Upload bayburtanalysis_159.py
Browse files- bayburtanalysis_159.py +487 -0
bayburtanalysis_159.py
ADDED
@@ -0,0 +1,487 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""bayburtanalysis.159
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1i3xf37d6YszBy480hNM0EGmK3u-RtMJB
|
8 |
+
"""
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import seaborn as sns
|
14 |
+
from datetime import datetime
|
15 |
+
|
16 |
+
from statsmodels.tsa.seasonal import seasonal_decompose
|
17 |
+
from statsmodels.tsa.arima.model import ARIMA
|
18 |
+
import prophet
|
19 |
+
|
20 |
+
from sklearn.model_selection import train_test_split
|
21 |
+
from sklearn.preprocessing import StandardScaler
|
22 |
+
from sklearn.linear_model import LinearRegression
|
23 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
24 |
+
from sklearn.ensemble import RandomForestRegressor
|
25 |
+
|
26 |
+
from textblob import TextBlob
|
27 |
+
import nltk
|
28 |
+
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
29 |
+
nltk.download('vader_lexicon')
|
30 |
+
|
31 |
+
import plotly.express as px
|
32 |
+
import plotly.graph_objs as go
|
33 |
+
import plotly.figure_factory as ff
|
34 |
+
|
35 |
+
import warnings
|
36 |
+
warnings.filterwarnings('ignore')
|
37 |
+
|
38 |
+
print("Very well you may continue")
|
39 |
+
|
40 |
+
big_tech_companies = pd.read_csv('big_tech_companies.csv')
|
41 |
+
big_tech_stock_prices = pd.read_csv('big_tech_stock_prices.csv')
|
42 |
+
|
43 |
+
print("Big Tech Companies Dataset:")
|
44 |
+
print(big_tech_companies.head())
|
45 |
+
|
46 |
+
print("\nBig Tech Stock Prices Dataset:")
|
47 |
+
print(big_tech_stock_prices.head())
|
48 |
+
|
49 |
+
print("\nBig Tech Companies Dataset Info:")
|
50 |
+
print(big_tech_companies.info())
|
51 |
+
|
52 |
+
print("\nBig Tech Stock Prices Dataset Info:")
|
53 |
+
print(big_tech_stock_prices.info())
|
54 |
+
|
55 |
+
print("\nBig Tech Companies Dataset Description:")
|
56 |
+
print(big_tech_companies.describe())
|
57 |
+
|
58 |
+
print("\nBig Tech Stock Prices Dataset Description:")
|
59 |
+
print(big_tech_stock_prices.describe())
|
60 |
+
|
61 |
+
print("\nUnique Companies in Big Tech Companies Dataset:")
|
62 |
+
print(big_tech_companies['company'].nunique())
|
63 |
+
|
64 |
+
print("\nUnique Stock Symbols in Big Tech Stock Prices Dataset:")
|
65 |
+
print(big_tech_stock_prices['stock_symbol'].nunique())
|
66 |
+
|
67 |
+
print("\nMissing Values in Big Tech Companies Dataset:")
|
68 |
+
print(big_tech_companies.isnull().sum())
|
69 |
+
|
70 |
+
print("\nMissing Values in Big Tech Stock Prices Dataset:")
|
71 |
+
print(big_tech_stock_prices.isnull().sum())
|
72 |
+
|
73 |
+
print("\nStock Symbol Counts in Big Tech Stock Prices Dataset:")
|
74 |
+
print(big_tech_stock_prices['stock_symbol'].value_counts())
|
75 |
+
|
76 |
+
big_tech_stock_prices['date'] = pd.to_datetime(big_tech_stock_prices['date'])
|
77 |
+
|
78 |
+
plt.figure(figsize=(14, 7))
|
79 |
+
sns.lineplot(data=big_tech_stock_prices, x='date', y='close', hue='stock_symbol')
|
