Commit
·
1e02208
1
Parent(s):
248047a
Streaming support (#11)
Browse files- Streaming support (54bc4c0e25438ec671152fb19fb5ca16c986ff6c)
- Add From: comment to protobuf import (eebf82105ad8b692635572bcb5ba58e1b6d3c473)
- P3.py +42 -61
- _tfrecord_example_pb2.py +3 -0
- io_utils.py +166 -0
- print_data_split_sizes.py +1 -1
- tasks_splits_and_features.py +0 -0
P3.py
CHANGED
|
@@ -14,10 +14,14 @@
|
|
| 14 |
# limitations under the License.
|
| 15 |
"""P3 (Public Pool of Prompts)"""
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
import datasets
|
| 19 |
-
import tensorflow as tf
|
| 20 |
|
|
|
|
|
|
|
| 21 |
from .tasks_splits_and_features import _TASK_SPLITS_AND_FEATURES_DICT
|
| 22 |
|
| 23 |
|
|
@@ -44,44 +48,14 @@ _HOMEPAGE = "https://github.com/bigscience-workshop/promptsource"
|
|
| 44 |
|
| 45 |
_DATA_PATH = "data"
|
| 46 |
|
| 47 |
-
|
| 48 |
logger = datasets.logging.get_logger(__name__)
|
| 49 |
|
| 50 |
-
|
| 51 |
-
def load_cached_task(features_dict, tfrecord):
|
| 52 |
-
# Use `FixedLenSequenceFeature` for sequences with variable length.
|
| 53 |
-
def _feature_config(shape, dtype):
|
| 54 |
-
if dtype in ("int32", "bool"):
|
| 55 |
-
# int32 and bool are stored as int64 in the tf.train.Example protobuf.
|
| 56 |
-
dtype = "int64"
|
| 57 |
-
if shape and shape[0] is None:
|
| 58 |
-
return tf.io.FixedLenSequenceFeature(
|
| 59 |
-
shape[1:], dtype, allow_missing=True
|
| 60 |
-
)
|
| 61 |
-
return tf.io.FixedLenFeature(shape, dtype)
|
| 62 |
-
|
| 63 |
-
feature_description = {
|
| 64 |
-
feat: _feature_config(**desc) for feat, desc in features_dict.items()
|
| 65 |
-
}
|
| 66 |
-
|
| 67 |
-
ds = tf.data.TFRecordDataset(tfrecord)
|
| 68 |
-
ds = ds.map(
|
| 69 |
-
lambda pb: tf.io.parse_single_example(pb, feature_description),
|
| 70 |
-
num_parallel_calls=tf.data.experimental.AUTOTUNE
|
| 71 |
-
)
|
| 72 |
-
# Cast features back to the types from the info JSON since some features
|
| 73 |
-
# must be cast for storage (e.g., int32 is stored as int64).
|
| 74 |
-
ds = ds.map(
|
| 75 |
-
lambda x: {k: tf.cast(v, features_dict[k]["dtype"]) for k, v in x.items()},
|
| 76 |
-
num_parallel_calls=tf.data.experimental.AUTOTUNE
|
| 77 |
-
)
|
| 78 |
-
return ds
|
| 79 |
-
|
| 80 |
-
|
| 81 |
_URLs = {
|
| 82 |
task_name: {
|
| 83 |
split_name: [
|
| 84 |
-
|
|
|
|
|
|
|
| 85 |
]
|
| 86 |
for split_name in splits_and_features_dict["splits"]
|
| 87 |
}
|
|
@@ -117,7 +91,7 @@ class P3(datasets.GeneratorBasedBuilder):
|
|
| 117 |
name=task_name,
|
| 118 |
splits=splits_and_features_dict["splits"],
|
| 119 |
features_dict=splits_and_features_dict["features_dict"],
|
| 120 |
-
score_eval=task_name.endswith("score_eval")
|
| 121 |
)
|
| 122 |
for task_name, splits_and_features_dict in _TASK_SPLITS_AND_FEATURES_DICT.items()
|
| 123 |
]
|
|
@@ -136,10 +110,7 @@ class P3(datasets.GeneratorBasedBuilder):
|
|
| 136 |
"is_correct": datasets.Value("bool"),
|
| 137 |
}
|
| 138 |
|
| 139 |
-
features = {}
|
| 140 |
-
for feat_name in self.config.features_dict.keys():
|
| 141 |
-
features[feat_name] = _FEAT_MAPPING[feat_name]
|
| 142 |
-
|
| 143 |
return datasets.DatasetInfo(
|
| 144 |
description=_DESCRIPTION,
|
| 145 |
features=datasets.Features(features),
|
|
@@ -158,8 +129,8 @@ class P3(datasets.GeneratorBasedBuilder):
|
|
| 158 |
datasets.SplitGenerator(
