Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 8,127 Bytes
63d0570
 
 
 
 
 
a643548
63d0570
 
 
 
 
a1cfb78
63d0570
 
e8a9789
 
 
63d0570
 
 
 
 
 
 
45cf530
5d90fc4
fd1add5
594f8c0
38fe1a4
 
 
 
ce21779
38fe1a4
 
 
4313b8a
38fe1a4
594f8c0
d8a9efe
 
 
 
 
 
 
 
 
 
 
 
 
b2e7197
d8a9efe
 
 
28986c0
594f8c0
 
 
 
 
 
 
 
 
 
 
 
28986c0
594f8c0
 
 
 
 
 
 
 
 
 
c99e93d
 
28986c0
c99e93d
 
6fa4a28
 
 
 
 
1d0e744
6fa4a28
dba2380
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: apache-2.0
language:
- en
---

# Signal and Noise: A Framework for Reducing Uncertainty in Language Model Evaluation

<p align="center">
  <a href="https://github.com/allenai/signal-and-noise/blob/main/LICENSE">
    <img alt="GitHub License" src="https://img.shields.io/badge/license-Apache 2.0-green">
  </a>
  <a href="https://arxiv.org/abs/2508.13144">
    <img alt="Paper URL" src="https://img.shields.io/badge/paper-arxiv-red">
  </a>
  <a href="https://allenai.org/blog/signal-noise">
    <img alt="Blog" src="https://img.shields.io/badge/blog-allenai-pink">
  </a>
  <a href="https://github.com/allenai/signal-and-noise">
    <img alt="Huggingface URL" src="https://img.shields.io/badge/code-github-grey">
  </a>
</p>

Our work studies the ratio between signal, a benchmark's ability to separate models; and noise, a benchmark's sensitivity to random variability during training steps.

**This dataset contains evaluation results. For utilites to use this dataset and to reproduce the findings in our paper, please see our [github](https://github.com/allenai/signal-and-noise).**

### Main Eval Suite (375 models)

```python
import pandas as pd
from snr.download.hf import pull_predictions_from_hf

local_path = pull_predictions_from_hf("allenai/signal-and-noise", split_name='core')
df = pd.read_parquet(local_path)

print(f'Loaded {len(df):,} model evaluations')
>>> Loaded 388,924 model evaluations
```

<details>
<summary>List of Included Tasks</summary>

`agi_eval`, `arc_challenge`, `arc_challenge:mc`, `arc_easy`, `arc_easy:mc`, `autobencher`, `autobencher:mc`, `boolq`, `boolq:mc`, `codex_humaneval`, `codex_humanevalplus`, `copycolors:mc`, `csqa`, `csqa:mc`, `custom_loss_numia_math`, `custom_loss_sky_t1`, `custom_loss_tulu_if`, `drop`, `gsm8k`, `gsm_plus`, `gsm_symbolic_main`, `gsm_symbolic_p1`, `gsm_symbolic_p2`, `hellaswag`, `hellaswag:mc`, `jeopardy`, `mbpp`, `mbppplus`, `medmcqa`, `medmcqa:mc`, `minerva`, `minerva_math_500`, `mmlu`, `multitask_all`, `multitask_code`, `multitask_knowledge`, `multitask_math`, `openbookqa`, `openbookqa:mc`, `paloma_4chan_meta_sep`, `paloma_c4_100_domains`, `paloma_c4_en`, `paloma_dolma-v1_5`, `paloma_dolma_100_programing_languages`, `paloma_dolma_100_subreddits`, `paloma_falcon-refinedweb`, `paloma_gab`, `paloma_m2d2_s2orc_unsplit`, `paloma_m2d2_wikipedia_unsplit`, `paloma_manosphere_meta_sep`, `paloma_mc4`, `paloma_ptb`, `paloma_redpajama`, `paloma_twitterAAE_HELM_fixed`, `paloma_wikitext_103`, `piqa`, `piqa:mc`, `socialiqa`, `socialiqa:mc`, `squad`, `triviaqa`, `winogrande`, `winogrande:mc`