80 |
+
plt.title('Stock Prices Over Time')
|
81 |
+
plt.xlabel('Date')
|
82 |
+
plt.ylabel('Close Price')
|
83 |
+
plt.legend(title='Stock Symbol')
|
84 |
+
plt.show()
|
85 |
+
|
86 |
+
plt.figure(figsize=(14, 7))
|
87 |
+
sns.lineplot(data=big_tech_stock_prices, x='date', y ='volume', hue='stock_symbol')
|
88 |
+
plt.title('Trading Volume Over Time')
|
89 |
+
plt.xlabel('Data')
|
90 |
+
plt.ylabel('Volume')
|
91 |
+
plt.legend(title='Stock Symbol')
|
92 |
+
plt.show()
|
93 |
+
|
94 |
+
plt.figure(figsize=(14,7))
|
95 |
+
sns.boxplot(data=big_tech_stock_prices, x='stock_symbol', y='close')
|
96 |
+
plt.title('Distribution of Closing Prices by Stock Symbol')
|
97 |
+
plt.xlabel('Stock Symbol')
|
98 |
+
plt.ylabel('Close Price')
|
99 |
+
plt.show()
|
100 |
+
|
101 |
+
apple_stock = big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == 'AAPL']
|
102 |
+
apple_stock.set_index('date', inplace=True)
|
103 |
+
|
104 |
+
decompostiion = seasonal_decompose(apple_stock['close'], model='multiplicative', period=365)
|
105 |
+
fig = decompostiion.plot()
|
106 |
+
fig.set_size_inches(14, 10)
|
107 |
+
plt.show()
|
108 |
+
|
109 |
+
plt.figure(figsize=(14, 7))
|
110 |
+
apple_stock['close'].plot()
|
111 |
+
plt.title('Apple Closing Prices')
|
112 |
+
plt.xlabel('Date')
|
113 |
+
plt.ylabel('Close Price')
|
114 |
+
plt.show()
|
115 |
+
|
116 |
+
apple_stock['rolling_mean'] = apple_stock['close'].rolling(window=30).mean()
|
117 |
+
|
118 |
+
plt.figure(figsize=(14, 7))
|
119 |
+
apple_stock[['close', 'rolling_mean']].plot()
|
120 |
+
plt.title('Apple Closing Prices and 30-Day Moving Average')
|
121 |
+
plt.xlabel('Date')
|
122 |
+
plt.ylabel('Close Price')
|
123 |
+
plt.show()
|
124 |
+
|
125 |
+
pivot_table = big_tech_stock_prices.pivot(index='date', columns='stock_symbol', values='close')
|
126 |
+
correlation_matrix = pivot_table.corr()
|
127 |
+
|
128 |
+
plt.figure(figsize=(12, 8))
|
129 |
+
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
|
130 |
+
plt.title('Correlation Matrix of Stock Closing Prices')
|
131 |
+
plt.show()
|
132 |
+
|
133 |
+
big_tech_stock_prices_2020 = big_tech_stock_prices
|
134 |
+
[(big_tech_stock_prices['date'] >= '2020-01-01') &
|
135 |
+
(big_tech_stock_prices['date'] <= '2020-12-31')]
|
136 |
+
|
137 |
+
plt.figure(figsize=(14, 7))
|
138 |
+
sns.lineplot(data=big_tech_stock_prices_2020, x='date', y='close', hue='stock_symbol')
|
139 |
+
plt.title('Stock Prices During 2020')
|
140 |
+
plt.xlabel('Date')
|
141 |
+
plt.ylabel('Close Price')
|
142 |
+
plt.legend(title='Stock Symbol')
|
143 |
+
plt.show()
|
144 |
+
|
145 |
+
big_tech_stock_prices['year'] = big_tech_stock_prices['date'].dt.year
|
146 |
+
|
147 |
+
yearly_avg_prices = big_tech_stock_prices.groupby(['year', 'stock_symbol']).mean().reset_index()
|
148 |
+
|
149 |
+
plt.figure(figsize=(14, 7))
|
150 |
+
sns.lineplot(data=yearly_avg_prices, x='year', y='close', hue='stock_symbol')
|
151 |
+
plt.title('Yearly Average Closing Prices')
|
152 |
+
plt.xlabel('Year')
|
153 |
+
plt.ylabel('Average Close Price')