|
| 159 |
name=datasets.Split.TRAIN,
|
| 160 |
gen_kwargs={
|
| 161 |
-
"
|
| 162 |
-
}
|
| 163 |
)
|
| 164 |
)
|
| 165 |
if "validation" in self.config.splits:
|
|
@@ -168,8 +139,8 @@ class P3(datasets.GeneratorBasedBuilder):
|
|
| 168 |
datasets.SplitGenerator(
|
| 169 |
name=datasets.Split.VALIDATION,
|
| 170 |
gen_kwargs={
|
| 171 |
-
"
|
| 172 |
-
}
|
| 173 |
)
|
| 174 |
)
|
| 175 |
if "test" in self.config.splits:
|
|
@@ -178,8 +149,8 @@ class P3(datasets.GeneratorBasedBuilder):
|
|
| 178 |
datasets.SplitGenerator(
|
| 179 |
name=datasets.Split.TEST,
|
| 180 |
gen_kwargs={
|
| 181 |
-
"
|
| 182 |
-
}
|
| 183 |
)
|
| 184 |
)
|
| 185 |
# Handle splits that are not train, validation or test
|
|
@@ -190,32 +161,42 @@ class P3(datasets.GeneratorBasedBuilder):
|
|
| 190 |
name=datasets.Split(special_split_name),
|
| 191 |
gen_kwargs={
|
| 192 |
"tfrecord": data_dir[special_split_name],
|
| 193 |
-
}
|
| 194 |
)
|
| 195 |
)
|
| 196 |
return split_generators
|
| 197 |
|
| 198 |
-
|
| 199 |
-
def _generate_examples(self, tfrecord):
|
| 200 |
"""This function returns the examples in the raw (text) form."""
|
| 201 |
-
|
| 202 |
"answer_choices": lambda x: [choice.decode("utf-8") for choice in x],
|
| 203 |
"inputs": lambda x: x.tolist(),
|
| 204 |
-
"inputs_pretokenized": lambda x: x.decode("utf-8"),
|
| 205 |
"targets": lambda x: x.tolist(),
|
| 206 |
-
"targets_pretokenized": lambda x: x.decode("utf-8"),
|
| 207 |
"idx": lambda x: x.tolist(),
|
| 208 |
"weight": lambda x: float(x),
|
| 209 |
"is_correct": lambda x: x,
|
| 210 |
}
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# limitations under the License.
|
| 15 |
"""P3 (Public Pool of Prompts)"""
|
| 16 |
|
| 17 |
+
import os
|
| 18 |
+
|
| 19 |
+
import google.protobuf as _protobuf # From: protobuf
|
| 20 |
|
| 21 |
import datasets
|
|
|
|
| 22 |
|
| 23 |
+
from ._tfrecord_example_pb2 import SequenceExample
|
| 24 |
+
from .io_utils import iterate_tfrecord_file, parse_tfrecord_sequence_example
|
| 25 |
from .tasks_splits_and_features import _TASK_SPLITS_AND_FEATURES_DICT
|
| 26 |
|
| 27 |
|
|
|
|
| 48 |
|
| 49 |
_DATA_PATH = "data"
|
| 50 |
|
|
|
|
| 51 |
logger = datasets.logging.get_logger(__name__)
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
_URLs = {
|
| 54 |
task_name: {
|
| 55 |
split_name: [
|
| 56 |
+
os.path.join(
|
| 57 |
+
_DATA_PATH, task_name, split_name + ".tfrecord-00000-of-00001"
|
| 58 |
+
), # TODO -> handle multiple shards
|
| 59 |
]
|
| 60 |
for split_name in splits_and_features_dict["splits"]
|
| 61 |
}
|
|
|
|
| 91 |
name=task_name,
|
| 92 |
splits=splits_and_features_dict["splits"],
|
| 93 |
features_dict=splits_and_features_dict["features_dict"],
|
| 94 |
+
score_eval=task_name.endswith("score_eval"),
|
| 95 |
)
|
| 96 |
for task_name, splits_and_features_dict in _TASK_SPLITS_AND_FEATURES_DICT.items()
|
| 97 |
]
|
|
|
|
| 110 |
"is_correct": datasets.Value("bool"),
|
| 111 |
}
|
| 112 |
|
| 113 |
+
features = {feat_name: _FEAT_MAPPING[feat_name] for feat_name in self.config.features_dict.keys()}
|
|
|
|
|
|
|
|
|
|
| 114 |
return datasets.DatasetInfo(
|
| 115 |
description=_DESCRIPTION,
|
| 116 |
features=datasets.Features(features),
|
|
|
|
| 129 |
datasets.SplitGenerator(
|
| 130 |
name=datasets.Split.TRAIN,
|
| 131 |
gen_kwargs={
|
| 132 |
+
