Delete loading script
Browse files- chemprot.py +0 -446
chemprot.py
DELETED
|
@@ -1,446 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
"""
|
| 16 |
-
The BioCreative VI Chemical-Protein interaction dataset identifies entities of
|
| 17 |
-
chemicals and proteins and their likely relation to one other. Compounds are
|
| 18 |
-
generally agonists (activators) or antagonists (inhibitors) of proteins. The
|
| 19 |
-
script loads dataset in bigbio schema (using knowledgebase schema: schemas/kb)
|
| 20 |
-
AND/OR source (default) schema
|
| 21 |
-
"""
|
| 22 |
-
import os
|
| 23 |
-
from typing import Dict, Tuple
|
| 24 |
-
|
| 25 |
-
import datasets
|
| 26 |
-
|
| 27 |
-
from .bigbiohub import kb_features
|
| 28 |
-
from .bigbiohub import BigBioConfig
|
| 29 |
-
from .bigbiohub import Tasks
|
| 30 |
-
|
| 31 |
-
_LANGUAGES = ['English']
|
| 32 |
-
_PUBMED = True
|
| 33 |
-
_LOCAL = False
|
| 34 |
-
_CITATION = """\
|
| 35 |
-
@article{DBLP:journals/biodb/LiSJSWLDMWL16,
|
| 36 |
-
author = {Krallinger, M., Rabal, O., Lourenço, A.},
|
| 37 |
-
title = {Overview of the BioCreative VI chemical-protein interaction Track},
|
| 38 |
-
journal = {Proceedings of the BioCreative VI Workshop,},
|
| 39 |
-
volume = {141-146},
|
| 40 |
-
year = {2017},
|
| 41 |
-
url = {https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/},
|
| 42 |
-
doi = {},
|
| 43 |
-
biburl = {},
|
| 44 |
-
bibsource = {}
|
| 45 |
-
}
|
| 46 |
-
"""
|
| 47 |
-
_DESCRIPTION = """\
|
| 48 |
-
The BioCreative VI Chemical-Protein interaction dataset identifies entities of
|
| 49 |
-
chemicals and proteins and their likely relation to one other. Compounds are
|
| 50 |
-
generally agonists (activators) or antagonists (inhibitors) of proteins.
|
| 51 |
-
"""
|
| 52 |
-
|
| 53 |
-
_DATASETNAME = "chemprot"
|
| 54 |
-
_DISPLAYNAME = "ChemProt"
|
| 55 |
-
|
| 56 |
-
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/"
|
| 57 |
-
|
| 58 |
-
_LICENSE = 'Public Domain Mark 1.0'
|
| 59 |
-
|
| 60 |
-
_URLs = {
|
| 61 |
-
"source": "https://huggingface.co/datasets/bigbio/chemprot/resolve/main/ChemProt_Corpus.zip",
|
| 62 |
-
"bigbio_kb": "https://huggingface.co/datasets/bigbio/chemprot/resolve/main/ChemProt_Corpus.zip",
|
| 63 |
-
}
|
| 64 |
-
|
| 65 |
-
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION, Tasks.NAMED_ENTITY_RECOGNITION]
|
| 66 |
-
_SOURCE_VERSION = "1.0.0"
|
| 67 |
-
_BIGBIO_VERSION = "1.0.0"
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
# Chemprot specific variables
|
| 71 |
-
# NOTE: There are 3 examples (2 in dev, 1 in training) with CPR:0
|
| 72 |
-
_GROUP_LABELS = {
|
| 73 |
-
"CPR:0": "Undefined",
|
| 74 |
-
"CPR:1": "Part_of",
|
| 75 |
-
"CPR:2": "Regulator",
|
| 76 |
-
"CPR:3": "Upregulator",
|
| 77 |
-
"CPR:4": "Downregulator",
|
| 78 |
-
"CPR:5": "Agonist",
|
| 79 |
-
"CPR:6": "Antagonist",
|
| 80 |
-
"CPR:7": "Modulator",
|
| 81 |
-
"CPR:8": "Cofactor",
|
| 82 |
-
"CPR:9": "Substrate",
|
| 83 |
-
"CPR:10": "Not",
|
| 84 |
-
}
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
class ChemprotDataset(datasets.GeneratorBasedBuilder):
|
| 88 |
-
"""BioCreative VI Chemical-Protein Interaction Task."""