|
154 |
+
plt.legend(title='Stock Symbol')
|
155 |
+
plt.show()
|
156 |
+
|
157 |
+
big_tech_stock_prices['price_change'] = big_tech_stock_prices.groupby('stock_symbol')['close'].pct_change()
|
158 |
+
|
159 |
+
plt.figure(figsize=(14, 10))
|
160 |
+
|
161 |
+
sns.histplot(big_tech_stock_prices['price_change']. dropna(), bins=100, kde=True)
|
162 |
+
plt.title('Histogram of Daily Price Changes for All Stocks')
|
163 |
+
plt.xlabel('Daily Price Change')
|
164 |
+
plt.ylabel('Frequency')
|
165 |
+
plt.show()
|
166 |
+
|
167 |
+
unique_symbols = big_tech_stock_prices['stock_symbol'].unique()
|
168 |
+
|
169 |
+
for symbol in unique_symbols:
|
170 |
+
plt.figure(figsize=(14, 7))
|
171 |
+
sns.histplot(big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == symbol]['price_change'].dropna(), bins=100, kde=True)
|
172 |
+
plt.title(f'Histogram of Daily Price Changes for {symbol}')
|
173 |
+
plt.xlabel('Daily Price Change')
|
174 |
+
plt.ylabel('Frequency')
|
175 |
+
plt.show()
|
176 |
+
|
177 |
+
volatility = big_tech_stock_prices.groupby('stock_symbol')['price_change'].std().reset_index()
|
178 |
+
volatility.columns = ['stock_symbol', 'volatility']
|
179 |
+
|
180 |
+
plt.figure(figsize=(14, 7))
|
181 |
+
sns.barplot(data=volatility, x='stock_symbol', y='volatility')
|
182 |
+
plt.title('Stock Price Volatility')
|
183 |
+
plt.xlabel('Stock Symbol')
|
184 |
+
plt.ylabel('Volatility(Standard Deviation of Daily Price Changes)')
|
185 |
+
plt.show()
|
186 |
+
|
187 |
+
yearly_price_change = big_tech_stock_prices.groupby(['year', 'stock_symbol'])['close'].mean().pct_change().reset_index()
|
188 |
+
yearly_price_change = yearly_price_change.dropna()
|
189 |
+
|
190 |
+
plt.figure(figsize=(14, 7))
|
191 |
+
sns.lineplot(data=yearly_price_change, x='year', y='close', hue='stock_symbol', marker='o')
|
192 |
+
plt.title('Yearly Percentage Change in Average Closing Prices')
|
193 |
+
plt.xlabel('Year')
|
194 |
+
plt.ylabel('Percentage Change in Average Close Price')
|
195 |
+
plt.legend(title='Stock Symbol')
|
196 |
+
plt.show()
|
197 |
+
|
198 |
+
model = ARIMA(apple_stock['close'], order=(5, 1, 0))
|
199 |
+
|
200 |
+
model_fit = model.fit()
|
201 |
+
print(model_fit.summary())
|
202 |
+
|
203 |
+
plt.figure(figsize=(14, 7))
|
204 |
+
plt.plot(apple_stock['close'], label='Original')
|
205 |
+
plt.plot(model_fit.fittedvalues, color='red', label='Fitted Values')
|
206 |
+
plt.title('ARIMA Model Fit')
|
207 |
+
plt.xlabel('Date')
|
208 |
+
plt.ylabel('Close Price')
|
209 |
+
plt.legend()
|
210 |
+
plt.show()
|
211 |
+
|
212 |
+
forecast = model_fit.get_forecast(steps=30)
|
213 |
+
forecast_index = pd.date_range(start=apple_stock.index[-1], periods=30, freq='D')
|
214 |
+
forecast_mean = forecast.predicted_mean
|
215 |
+
forecast_conf_int = forecast.conf_int()
|
216 |
+
|
217 |
+
plt.figure(figsize=(14, 7))
|
218 |
+
plt.plot(apple_stock['close'], label='Original')
|
219 |
+
plt.plot(forecast_index, forecast_mean, color='red', label='Forecast')
|
220 |
+