"tfrecord_files": data_dir[split_name],
|
| 133 |
+
},
|
| 134 |
)
|
| 135 |
)
|
| 136 |
if "validation" in self.config.splits:
|
|
|
|
| 139 |
datasets.SplitGenerator(
|
| 140 |
name=datasets.Split.VALIDATION,
|
| 141 |
gen_kwargs={
|
| 142 |
+
"tfrecord_files": data_dir[split_name],
|
| 143 |
+
},
|
| 144 |
)
|
| 145 |
)
|
| 146 |
if "test" in self.config.splits:
|
|
|
|
| 149 |
datasets.SplitGenerator(
|
| 150 |
name=datasets.Split.TEST,
|
| 151 |
gen_kwargs={
|
| 152 |
+
"tfrecord_files": data_dir[split_name],
|
| 153 |
+
},
|
| 154 |
)
|
| 155 |
)
|
| 156 |
# Handle splits that are not train, validation or test
|
|
|
|
| 161 |
name=datasets.Split(special_split_name),
|
| 162 |
gen_kwargs={
|
| 163 |
"tfrecord": data_dir[special_split_name],
|
| 164 |
+
},
|
| 165 |
)
|
| 166 |
)
|
| 167 |
return split_generators
|
| 168 |
|
| 169 |
+
def _generate_examples(self, tfrecord_files):
|
|
|
|
| 170 |
"""This function returns the examples in the raw (text) form."""
|
| 171 |
+
_POST_PROC_FUNCTIONS = {
|
| 172 |
"answer_choices": lambda x: [choice.decode("utf-8") for choice in x],
|
| 173 |
"inputs": lambda x: x.tolist(),
|
| 174 |
+
"inputs_pretokenized": lambda x: x[0].decode("utf-8"),
|
| 175 |
"targets": lambda x: x.tolist(),
|
| 176 |
+
"targets_pretokenized": lambda x: x[0].decode("utf-8"),
|
| 177 |
"idx": lambda x: x.tolist(),
|
| 178 |
"weight": lambda x: float(x),
|
| 179 |
"is_correct": lambda x: x,
|
| 180 |
}
|
| 181 |
|
| 182 |
+
def _prepare_col_spec(shape, dtype):
|
| 183 |
+
if dtype in ("int32", "bool"):
|
| 184 |
+
# int32 and bool are stored as int64 in the tf.train.Example protobuf.
|
| 185 |
+
dtype = "int64"
|
| 186 |
+
elif dtype == "string":
|
| 187 |
+
dtype = "str"
|
| 188 |
+
if shape and shape[0] is None:
|
| 189 |
+
shape = (-1, *shape[1:])
|
| 190 |
+
return (shape, dtype)
|
| 191 |
+
|
| 192 |
+
spec = {k: _prepare_col_spec(**v) for k, v in self.config.features_dict.items()}
|
| 193 |
+
idx = 0
|
| 194 |
+
for tfrecord_file in tfrecord_files:
|
| 195 |
+
with open(tfrecord_file, "rb") as f:
|
| 196 |
+
for example_bytes in iterate_tfrecord_file(f):
|
| 197 |
+
example = SequenceExample()
|
| 198 |
+
example.ParseFromString(example_bytes)
|
| 199 |
+
example = parse_tfrecord_sequence_example(example, spec)
|
| 200 |
+
example = {k: _POST_PROC_FUNCTIONS[k](v) for k, v in example.items()}
|
| 201 |
+
yield idx, example
|
| 202 |
+
idx += 1
|
_tfrecord_example_pb2.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:50e227d1c6e389901c2ec71b36b8d73b0b7711b14c42962a837f01c197056f2c
|
| 3 |
+
size 21378
|
io_utils.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Code copied from: https://github.com/pytorch/data/blob/d9bbbecf64d0149795dc65ba390b50bc9e176e95/torchdata/datapipes/iter/util/tfrecordloader.py
|
| 2 |
+
|
| 3 |
+
import struct
|
| 4 |
+
from functools import partial
|
| 5 |
+
from io import BufferedIOBase
|
| 6 |
+
from typing import Any, Dict, Iterator, List, NamedTuple, Optional, Tuple, Union, cast
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
from math import prod
|
| 13 |
+
except ImportError:
|
| 14 |
+
import operator
|
| 15 |
+
from functools import reduce
|
| 16 |
+
|
| 17 |
+
def prod(xs):
|
| 18 |
+
return reduce(operator.mul, xs, 1)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