|
| 89 |
-
|
| 90 |
-
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 91 |
-
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
| 92 |
-
|
| 93 |
-
BUILDER_CONFIGS = [
|
| 94 |
-
BigBioConfig(
|
| 95 |
-
name="chemprot_full_source",
|
| 96 |
-
version=SOURCE_VERSION,
|
| 97 |
-
description="chemprot source schema",
|
| 98 |
-
schema="source",
|
| 99 |
-
subset_id="chemprot_full",
|
| 100 |
-
),
|
| 101 |
-
BigBioConfig(
|
| 102 |
-
name="chemprot_shared_task_eval_source",
|
| 103 |
-
version=SOURCE_VERSION,
|
| 104 |
-
description="chemprot source schema with only the relation types that were used in the shared task evaluation",
|
| 105 |
-
schema="source",
|
| 106 |
-
subset_id="chemprot_shared_task_eval",
|
| 107 |
-
),
|
| 108 |
-
BigBioConfig(
|
| 109 |
-
name="chemprot_bigbio_kb",
|
| 110 |
-
version=BIGBIO_VERSION,
|
| 111 |
-
description="chemprot BigBio schema",
|
| 112 |
-
schema="bigbio_kb",
|
| 113 |
-
subset_id="chemprot",
|
| 114 |
-
),
|
| 115 |
-
]
|
| 116 |
-
|
| 117 |
-
DEFAULT_CONFIG_NAME = "chemprot_full_source"
|
| 118 |
-
|
| 119 |
-
def _info(self):
|
| 120 |
-
|
| 121 |
-
if self.config.schema == "source":
|
| 122 |
-
features = datasets.Features(
|
| 123 |
-
{
|
| 124 |
-
"pmid": datasets.Value("string"),
|
| 125 |
-
"text": datasets.Value("string"),
|
| 126 |
-
"entities": datasets.Sequence(
|
| 127 |
-
{
|
| 128 |
-
"id": datasets.Value("string"),
|
| 129 |
-
"type": datasets.Value("string"),
|
| 130 |
-
"text": datasets.Value("string"),
|
| 131 |
-
"offsets": datasets.Sequence(datasets.Value("int64")),
|
| 132 |
-
}
|
| 133 |
-
),
|
| 134 |
-
"relations": datasets.Sequence(
|
| 135 |
-
{
|
| 136 |
-
"type": datasets.Value("string"),
|
| 137 |
-
"arg1": datasets.Value("string"),
|
| 138 |
-
"arg2": datasets.Value("string"),
|
| 139 |
-
}
|
| 140 |
-
),
|
| 141 |
-
}
|
| 142 |
-
)
|
| 143 |
-
|
| 144 |
-
elif self.config.schema == "bigbio_kb":
|
| 145 |
-
features = kb_features
|
| 146 |
-
|
| 147 |
-
return datasets.DatasetInfo(
|
| 148 |
-
description=_DESCRIPTION,
|
| 149 |
-
features=features,
|
| 150 |
-
homepage=_HOMEPAGE,
|
| 151 |
-
license=str(_LICENSE),
|
| 152 |
-
citation=_CITATION,
|
| 153 |
-
)
|
| 154 |
-
|
| 155 |
-
def _split_generators(self, dl_manager):
|
| 156 |
-
"""Returns SplitGenerators."""