plt.fill_between(forecast_index, forecast_conf_int.iloc[:, 0], forecast_conf_int.iloc[:, 1], color='pink', alpha=0.3)
|
221 |
+
plt.title('ARIMA Model Forecast')
|
222 |
+
plt.xlabel('Date')
|
223 |
+
plt.ylabel('Close Price')
|
224 |
+
plt.legend()
|
225 |
+
plt.show()
|
226 |
+
|
227 |
+
unique_symbols = big_tech_stock_prices['stock_symbol'].unique()
|
228 |
+
|
229 |
+
for symbol in unique_symbols:
|
230 |
+
stock_data = big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == symbol]
|
231 |
+
stock_data.set_index('date', inplace=True)
|
232 |
+
|
233 |
+
print(f"\n### {symbol} ###")
|
234 |
+
|
235 |
+
model = ARIMA(stock_data['close'], order=(5, 1, 0))
|
236 |
+
model_fit = model.fit()
|
237 |
+
print(model_fit.summary())
|
238 |
+
|
239 |
+
plt.figure(figsize=(14, 7))
|
240 |
+
plt.plot(stock_data['close'], label='Original')
|
241 |
+
plt.plot(model_fit.fittedvalues, color='red', label='Fitted Values')
|
242 |
+
plt.title(f'{symbol} ARIMA Model Fit')
|
243 |
+
plt.xlabel('Date')
|
244 |
+
plt.ylabel('Close Price')
|
245 |
+
plt.legend()
|
246 |
+
plt.show()
|
247 |
+
|
248 |
+
forecast = model_fit.get_forecast(steps=30)
|
249 |
+
forecast_index = pd.date_range(start=stock_data.index[-1], periods=30, freq='D')
|
250 |
+
forecast_mean = forecast.predicted_mean
|
251 |
+
forecast_conf_int = forecast.conf_int()
|
252 |
+
|
253 |
+
plt.figure(figsize=(14, 7))
|
254 |
+
plt.plot(stock_data['close'], label='Original')
|
255 |
+
plt.plot(forecast_index, forecast_mean, color='red', label='Forecast')
|
256 |
+
plt.fill_between(forecast_index, forecast_conf_int.iloc[:, 0], forecast_conf_int.iloc[:, 1], color='pink', alpha=0.3)
|
257 |
+
plt.title(f'{symbol} ARIMA Model Forecast')
|
258 |
+
plt.xlabel('Date')
|
259 |
+
plt.ylabel('Close Price')
|
260 |
+
plt.legend()
|
261 |
+
plt.show()
|
262 |
+
|
263 |
+
big_tech_stock_prices['daily_return'] = big_tech_stock_prices.groupby('stock_symbol')['close'].pct_change()
|
264 |
+
|
265 |
+
mean_returns = big_tech_stock_prices.groupby('stock_symbol')['daily_return'].mean()
|
266 |
+
volatilties = big_tech_stock_prices.groupby('stock_symbol')['daily_return'].std()
|
267 |
+
|
268 |
+
risk_return_df = pd.DataFrame({'mean_return': mean_returns, 'volatility': volatilties})
|
269 |
+
print(risk_return_df)
|
270 |
+
|
271 |
+
mean_returns = big_tech_stock_prices.groupby('stock_symbol')['daily_return'].mean()
|
272 |
+
cov_matrix = big_tech_stock_prices.pivot_table(index='date', columns='stock_symbol', values='daily_return').cov()
|
273 |
+
|
274 |
+
num_portfolios = 10000
|
275 |
+
results = np.zeros((4, num_portfolios))
|
276 |
+
weights_record = []
|
277 |
+
|
278 |
+
np.random.seed(42)
|
279 |
+
|
280 |
+
for i in range(num_portfolios):
|
281 |
+
weights = np.random.random(len(mean_returns))
|
282 |
+
weights /= np.sum(weights)
|
283 |
+
weights_record.append(weights)
|
284 |
+
portfolio_return = np.dot(weights, mean_returns)
|
285 |
+
portfolio_stddev = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
|
286 |
+
results[0, i] = portfolio_return