</details>

<details>
<summary>List of Included Models</summary>
  
- Intermediate checkpoint models (2): `allenai/OLMo-2-1124-13B`, `allenai/OLMo-2-1124-7B`
- Ladder models (25): `allenai/OLMo-Ladder-{190M|370M|760M|1B|3B}-{0.5xC|1xC|2xC|5xC|10xC}`
- Datadecide models (225): `allenai/DataDecide-{c4|dclm-baseline|dclm-baseline-25p-dolma1.7-75p|dclm-baseline-50p-dolma1.7-50p|dclm-baseline-75p-dolma1.7-25p|dclm-baseline-qc-10p|dclm-baseline-qc-20p|dclm-baseline-qc-7p-fw2|dclm-baseline-qc-7p-fw3|dclm-baseline-qc-fw-10p|dclm-baseline-qc-fw-3p|dolma1_6plus|dolma1_7|dolma1_7-no-code|dolma1_7-no-flan|dolma1_7-no-math-code|dolma1_7-no-reddit|falcon|falcon-and-cc|falcon-and-cc-qc-10p|falcon-and-cc-qc-20p|falcon-and-cc-qc-orig-10p|falcon-and-cc-qc-tulu-10p|fineweb-edu|fineweb-pro}-{4M|20M|60M|90M|150M|300M|530M|750M|1B}`
- External models (119): `01-ai/Yi-1.5-34B`, `01-ai/Yi-1.5-6B`, `01-ai/Yi-1.5-9B`, `01-ai/Yi-1.5-9B-32K`, `01-ai/Yi-34B`, `01-ai/Yi-6B`, `01-ai/Yi-6B-200K`, `01-ai/Yi-9B`, `01-ai/Yi-9B-200K`, `BEE-spoke-data/smol_llama-220M-GQA`, `BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu`, `CortexLM/btlm-7b-base-v0.2`, `Deci/DeciLM-7B`, `EleutherAI/pythia-1.4b`, `EleutherAI/pythia-12b`, `EleutherAI/pythia-14m`, `EleutherAI/pythia-160m`, `EleutherAI/pythia-1b`, `EleutherAI/pythia-2.8b`, `EleutherAI/pythia-6.9b`, `EleutherAI/pythia-70m`, `HelpingAI/Priya-3B`, `HuggingFaceTB/SmolLM-1.7B`, `HuggingFaceTB/SmolLM-135M`, `HuggingFaceTB/SmolLM-360M`, `HuggingFaceTB/SmolLM2-1.7B`, `HuggingFaceTB/SmolLM2-135M`, `Qwen/CodeQwen1.5-7B`, `Qwen/Qwen1.5-1.8B`, `Qwen/Qwen1.5-110B`, `Qwen/Qwen1.5-14B`, `Qwen/Qwen1.5-32B`, `Qwen/Qwen1.5-4B`, `Qwen/Qwen1.5-72B`, `Qwen/Qwen1.5-7B`, `Qwen/Qwen2-0.5B`, `Qwen/Qwen2-1.5B`, `Qwen/Qwen2-72B`, `Qwen/Qwen2-7B`, `Qwen/Qwen2.5-0.5B`, `Qwen/Qwen2.5-1.5B`, `Qwen/Qwen2.5-14B`, `Qwen/Qwen2.5-32B`, `Qwen/Qwen2.5-3B`, `Qwen/Qwen2.5-72B`, `Qwen/Qwen2.5-7B`, `Qwen/Qwen2.5-Coder-14B`, `Qwen/Qwen2.5-Coder-7B`, `Qwen/Qwen2.5-Math-7B`, `TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T`, `TinyLlama/TinyLlama_v1.1`, `allenai/OLMo-1B-0724-hf`, `allenai/OLMo-1B-hf`, `allenai/OLMo-2-0325-32B`, `allenai/OLMo-2-0425-1B`, `allenai/OLMo-2-1124-13B`, `allenai/OLMo-2-1124-7B`, `allenai/OLMo-7B-0424-hf`, `allenai/OLMo-7B-0724-hf`, `allenai/OLMo-7B-Twin-2T-hf`, `allenai/OLMo-7B-hf`, `allenai/OLMoE-1B-7B-0924`, `amd/AMD-Llama-135m`, `beomi/gemma-mling-7b`, `bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `databricks/dolly-v1-6b`, `deepseek-ai/deepseek-llm-67b-base`, `deepseek-ai/deepseek-llm-7b-base`, `deepseek-ai/deepseek-moe-16b-base`, `dicta-il/dictalm2.0`, `facebook/opt-1.3b`, `google/codegemma-1.1-2b`, `google/gemma-2-2b`, `google/gemma-2-9b`, `google/gemma-2b`, `google/gemma-7b`, `h2oai/h2o-danube3-4b-base`, `huggyllama/llama-13b`, `huggyllama/llama-30b`, `huggyllama/llama-65b`, `huggyllama/llama-7b`, `ibm/PowerLM-3b`, `jebish7/Nemotron-4-Mini-Hindi-4B-Base`, `m-a-p/neo_7b`, `meta-llama/Llama-2-13b-hf`, `meta-llama/Llama-2-7b-hf`, `meta-llama/Llama-3.1-70B`, `meta-llama/Llama-3.1-8B`, `meta-llama/Llama-3.2-1B`, `meta-llama/Llama-3.2-3B`, `meta-llama/Meta-Llama-3-70B`, `meta-llama/Meta-Llama-3-8B`, `meta-llama/Meta-Llama-3.1-70B`, `meta-llama/Meta-Llama-3.1-8B`, `microsoft/Orca-2-13b`, `microsoft/Orca-2-7b`, `microsoft/phi-1`, `microsoft/phi-1_5`, `microsoft/phi-2`, `microsoft/phi-4`, `mistralai/Mathstral-7B-v0.1`, `mistralai/Mixtral-8x22B-v0.1`, `mistralai/Mixtral-8x7B-v0.1`, `mosaicml/mpt-7b`, `princeton-nlp/Sheared-LLaMA-1.3B`, `princeton-nlp/Sheared-LLaMA-2.7B`, `qingy2024/Qwen2.5-4B`, `speakleash/Bielik-11B-v2`, `stabilityai/stablelm-2-1_6b`, `stabilityai/stablelm-3b-4e1t`, `tiiuae/Falcon3-10B-Base`, `tiiuae/Falcon3-3B-Base`, `tiiuae/Falcon3-Mamba-7B-Base`, `tiiuae/falcon-11B`, `tiiuae/falcon-7b`, `togethercomputer/RedPajama-INCITE-7B-Base`, `upstage/SOLAR-10.7B-v1.0`, `vonjack/MobileLLM-125M-HF`

