File size: 6,209 Bytes
0a1e07a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import glob
import xml.etree.ElementTree as ET
_CITATION = """
@misc{Old Bailey Proceedings,
author = {Mariona Coll Ardanuy and
Federico Nanni and
Kaspar Beelen and
Kasra Hosseini and
Ruth Ahnert and
Jon Lawrence and
Katherine McDonough and
Giorgia Tolfo and
Daniel C. S. Wilson and
Barbara McGillivray},
title = {Living Machines: {A} study of atypical animacy},
journal = {CoRR},
volume = {abs/2005.11140},
year = {2020},
url = {https://arxiv.org/abs/2005.11140},
eprinttype = {arXiv},
eprint = {2005.11140},
timestamp = {Sat, 23 Jan 2021 01:12:25 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2005-11140.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """The dataset consists of 2,163 transcriptions of the Proceedings and 475 Ordinary's Accounts marked up in TEI-XML,
and contains some documentation covering the data structure and variables. Each Proceedings file represents one session of the court (1674-1913),
and each Ordinary's Account file represents a single pamphlet (1676-1772)
"""
_HOMEPAGE = "https://www.dhi.ac.uk/projects/old-bailey/"
_DATASETNAME = "old_bailey_proceedings"
_LICENSE = "Creative Commons Attribution 4.0 International"
_URLS = {
_DATASETNAME: "https://www.dhi.ac.uk/san/data/oldbailey/oldbailey.zip",
}
logger = datasets.utils.logging.get_logger(__name__)
class OldBaileyProceedings(datasets.GeneratorBasedBuilder):
"""The dataset consists of 2,163 transcriptions of the Proceedings and 475 Ordinary's Accounts marked up in TEI-XML,
and contains some documentation covering the data structure and variables. Each Proceedings file represents one session of the court (1674-1913),
and each Ordinary's Account file represents a single pamphlet (1676-1772)"""
VERSION = datasets.Version("7.2.0")
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"places": datasets.Sequence(datasets.Value("string")),
"type": datasets.Value("string"),
"persons": datasets.Sequence(datasets.Value("string")),
"date": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
oa_dir = "ordinarysAccounts"
obp_dir = "sessionsPapers"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_dirs": {
"OA": os.path.join(data_dir, oa_dir),
"OBP": os.path.join(data_dir, obp_dir),
},
},
),
]
def convert_text_to_features(self, file, key):
if key == "OA":
root_tag = "p"
else:
root_tag = "div1/p"
try:
xml_data = ET.parse(file)
root = xml_data.getroot()
start = root.find("./text/body/div0")
id = start.attrib["id"]
date = start.find("interp[@type='date']").attrib["value"]
text_parts = []
places, persons = [], []
for content in start.findall(root_tag):
for place in content.findall("placeName"):
if place.text:
place_name = place.text.replace("\n", "").strip()
if place_name:
places.append(place.text)
for person in content.findall("persName"):
full_name = []
for name_part in person.itertext():
name_part = (
name_part.replace("\n", "").replace("\t", "").strip()
)
if name_part:
full_name.append(name_part)
if full_name:
persons.append(" ".join(full_name))
for text_snippet in content.itertext():
text_snippet = (
text_snippet.replace("\n", "").replace("\t", "").strip()
)
if text_snippet:
text_parts.append(text_snippet)
full_text = " ".join(text_parts)
return 0, {
"id": id,
"date": date,
"type": key,
"places": places,
"persons": persons,
"text": full_text,
}
except Exception as e:
return -1, repr(e)
def _generate_examples(self, data_dirs):
for key, data_dir in data_dirs.items():
for file in glob.glob(os.path.join(data_dir, "*.xml")):
status_code, ret_val = self.convert_text_to_features(file, key)
if status_code:
logger.warn(f"{file}:{ret_val}")
input()
continue
else:
yield ret_val["id"], ret_val
|