|
| 157 |
-
my_urls = _URLs[self.config.schema]
|
| 158 |
-
data_dir = dl_manager.download_and_extract(my_urls)
|
| 159 |
-
|
| 160 |
-
# Extract each of the individual folders
|
| 161 |
-
# NOTE: omitting "extract" call cause it uses a new folder
|
| 162 |
-
train_path = dl_manager.extract(
|
| 163 |
-
os.path.join(data_dir, "ChemProt_Corpus/chemprot_training.zip")
|
| 164 |
-
)
|
| 165 |
-
test_path = dl_manager.extract(
|
| 166 |
-
os.path.join(data_dir, "ChemProt_Corpus/chemprot_test_gs.zip")
|
| 167 |
-
)
|
| 168 |
-
dev_path = dl_manager.extract(
|
| 169 |
-
os.path.join(data_dir, "ChemProt_Corpus/chemprot_development.zip")
|
| 170 |
-
)
|
| 171 |
-
sample_path = dl_manager.extract(
|
| 172 |
-
os.path.join(data_dir, "ChemProt_Corpus/chemprot_sample.zip")
|
| 173 |
-
)
|
| 174 |
-
|
| 175 |
-
return [
|
| 176 |
-
datasets.SplitGenerator(
|
| 177 |
-
name="sample", # should be a named split : /
|
| 178 |
-
gen_kwargs={
|
| 179 |
-
"filepath": os.path.join(sample_path, "chemprot_sample"),
|
| 180 |
-
"abstract_file": "chemprot_sample_abstracts.tsv",
|
| 181 |
-
"entity_file": "chemprot_sample_entities.tsv",
|
| 182 |
-
"relation_file": "chemprot_sample_relations.tsv",
|
| 183 |
-
"gold_standard_file": "chemprot_sample_gold_standard.tsv",
|
| 184 |
-
"split": "sample",
|
| 185 |
-
},
|
| 186 |
-
),
|
| 187 |
-
datasets.SplitGenerator(
|
| 188 |
-
name=datasets.Split.TRAIN,
|
| 189 |
-
gen_kwargs={
|
| 190 |
-
"filepath": os.path.join(train_path, "chemprot_training"),
|
| 191 |
-
"abstract_file": "chemprot_training_abstracts.tsv",
|
| 192 |
-
"entity_file": "chemprot_training_entities.tsv",
|
| 193 |
-
"relation_file": "chemprot_training_relations.tsv",
|
| 194 |
-
"gold_standard_file": "chemprot_training_gold_standard.tsv",
|
| 195 |
-
"split": "train",
|
| 196 |
-
},
|
| 197 |
-
),
|
| 198 |
-
datasets.SplitGenerator(
|
| 199 |
-
name=datasets.Split.TEST,
|
| 200 |
-
gen_kwargs={
|
| 201 |
-
"filepath": os.path.join(test_path, "chemprot_test_gs"),
|
| 202 |
-
"abstract_file": "chemprot_test_abstracts_gs.tsv",
|
| 203 |
-
"entity_file": "chemprot_test_entities_gs.tsv",
|
| 204 |
-
"relation_file": "chemprot_test_relations_gs.tsv",
|
| 205 |
-
"gold_standard_file": "chemprot_test_gold_standard.tsv",
|
| 206 |
-
"split": "test",
|
| 207 |
-
},
|
| 208 |
-
),
|
| 209 |
-
datasets.SplitGenerator(
|
| 210 |
-
name=datasets.Split.VALIDATION,
|
| 211 |
-
gen_kwargs={
|
| 212 |
-
"filepath": os.path.join(dev_path, "chemprot_development"),
|
| 213 |
-
"abstract_file": "chemprot_development_abstracts.tsv",
|
| 214 |
-
"entity_file": "chemprot_development_entities.tsv",
|
| 215 |
-
"relation_file": "chemprot_development_relations.tsv",
|
| 216 |
-
"gold_standard_file": "chemprot_development_gold_standard.tsv",
|
| 217 |
-
"split": "dev",
|
| 218 |
-
},
|
| 219 |
-
),
|
| 220 |
-
]
|
| 221 |
-
|
| 222 |
-
def _generate_examples(
|
| 223 |
-
self,
|
| 224 |
-
filepath,
|
| 225 |
-
abstract_file,
|
| 226 |
-
entity_file,
|
| 227 |
-
relation_file,
|
| 228 |
-
gold_standard_file,
|
| 229 |
-
split,
|
| 230 |
-
):
|
| 231 |
-
"""Yields examples as (key, example) tuples."""
