|
| 188 |
+
)
|
| 189 |
+
if "validation" in self.config.splits:
|
| 190 |
+
split_generators.append(
|
| 191 |
+
datasets.SplitGenerator(
|
| 192 |
+
name=datasets.Split.VALIDATION,
|
| 193 |
+
gen_kwargs={
|
| 194 |
+
"data_folder": os.path.join(_DATA_PATH, self.config.name),
|
| 195 |
+
"split": "validation",
|
| 196 |
+
}
|
| 197 |
+
)
|
| 198 |
+
)
|
| 199 |
+
if "test" in self.config.splits:
|
| 200 |
+
split_generators.append(
|
| 201 |
+
datasets.SplitGenerator(
|
| 202 |
+
name=datasets.Split.TEST,
|
| 203 |
+
gen_kwargs={
|
| 204 |
+
"data_folder": os.path.join(_DATA_PATH, self.config.name),
|
| 205 |
+
"split": "test",
|
| 206 |
+
}
|
| 207 |
+
)
|
| 208 |
+
)
|
| 209 |
+
# Handle splits that are not train, validation or test
|
| 210 |
+
special_splits = set(self.config.splits) - set(["train", "validation", "test"])
|
| 211 |
+
for special_split_name in special_splits:
|
| 212 |
+
split_generators.append(
|
| 213 |
+
datasets.SplitGenerator(
|
| 214 |
+
name=datasets.Split(special_split_name),
|
| 215 |
+
gen_kwargs={
|
| 216 |
+
"data_folder": os.path.join(_DATA_PATH, self.config.name),
|
| 217 |
+
"split": special_split_name,
|
| 218 |
+
}
|
| 219 |
+
)
|
| 220 |
+
)
|
| 221 |
+
return split_generators
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def _generate_examples(self, data_folder, split):
|
| 225 |
+
"""This function returns the examples in the raw (text) form."""
|
| 226 |
+
_FEAT_MAPPING_FUNCTIONS = {
|
| 227 |
+
"answer_choices": lambda x: [choice.decode("utf-8") for choice in x],
|
| 228 |
+
"inputs": lambda x: x.tolist(),
|
| 229 |
+
"inputs_pretokenized": lambda x: x.decode("utf-8"),
|
| 230 |
+
"targets": lambda x: x.tolist(),
|
| 231 |
+
"targets_pretokenized": lambda x: x.decode("utf-8"),
|
| 232 |
+
"idx": lambda x: x.tolist(),
|
| 233 |
+
"weight": lambda x: float(x),
|
| 234 |
+
"is_correct": lambda x: x,
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
key = 0
|
| 238 |
+
ds = load_cached_task(data_folder, split)
|
| 239 |
+
for ex in ds.as_numpy_iterator():
|
| 240 |
+
ex_dict = {}
|
| 241 |
+
for feat_name, feat_value in ex.items():
|
| 242 |
+
ex_dict[feat_name] = _FEAT_MAPPING_FUNCTIONS[feat_name](feat_value)
|
| 243 |
+
yield key, ex_dict
|
| 244 |
+
key += 1
|