|
287 |
+
results[1, i] = portfolio_stddev
|
288 |
+
results[2, i] = results[0, i] / results[1, i]
|
289 |
+
|
290 |
+
results_frame = pd.DataFrame(results.T, columns=['Return', 'Risk', 'Sharpe Ratio', 'Index'])
|
291 |
+
|
292 |
+
max_sharpe_idx = results_frame['Sharpe Ratio'].idxmax()
|
293 |
+
max_sharpe_portfolio = results_frame.iloc[max_sharpe_idx]
|
294 |
+
max_sharpe_weights = weights_record[int(max_sharpe_portfolio[3])]
|
295 |
+
|
296 |
+
min_risk_idx = results_frame['Risk'].idxmin()
|
297 |
+
min_risk_portfolio = results_frame.iloc[min_risk_idx]
|
298 |
+
min_risk_weights = weights_record[int(min_risk_portfolio[3])]
|
299 |
+
|
300 |
+
plt.figure(figsize=(10, 6))
|
301 |
+
plt.scatter(results_frame['Risk'], results_frame['Return'], c=results_frame['Sharpe Ratio'], cmap='viridis')
|
302 |
+
plt.colorbar(label='Sharpe Ratio')
|
303 |
+
plt.scatter(max_sharpe_portfolio[1], max_sharpe_portfolio[0], marker='*', color='r', s=200, label='Max Sharpe Ratio')
|
304 |
+
plt.scatter(min_risk_portfolio[1], min_risk_portfolio[0], marker='*', color='b', s=200, label= 'Min Risk')
|
305 |
+
plt.title('Portfolio Optimization based on Efficient Frontier')
|
306 |
+
plt.xlabel('Risk (Standard Deviation)')
|
307 |
+
plt.ylabel('Return')
|
308 |
+
plt.legend()
|
309 |
+
plt.show
|
310 |
+
|
311 |
+
print("Maximum Sharpe Ratio Portfolio Allocation\n")
|
312 |
+
print("Return:", max_sharpe_portfolio[0])
|
313 |
+
print("Risk:", max_sharpe_portfolio[1])
|
314 |
+
print("Sharpe Ratio:", max_sharpe_portfolio[2])
|
315 |
+
print("\nWeights:\n")
|
316 |
+
for i, txt in enumerate(mean_returns.index):
|
317 |
+
print(f"{txt}: {max_sharpe_weights[i]}")
|
318 |
+
|
319 |
+
print("\nMinimum Risk Portfolio Allocation\n")
|
320 |
+
print("Return:", min_risk_portfolio[0])
|
321 |
+
print("Risk:", min_risk_portfolio[1])
|
322 |
+
print("\nWeights:\n")
|
323 |
+
for i, txt in enumerate(mean_returns.index):
|
324 |
+
print(f"{txt}: {min_risk_weights[i]}")
|
325 |
+
|
326 |
+
big_tech_stock_price = pd.read_csv('big_tech_stock_prices.csv')
|
327 |
+
macro_data = pd.read_csv('DATA.csv')
|
328 |
+
|
329 |
+
print(macro_data.columns)
|
330 |
+
|
331 |
+
macro_data = macro_data.rename(columns={
|
332 |
+
'UNRATE(%)': 'unemployment_rate',
|
333 |
+
'CPIALLITEMS': 'cpi',
|
334 |
+
'INFLATION(%)': 'inflation_rate',
|
335 |
+
'MORTGAGE INT. MONTHLY AVG(%)': 'mortgage_interest_rate',
|
336 |
+
'CORP. BOND YIELD(%)': 'corporate_bond_yield'
|
337 |
+
})
|
338 |
+
|
339 |
+
macro_data['DATE'] = pd.to_datetime(macro_data['DATE'])
|
340 |
+
|
341 |
+
macro_data.rename(columns={'DATE': 'date'}, inplace=True)
|
342 |
+
|
343 |
+
big_tech_stock_price['date'] = pd.to_datetime(big_tech_stock_price['date'])
|
344 |
+
|
345 |
+
merged_data = pd.merge(big_tech_stock_prices, macro_data, on='date', how='inner')
|
346 |
+
|
347 |
+
print(merged_data.head())
|
348 |
+
print(merged_data.columns)
|
349 |
+
|
350 |
+
correlation_matrix = merged_data[['close', 'unemployment_rate', 'cpi', 'inflation_rate', 'mortgage_interest_rate', 'corporate_bond_yield']].corr()