|
| 232 |
-
if self.config.schema == "source":
|
| 233 |
-
abstracts = self._get_abstract(os.path.join(filepath, abstract_file))
|
| 234 |
-
|
| 235 |
-
entities, entity_id = self._get_entities(
|
| 236 |
-
os.path.join(filepath, entity_file)
|
| 237 |
-
)
|
| 238 |
-
|
| 239 |
-
if self.config.subset_id == "chemprot_full":
|
| 240 |
-
relations = self._get_relations(os.path.join(filepath, relation_file))
|
| 241 |
-
elif self.config.subset_id == "chemprot_shared_task_eval":
|
| 242 |
-
relations = self._get_relations_gs(
|
| 243 |
-
os.path.join(filepath, gold_standard_file)
|
| 244 |
-
)
|
| 245 |
-
else:
|
| 246 |
-
raise ValueError(self.config)
|
| 247 |
-
|
| 248 |
-
for id_, pmid in enumerate(abstracts.keys()):
|
| 249 |
-
yield id_, {
|
| 250 |
-
"pmid": pmid,
|
| 251 |
-
"text": abstracts[pmid],
|
| 252 |
-
"entities": entities[pmid],
|
| 253 |
-
"relations": relations.get(pmid, []),
|
| 254 |
-
}
|
| 255 |
-
|
| 256 |
-
elif self.config.schema == "bigbio_kb":
|
| 257 |
-
|
| 258 |
-
abstracts = self._get_abstract(os.path.join(filepath, abstract_file))
|
| 259 |
-
entities, entity_id = self._get_entities(
|
| 260 |
-
os.path.join(filepath, entity_file)
|
| 261 |
-
)
|
| 262 |
-
relations = self._get_relations(
|
| 263 |
-
os.path.join(filepath, relation_file), is_mapped=True
|
| 264 |
-
)
|
| 265 |
-
|
| 266 |
-
uid = 0
|
| 267 |
-
for id_, pmid in enumerate(abstracts.keys()):
|
| 268 |
-
data = {
|
| 269 |
-
"id": str(uid),
|
| 270 |
-
"document_id": str(pmid),
|
| 271 |
-
"passages": [],
|
| 272 |
-
"entities": [],
|
| 273 |
-
"relations": [],
|
| 274 |
-
"events": [],
|
| 275 |
-
"coreferences": [],
|
| 276 |
-
}
|
| 277 |
-
uid += 1
|
| 278 |
-
|
| 279 |
-
data["passages"] = [
|
| 280 |
-
{
|
| 281 |
-
"id": str(uid),
|
| 282 |
-
"type": "title and abstract",
|
| 283 |
-
"text": [abstracts[pmid]],
|
| 284 |
-
"offsets": [[0, len(abstracts[pmid])]],
|
| 285 |
-
}
|
| 286 |
-
]
|
| 287 |
-
uid += 1
|
| 288 |
-
|
| 289 |
-
entity_to_id = {}
|
| 290 |
-
for entity in entities[pmid]:
|
| 291 |
-
_text = entity["text"]
|
| 292 |
-
entity.update({"text": [_text]})
|
| 293 |
-
entity_to_id[entity["id"]] = str(uid)
|
| 294 |
-
entity.update({"id": str(uid)})
|
| 295 |
-
_offsets = entity["offsets"]
|
| 296 |
-
entity.update({"offsets": [_offsets]})
|
| 297 |
-
entity["normalized"] = []
|
| 298 |
-
data["entities"].append(entity)
|
| 299 |
-
uid += 1
|
| 300 |
-
|
| 301 |
-
for relation in relations.get(pmid, []):
|
| 302 |
-
relation["arg1_id"] = entity_to_id[relation.pop("arg1")]
|
| 303 |
-
relation["arg2_id"] = entity_to_id[relation.pop("arg2")]
|
| 304 |
-
relation.update({"id": str(uid)})
|
| 305 |
-
relation["normalized"] = []
|
| 306 |
-
data["relations"].append(relation)
|
| 307 |
-
uid += 1
|
| 308 |
-
|
| 309 |
-
yield id_, data
|
| 310 |
-
|
| 311 |
-
@staticmethod
|
| 312 |
-
def _get_abstract(abs_filename: str) -> Dict[str, str]:
|
| 313 |
-
"""
|
| 314 |
-
For each document in PubMed ID (PMID) in the ChemProt abstract data file, return the abstract. Data is tab-separated.