U = Union[bytes, bytearray, str]
|
| 22 |
+
TFRecordFeatureSpec = Tuple[Tuple[int, ...], Union[str, np.dtype]]
|
| 23 |
+
TFRecordExampleSpec = Dict[str, TFRecordFeatureSpec]
|
| 24 |
+
|
| 25 |
+
# Note, reccursive types not supported by mypy at the moment
|
| 26 |
+
# TODO(640): uncomment as soon as it becomes supported
|
| 27 |
+
# https://github.com/python/mypy/issues/731
|
| 28 |
+
# BinaryData = Union[str, List['BinaryData']]
|
| 29 |
+
TFRecordBinaryData = Union[str, List[str], List[List[str]], List[List[List[Any]]]]
|
| 30 |
+
TFRecordExampleFeature = Union[np.ndarray, List[np.ndarray], TFRecordBinaryData]
|
| 31 |
+
TFRecordExample = Dict[str, TFRecordExampleFeature]
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class SequenceExampleSpec(NamedTuple):
|
| 35 |
+
context: TFRecordExampleSpec
|
| 36 |
+
feature_lists: TFRecordExampleSpec
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def iterate_tfrecord_file(data: BufferedIOBase) -> Iterator[memoryview]:
|
| 40 |
+
length_bytes = bytearray(8)
|
| 41 |
+
crc_bytes = bytearray(4)
|
| 42 |
+
data_bytes = bytearray(1024)
|
| 43 |
+
|
| 44 |
+
while True:
|
| 45 |
+
bytes_read = data.readinto(length_bytes)
|
| 46 |
+
if bytes_read == 0:
|
| 47 |
+
break
|
| 48 |
+
elif bytes_read != 8:
|
| 49 |
+
raise RuntimeError("Invalid tfrecord file: failed to read the record size.")
|
| 50 |
+
if data.readinto(crc_bytes) != 4:
|
| 51 |
+
raise RuntimeError("Invalid tfrecord file: failed to read the start token.")
|
| 52 |
+
(length,) = struct.unpack("<Q", length_bytes)
|
| 53 |
+
if length > len(data_bytes):
|
| 54 |
+
data_bytes = data_bytes.zfill(int(length * 1.5))
|
| 55 |
+
data_bytes_view = memoryview(data_bytes)[:length]
|
| 56 |
+
if data.readinto(data_bytes_view) != length:
|
| 57 |
+
raise RuntimeError("Invalid tfrecord file: failed to read the record.")
|
| 58 |
+
if data.readinto(crc_bytes) != 4:
|
| 59 |
+
raise RuntimeError("Invalid tfrecord file: failed to read the end token.")
|
| 60 |
+
|
| 61 |
+
# TODO(641): check CRC
|
| 62 |
+
yield data_bytes_view
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def process_feature(feature) -> np.ndarray:
|
| 66 |
+
# NOTE: We assume that each key in the example has only one field
|
| 67 |
+
# (either "bytes_list", "float_list", or "int64_list")!
|
| 68 |
+
field = feature.ListFields()[0]
|
| 69 |
+
inferred_typename, value = field[0].name, field[1].value
|
| 70 |
+
if inferred_typename == "bytes_list":
|
| 71 |
+
pass
|
| 72 |
+
elif inferred_typename == "float_list":
|
| 73 |
+
value = np.array(value, dtype=np.float32)
|
| 74 |
+
elif inferred_typename == "int64_list":
|
| 75 |
+
value = np.array(value, dtype=np.int64)
|
| 76 |
+
return value
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def _reshape_list(value, shape):
|
| 80 |
+
# Flatten list
|
| 81 |
+
flat_list = []
|
| 82 |
+
|
| 83 |
+
def flatten(value):
|
| 84 |
+
if isinstance(value, (str, bytes)):
|
| 85 |
+
flat_list.append(value)
|
| 86 |
+
else:
|
| 87 |
+
for x in value:
|
| 88 |
+
flatten(x)
|
| 89 |
+
|
| 90 |
+
flatten(value)
|
| 91 |
+
|
| 92 |
+
# Compute correct shape
|
| 93 |
+
common_divisor = prod(x for x in shape if x != -1)
|
| 94 |
+
if sum(1 for x in shape if x == -1) > 1:
|
| 95 |
+
raise RuntimeError("Shape can contain at most one dynamic dimension (-1).")