|
351 |
+
print(correlation_matrix)
|
352 |
+
|
353 |
+
plt.figure(figsize=(10, 6))
|
354 |
+
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
|
355 |
+
plt.title('Correlation Matrix of Stock Prices and Macro-Economic Indicators')
|
356 |
+
plt.show()
|
357 |
+
|
358 |
+
plt.figure(figsize=(14, 7))
|
359 |
+
sns.lineplot(data=merged_data, x='date', y='close', hue='stock_symbol')
|
360 |
+
plt.title('Stock Prices Over Time')
|
361 |
+
plt.xlabel('Date')
|
362 |
+
plt.ylabel('Close Price')
|
363 |
+
plt.show()
|
364 |
+
|
365 |
+
X = merged_data[['unemployment_rate', 'cpi', 'inflation_rate', 'mortgage_interest_rate', 'corporate_bond_yield']]
|
366 |
+
y = merged_data['close']
|
367 |
+
|
368 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
369 |
+
|
370 |
+
model = LinearRegression()
|
371 |
+
model.fit(X_train, y_train)
|
372 |
+
|
373 |
+
y_pred = model.predict(X_test)
|
374 |
+
r2_score = model.score(X_test, y_test)
|
375 |
+
|
376 |
+
print(f"R^2 Score: {r2_score}")
|
377 |
+
|
378 |
+
coefficients = pd.DataFrame(model.coef_, X.columns, columns=['Coefficient'])
|
379 |
+
print(coefficients)
|
380 |
+
|
381 |
+
for symbol in unique_symbols:
|
382 |
+
stock_data = big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == symbol]
|
383 |
+
stock_data.set_index('date', inplace=True)
|
384 |
+
|
385 |
+
stock_data['z_score'] = (stock_data['close'] - stock_data['close'].mean()) / stock_data['close'].std()
|
386 |
+
|
387 |
+
stock_data['anomaly'] = np.where(stock_data['z_score'].abs() > 3, True, False)
|
388 |
+
|
389 |
+
plt.figure(figsize=(14, 7))
|
390 |
+
plt.plot(stock_data.index, stock_data['close'], label='Close Price')
|
391 |
+
plt.scatter(stock_data[stock_data['anomaly']]. index, stock_data[stock_data['anomaly']]['close'], color='red', label='Anomaly')
|
392 |
+
plt.title(f'{symbol} Stock Price with Anomalies')
|
393 |
+
plt.xlabel('Date')
|
394 |
+
plt.ylabel('Close Price')
|
395 |
+
plt.legend()
|
396 |
+
plt.show()
|
397 |
+
|
398 |
+
anomalies = stock_data[stock_data['anomaly']]
|
399 |
+
print(f"Anomalies for {symbol}:")
|
400 |
+
print(anomalies[['close', 'z_score']])
|
401 |
+
print("\n")
|
402 |
+
|
403 |
+
pip install arch
|
404 |
+
|
405 |
+
from arch import arch_model
|
406 |
+
|
407 |
+
for symbol in unique_symbols:
|
408 |
+
stock_data = big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == symbol]
|
409 |
+
stock_data.set_index('date', inplace=True)
|
410 |
+
|
411 |
+
stock_data['return'] = stock_data['close'].pct_change().dropna()
|
412 |
+
|
413 |
+
model = arch_model(stock_data['return'].dropna(), vol='Garch', p=1, q=1)
|
414 |
+
model_fit = model.fit(disp='off')
|
415 |
+
print(f"Summary for {symbol}:")
|
416 |
+
print(model_fit.summary())
|
417 |
+
|
418 |
+
volatility = model_fit.conditional_volatility
|
419 |
+
|
420 |
+
plt.figure(figsize=(14, 7))
|
421 |
+
plt.plot(volatility)
|
422 |
+
plt.title(f'{symbol} Stock Volatility')
|
423 |
+
plt.xlabel('Date')
|
424 |
+
plt.ylabel('Volatility')
|