|
| 315 |
-
|
| 316 |
-
:param filename: `*_abstracts.tsv from ChemProt
|
| 317 |
-
|
| 318 |
-
:returns Dictionary with PMID keys and abstract text as values.
|
| 319 |
-
"""
|
| 320 |
-
with open(abs_filename, "r") as f:
|
| 321 |
-
contents = [i.strip() for i in f.readlines()]
|
| 322 |
-
|
| 323 |
-
# PMID is the first column, Abstract is last
|
| 324 |
-
return {
|
| 325 |
-
doc.split("\t")[0]: "\n".join(doc.split("\t")[1:]) for doc in contents
|
| 326 |
-
} # Includes title as line 1
|
| 327 |
-
|
| 328 |
-
@staticmethod
|
| 329 |
-
def _get_entities(ents_filename: str) -> Tuple[Dict[str, str]]:
|
| 330 |
-
"""
|
| 331 |
-
For each document in the corpus, return entity annotations per PMID.
|
| 332 |
-
Each column in the entity file is as follows:
|
| 333 |
-
(1) PMID
|
| 334 |
-
(2) Entity Number
|
| 335 |
-
(3) Entity Type (Chemical, Gene-Y, Gene-N)
|
| 336 |
-
(4) Start index
|
| 337 |
-
(5) End index
|
| 338 |
-
(6) Actual text of entity
|
| 339 |
-
|
| 340 |
-
:param ents_filename: `_*entities.tsv` file from ChemProt
|
| 341 |
-
|
| 342 |
-
:returns: Dictionary with PMID keys and entity annotations.
|
| 343 |
-
"""
|
| 344 |
-
with open(ents_filename, "r") as f:
|
| 345 |
-
contents = [i.strip() for i in f.readlines()]
|
| 346 |
-
|
| 347 |
-
entities = {}
|
| 348 |
-
entity_id = {}
|
| 349 |
-
|
| 350 |
-
for line in contents:
|
| 351 |
-
|
| 352 |
-
pmid, idx, label, start_offset, end_offset, name = line.split("\t")
|
| 353 |
-
|
| 354 |
-
# Populate entity dictionary
|
| 355 |
-
if pmid not in entities:
|
| 356 |
-
entities[pmid] = []
|
| 357 |
-
|
| 358 |
-
ann = {
|
| 359 |
-
"offsets": [int(start_offset), int(end_offset)],
|
| 360 |
-
"text": name,
|
| 361 |
-
"type": label,
|
| 362 |
-
"id": idx,
|
| 363 |
-
}
|
| 364 |
-
|
| 365 |
-
entities[pmid].append(ann)
|
| 366 |
-
|
| 367 |
-
# Populate entity mapping
|
| 368 |
-
entity_id.update({idx: name})
|
| 369 |
-
|
| 370 |
-
return entities, entity_id
|
| 371 |
-
|
| 372 |
-
@staticmethod
|
| 373 |
-
def _get_relations(rel_filename: str, is_mapped: bool = False) -> Dict[str, str]:
|
| 374 |
-
"""For each document in the ChemProt corpus, create an annotation for all relationships.
