ariG23498 HF Staff commited on
Commit
0774afc
·
verified ·
1 Parent(s): da39923

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -24
README.md CHANGED
@@ -102,22 +102,23 @@ instances["categories"]
102
  ## Build the dataset and upload to Hub
103
 
104
  ```py
105
- !wget http://images.cocodataset.org/zips/train2017.zip
106
- !wget http://images.cocodataset.org/zips/val2017.zip
107
- !wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
108
 
109
- !unzip train2017.zip
110
- !unzip val2017.zip
111
- !unzip annotations_trainval2017.zip
 
 
 
 
 
112
 
113
  import json
 
114
  from pathlib import Path
115
  from tqdm import tqdm
116
- from huggingface_hub import upload_folder
117
- from datasets import Dataset, DatasetDict, Features, Value, Sequence, Array2D
118
- import shutil
119
 
120
- # === Paths ===
121
  base_dir = Path("/content")
122
  splits = {
123
  "train": {
@@ -130,11 +131,15 @@ splits = {
130
  }
131
  }
132
  output_dir = base_dir / "coco_imagefolder"
 
133
 
134
- # Clean existing directory
135
- if output_dir.exists():
136
- shutil.rmtree(output_dir)
137
- output_dir.mkdir(parents=True)
 
 
 
138
 
139
  def convert_coco_to_jsonl(image_dir, annotation_path, output_metadata_path):
140
  with open(annotation_path) as f:
@@ -145,42 +150,46 @@ def convert_coco_to_jsonl(image_dir, annotation_path, output_metadata_path):
145
 
146
  for ann in data['annotations']:
147
  img_id = ann['image_id']
148
- bbox = ann['bbox'] # [x, y, width, height]
149
  category = ann['category_id']
 
 
 
 
150
 
151
  if img_id not in annotations_by_image:
152
  annotations_by_image[img_id] = {
153
  "file_name": id_to_filename[img_id],
154
  "objects": {
155
  "bbox": [],
156
- "categories": []
 
157
  }
158
  }
159
 
160
  annotations_by_image[img_id]["objects"]["bbox"].append(bbox)
 
161
  annotations_by_image[img_id]["objects"]["categories"].append(category)
162
 
163
  with open(output_metadata_path, "w") as f:
164
- for img_id, metadata in annotations_by_image.items():
165
  json.dump(metadata, f)
166
  f.write("\n")
167
 
168
- # Convert and copy files to imagefolder-style structure
169
  for split, info in splits.items():
170
  split_dir = output_dir / split
171
- split_dir.mkdir(parents=True)
172
 
173
  # Copy images
174
  for img_path in tqdm(info["image_dir"].glob("*.jpg"), desc=f"Copying {split} images"):
175
  shutil.copy(img_path, split_dir / img_path.name)
176
 
177
- # Convert annotations
178
  metadata_path = split_dir / "metadata.jsonl"
179
  convert_coco_to_jsonl(split_dir, info["annotation_file"], metadata_path)
180
 
181
- # HF Dataset
182
- from datasets import load_dataset
183
-
184
- dataset = load_dataset("imagefolder", data_dir="/content/coco_imagefolder")
185
  dataset.push_to_hub("ariG23498/coco2017")
186
  ```
 
102
  ## Build the dataset and upload to Hub
103
 
104
  ```py
105
+ !pip install -U -q datasets
 
 
106
 
107
+ # Download and unzip COCO 2017
108
+ !wget -q http://images.cocodataset.org/zips/train2017.zip
109
+ !wget -q http://images.cocodataset.org/zips/val2017.zip
110
+ !wget -q http://images.cocodataset.org/annotations/annotations_trainval2017.zip
111
+
112
+ !unzip -q train2017.zip
113
+ !unzip -q val2017.zip
114
+ !unzip -q annotations_trainval2017.zip
115
 
116
  import json
117
+ import shutil
118
  from pathlib import Path
119
  from tqdm import tqdm
120
+ from datasets import load_dataset
 
 
121
 
 
122
  base_dir = Path("/content")
123
  splits = {
124
  "train": {
 
131
  }
132
  }
133
  output_dir = base_dir / "coco_imagefolder"
134
+ output_dir.mkdir(parents=True, exist_ok=True)
135
 
136
+ def normalize_segmentation(segmentation):
137
+ if isinstance(segmentation, list):
138
+ if all(isinstance(poly, list) for poly in segmentation):
139
+ return segmentation # already a list of polygons
140
+ elif all(isinstance(pt, (int, float)) for pt in segmentation):
141
+ return [segmentation] # wrap single polygon
142
+ return [] # skip RLE or malformed segmentations
143
 
144
  def convert_coco_to_jsonl(image_dir, annotation_path, output_metadata_path):
145
  with open(annotation_path) as f:
 
150
 
151
  for ann in data['annotations']:
152
  img_id = ann['image_id']
153
+ bbox = ann['bbox']
154
  category = ann['category_id']
155
+ segmentation = normalize_segmentation(ann['segmentation'])
156
+
157
+ if not segmentation:
158
+ continue # skip if malformed or RLE
159
 
160
  if img_id not in annotations_by_image:
161
  annotations_by_image[img_id] = {
162
  "file_name": id_to_filename[img_id],
163
  "objects": {
164
  "bbox": [],
165
+ "segmentation": [],
166
+ "categories": [],
167
  }
168
  }
169
 
170
  annotations_by_image[img_id]["objects"]["bbox"].append(bbox)
171
+ annotations_by_image[img_id]["objects"]["segmentation"].append(segmentation)
172
  annotations_by_image[img_id]["objects"]["categories"].append(category)
173
 
174
  with open(output_metadata_path, "w") as f:
175
+ for metadata in annotations_by_image.values():
176
  json.dump(metadata, f)
177
  f.write("\n")
178
 
179
+ # Build imagefolder structure
180
  for split, info in splits.items():
181
  split_dir = output_dir / split
182
+ split_dir.mkdir(parents=True, exist_ok=True)
183
 
184
  # Copy images
185
  for img_path in tqdm(info["image_dir"].glob("*.jpg"), desc=f"Copying {split} images"):
186
  shutil.copy(img_path, split_dir / img_path.name)
187
 
188
+ # Write JSONL metadata
189
  metadata_path = split_dir / "metadata.jsonl"
190
  convert_coco_to_jsonl(split_dir, info["annotation_file"], metadata_path)
191
 
192
+ # Load and push
193
+ dataset = load_dataset("imagefolder", data_dir=str(output_dir))
 
 
194
  dataset.push_to_hub("ariG23498/coco2017")
195
  ```