425 |
+
plt.show()
|
426 |
+
|
427 |
+
forecast_horizon = 30
|
428 |
+
forecast = model_fit.forecast(horizon=forecast_horizon)
|
429 |
+
forecast_volatility = np.sqrt(forecast.variance.values[-1, :])
|
430 |
+
|
431 |
+
plt.figure(figsize=(14, 7))
|
432 |
+
plt.plot(range(1, forecast_horizon+1), forecast_volatility)
|
433 |
+
plt.title(f'{symbol} Forecasted Volatility for Next 30 Days')
|
434 |
+
plt.xlabel('Days')
|
435 |
+
plt.ylabel('Volatility')
|
436 |
+
plt.show()
|
437 |
+
|
438 |
+
for symbol in unique_symbols:
|
439 |
+
stock_data = big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == symbol]
|
440 |
+
stock_data.set_index('date', inplace=True)
|
441 |
+
|
442 |
+
stock_data['SMA50'] = stock_data['close'].rolling(window=50).mean()
|
443 |
+
stock_data['SMA200'] = stock_data['close'].rolling(window=200).mean()
|
444 |
+
|
445 |
+
stock_data['Signal'] = 0.0
|
446 |
+
stock_data['Signal'][50:] = np.where(stock_data['SMA50'][50:] > stock_data['SMA200'][50:], 1.0, 0.0)
|
447 |
+
stock_data['Position'] = stock_data['Signal'].diff()
|
448 |
+
|
449 |
+
for symbol in unique_symbols:
|
450 |
+
stock_data = big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == symbol]
|
451 |
+
stock_data.set_index('date', inplace=True)
|
452 |
+
|
453 |
+
stock_data['SMA50'] = stock_data['close'].rolling(window=50).mean()
|
454 |
+
stock_data['SMA200'] = stock_data['close'].rolling(window=200).mean()
|
455 |
+
|
456 |
+
stock_data['Signal'] = 0.0
|
457 |
+
stock_data['Signal'][50:] = np.where(stock_data['SMA50'][50:] > stock_data['SMA200'][50:], 1.0, 0.0)
|
458 |
+
stock_data['Position'] = stock_data['Signal'].diff()
|
459 |
+
|
460 |
+
# The following lines were incorrectly indented
|
461 |
+
plt.figure(figsize=(14, 7))
|
462 |
+
plt.plot(stock_data['close'], label='Close Price')
|
463 |
+
plt.plot(stock_data['SMA50'], label='50-day SMA', alpha=0.7)
|
464 |
+
plt.plot(stock_data['SMA200'], label='200-day SMA', alpha=0.7)
|
465 |
+
plt.plot(stock_data[stock_data['Position'] == 1].index, stock_data['SMA50'][stock_data['Position'] == 1], '^', markersize=10, color='g', lw=0, label='Buy Signal')
|
466 |
+
plt.plot(stock_data[stock_data['Position'] == -1].index, stock_data['SMA50'][stock_data['Position'] == -1], 'v', markersize=10, color='r', lw=0, label='Sell Signal')
|
467 |
+
plt.title(f'{symbol} - SMA Crossover Strategy')
|
468 |
+
plt.xlabel('Date')
|
469 |
+
plt.ylabel('Close Price')
|
470 |
+
plt.legend()
|
471 |
+
plt.show()
|
472 |
+
|
473 |
+
X = merged_data[['unemployment_rate', 'cpi', 'inflation_rate', 'mortgage_interest_rate', 'corporate_bond_yield']]
|
474 |
+
y = merged_data['close']
|
475 |
+
|
476 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
477 |
+
|
478 |
+
model = RandomForestRegressor()
|
479 |
+
model.fit(X_train, y_train)
|
480 |
+
|
481 |
+
!pip install shap
|
482 |
+
import shap
|
483 |
+
|
484 |
+
explainer = shap.TreeExplainer(model)
|
485 |
+
shap_values = explainer.shap_values(X_test)
|
486 |
+
|
487 |
+
shap.summary_plot(shap_values, X_test)
|