|
| 375 |
-
|
| 376 |
-
:param is_mapped: Whether to convert into NL the relation tags. Default is OFF
|
| 377 |
-
"""
|
| 378 |
-
with open(rel_filename, "r") as f:
|
| 379 |
-
contents = [i.strip() for i in f.readlines()]
|
| 380 |
-
|
| 381 |
-
relations = {}
|
| 382 |
-
|
| 383 |
-
for line in contents:
|
| 384 |
-
pmid, label, _, _, arg1, arg2 = line.split("\t")
|
| 385 |
-
arg1 = arg1.split("Arg1:")[-1]
|
| 386 |
-
arg2 = arg2.split("Arg2:")[-1]
|
| 387 |
-
|
| 388 |
-
if pmid not in relations:
|
| 389 |
-
relations[pmid] = []
|
| 390 |
-
|
| 391 |
-
if is_mapped:
|
| 392 |
-
label = _GROUP_LABELS[label]
|
| 393 |
-
|
| 394 |
-
ann = {
|
| 395 |
-
"type": label,
|
| 396 |
-
"arg1": arg1,
|
| 397 |
-
"arg2": arg2,
|
| 398 |
-
}
|
| 399 |
-
|
| 400 |
-
relations[pmid].append(ann)
|
| 401 |
-
|
| 402 |
-
return relations
|
| 403 |
-
|
| 404 |
-
@staticmethod
|
| 405 |
-
def _get_relations_gs(rel_filename: str, is_mapped: bool = False) -> Dict[str, str]:
|
| 406 |
-
"""
|
| 407 |
-
For each document in the ChemProt corpus, create an annotation for the gold-standard relationships.
|
| 408 |
-
|
| 409 |
-
The columns include:
|
| 410 |
-
(1) PMID
|
| 411 |
-
(2) Relationship Label (CPR)
|
| 412 |
-
(3) Used in shared task
|
| 413 |
-
(3) Interactor Argument 1 Entity Identifier
|
| 414 |
-
(4) Interactor Argument 2 Entity Identifier
|
| 415 |
-
|
| 416 |
-
Gold standard includes CPRs 3-9. Relationships are always Gene + Protein.
|
| 417 |
-
Unlike entities, there is no counter, hence once must be made
|
| 418 |
-
|
| 419 |
-
:param rel_filename: Gold standard file name
|
| 420 |
-
:param ent_dict: Entity Identifier to text
|
| 421 |
-
"""
|
| 422 |
-
with open(rel_filename, "r") as f:
|
| 423 |
-
contents = [i.strip() for i in f.readlines()]
|
| 424 |
-
|
| 425 |
-
relations = {}
|
| 426 |
-
|
| 427 |
-
for line in contents:
|
| 428 |
-
pmid, label, arg1, arg2 = line.split("\t")
|
| 429 |
-
arg1 = arg1.split("Arg1:")[-1]
|
| 430 |
-
arg2 = arg2.split("Arg2:")[-1]
|
| 431 |
-
|
| 432 |
-
if pmid not in relations:
|
| 433 |
-
relations[pmid] = []
|
| 434 |
-
|
| 435 |
-
if is_mapped:
|
| 436 |
-
label = _GROUP_LABELS[label]
|
| 437 |
-
|
| 438 |
-
ann = {
|
| 439 |
-
"type": label,
|
| 440 |
-
"arg1": arg1,
|
| 441 |
-
"arg2": arg2,
|
| 442 |
-
}
|
| 443 |
-
|
| 444 |
-
relations[pmid].append(ann)
|
| 445 |
-
|
| 446 |
-
return relations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|