</details>

### DataDecide Eval Suite (225 models with 4M to 1B params)

```python
import pandas as pd
from snr.download.hf import pull_predictions_from_hf

local_path = pull_predictions_from_hf("allenai/signal-and-noise", split_name='datadecide_intermediate')
df = pd.read_parquet(local_path)

print(f'Loaded {len(df):,} model evaluations')
>>> Loaded 212,047 model evaluations
```

### Random Seed Eval Suite (20 models with 1B params)

```python
import pandas as pd
from snr.download.hf import pull_predictions_from_hf

local_path = pull_predictions_from_hf("allenai/signal-and-noise", split_name='random_seeds')
df = pd.read_parquet(local_path)

print(f'Loaded {len(df):,} model evaluations')
>>> Loaded 296,358 model evaluations
```

### AutoBencher QA Benchmark

For the AutoBencher evaluation used in our work, please refer to [huggingface.co/datasets/allenai/autobencher-qa-33k](https://huggingface.co/datasets/allenai/autobencher-qa-33k).

### Dataset Description

- **Developed by:** Allen Institute for AI (Ai2)
- **Language(s) (NLP):** English
- **License:** The model evaluations are intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use)
- **Contact:** Technical inquiries: `[email protected]`. Press: `[email protected]`

### Citation

```
@article{heineman2025signal,
  title={Signal and Noise: A Framework for Reducing Uncertainty in Language Model Evaluation},
  author={Heineman, David and Hofmann, Valentin and Magnusson, Ian and Gu, Yuling and Smith, Noah A and Hajishirzi, Hannaneh and Lo, Kyle and Dodge, Jesse},
  journal={arXiv preprint arXiv:2508.13144},
  year={2025}
}
```