|
| 96 |
+
if len(flat_list) % max(common_divisor, 1) != 0:
|
| 97 |
+
raise RuntimeError(f"Cannot reshape {len(flat_list)} values into shape {shape}")
|
| 98 |
+
shape = [x if x != -1 else (len(flat_list) // common_divisor) for x in shape]
|
| 99 |
+
|
| 100 |
+
# Reshape list into the correct shape
|
| 101 |
+
def _reshape(value, shape):
|
| 102 |
+
if len(shape) == 0:
|
| 103 |
+
assert len(value) == 1
|
| 104 |
+
return value[0]
|
| 105 |
+
elif len(shape) == 1: # To make the reccursion faster
|
| 106 |
+
assert len(value) == shape[0]
|
| 107 |
+
return value
|
| 108 |
+
dim_size = len(value) // shape[0]
|
| 109 |
+
return [_reshape(value[i * dim_size : (i + 1) * dim_size], shape[1:]) for i in range(dim_size)]
|
| 110 |
+
|
| 111 |
+
return _reshape(flat_list, shape)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def _apply_feature_spec(value, feature_spec):
|
| 115 |
+
if isinstance(value, np.ndarray):
|
| 116 |
+
if feature_spec is not None:
|
| 117 |
+
shape, dtype = feature_spec
|
| 118 |
+
if isinstance(dtype, (str, np.dtype)):
|
| 119 |
+
if shape:
|
| 120 |
+
value = value.reshape(shape)
|
| 121 |
+
value = value.astype(dtype)
|
| 122 |
+
elif shape:
|
| 123 |
+
# Manual list reshape
|
| 124 |
+
value = _reshape_list(value, shape)
|
| 125 |
+
return value
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def _parse_tfrecord_features(features, spec: Optional[TFRecordExampleSpec]) -> Dict[str, np.ndarray]:
|
| 129 |
+
result = {}
|
| 130 |
+
features = features.feature
|
| 131 |
+
for key in features.keys():
|
| 132 |
+
if spec is not None and key not in spec:
|
| 133 |
+
continue
|
| 134 |
+
feature_spec = None if spec is None else spec[key]
|
| 135 |
+
feature = features[key]
|
| 136 |
+
result[key] = _apply_feature_spec(process_feature(feature), feature_spec)
|
| 137 |
+
return result
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def parse_tfrecord_sequence_example(example, spec: Optional[TFRecordExampleSpec]) -> TFRecordExample:
|
| 141 |
+
# Parse context features
|
| 142 |
+
result = cast(TFRecordExample, _parse_tfrecord_features(example.context, spec))
|
| 143 |
+
|
| 144 |
+
# Parse feature lists
|
| 145 |
+
feature_lists_keys = None if spec is None else set(spec.keys()) - set(result.keys())
|
| 146 |
+
features = example.feature_lists.feature_list
|
| 147 |
+
for key in features.keys():
|
| 148 |
+
if feature_lists_keys is not None and key not in feature_lists_keys:
|
| 149 |
+
continue
|
| 150 |
+
feature_spec = None if spec is None else spec[key]
|
| 151 |
+
feature = features[key].feature
|
| 152 |
+
if key in result:
|
| 153 |
+
raise RuntimeError(
|
| 154 |
+
"TFRecord example's key {key} is contained in both the context and feature lists. This is not supported."
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
value: Union[np.ndarray, List[Any]] = list(map(partial(process_feature), feature))
|
| 158 |
+
|
| 159 |
+
# For known numpy dtypes, we stack the list features
|
| 160 |
+
if feature_spec is not None and isinstance(feature_spec[1], (str, np.dtype)):
|
| 161 |
+
value = np.stack(cast(List[np.ndarray], value), 0)
|
| 162 |
+
value = _apply_feature_spec(value, feature_spec)
|
| 163 |
+
result[key] = value
|
| 164 |
+
if spec is not None and len(result.keys()) != len(spec.keys()):
|
| 165 |
+
raise RuntimeError(f"Example is missing some required keys: {sorted(result.keys())} != {sorted(spec.keys())}")
|
| 166 |
+
return result
|
print_data_split_sizes.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import glob
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
-
|
| 5 |
from collections import defaultdict
|
| 6 |
|
|
|
|
| 7 |
_DATA_PATH = "data"
|
| 8 |
|
| 9 |
data_split_sizes = defaultdict(dict)
|
|
|
|
| 1 |
import glob
|
| 2 |
import json
|
| 3 |
import os
|
|
|
|
| 4 |
from collections import defaultdict
|
| 5 |
|
| 6 |
+
|
| 7 |
_DATA_PATH = "data"
|
| 8 |
|
| 9 |
data_split_sizes = defaultdict(dict)
|
tasks_splits_and_features.py
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|