File size: 8,127 Bytes
63d0570 a643548 63d0570 a1cfb78 63d0570 e8a9789 63d0570 45cf530 5d90fc4 fd1add5 594f8c0 38fe1a4 ce21779 38fe1a4 4313b8a 38fe1a4 594f8c0 d8a9efe b2e7197 d8a9efe 28986c0 594f8c0 28986c0 594f8c0 c99e93d 28986c0 c99e93d 6fa4a28 1d0e744 6fa4a28 dba2380 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
license: apache-2.0
language:
- en
---
# Signal and Noise: A Framework for Reducing Uncertainty in Language Model Evaluation
<p align="center">
<a href="https://github.com/allenai/signal-and-noise/blob/main/LICENSE">
<img alt="GitHub License" src="https://img.shields.io/badge/license-Apache 2.0-green">
</a>
<a href="https://arxiv.org/abs/2508.13144">
<img alt="Paper URL" src="https://img.shields.io/badge/paper-arxiv-red">
</a>
<a href="https://allenai.org/blog/signal-noise">
<img alt="Blog" src="https://img.shields.io/badge/blog-allenai-pink">
</a>
<a href="https://github.com/allenai/signal-and-noise">
<img alt="Huggingface URL" src="https://img.shields.io/badge/code-github-grey">
</a>
</p>
Our work studies the ratio between signal, a benchmark's ability to separate models; and noise, a benchmark's sensitivity to random variability during training steps.
**This dataset contains evaluation results. For utilites to use this dataset and to reproduce the findings in our paper, please see our [github](https://github.com/allenai/signal-and-noise).**
### Main Eval Suite (375 models)
```python
import pandas as pd
from snr.download.hf import pull_predictions_from_hf
local_path = pull_predictions_from_hf("allenai/signal-and-noise", split_name='core')
df = pd.read_parquet(local_path)
print(f'Loaded {len(df):,} model evaluations')
>>> Loaded 388,924 model evaluations
```
<details>
<summary>List of Included Tasks</summary>
`agi_eval`, `arc_challenge`, `arc_challenge:mc`, `arc_easy`, `arc_easy:mc`, `autobencher`, `autobencher:mc`, `boolq`, `boolq:mc`, `codex_humaneval`, `codex_humanevalplus`, `copycolors:mc`, `csqa`, `csqa:mc`, `custom_loss_numia_math`, `custom_loss_sky_t1`, `custom_loss_tulu_if`, `drop`, `gsm8k`, `gsm_plus`, `gsm_symbolic_main`, `gsm_symbolic_p1`, `gsm_symbolic_p2`, `hellaswag`, `hellaswag:mc`, `jeopardy`, `mbpp`, `mbppplus`, `medmcqa`, `medmcqa:mc`, `minerva`, `minerva_math_500`, `mmlu`, `multitask_all`, `multitask_code`, `multitask_knowledge`, `multitask_math`, `openbookqa`, `openbookqa:mc`, `paloma_4chan_meta_sep`, `paloma_c4_100_domains`, `paloma_c4_en`, `paloma_dolma-v1_5`, `paloma_dolma_100_programing_languages`, `paloma_dolma_100_subreddits`, `paloma_falcon-refinedweb`, `paloma_gab`, `paloma_m2d2_s2orc_unsplit`, `paloma_m2d2_wikipedia_unsplit`, `paloma_manosphere_meta_sep`, `paloma_mc4`, `paloma_ptb`, `paloma_redpajama`, `paloma_twitterAAE_HELM_fixed`, `paloma_wikitext_103`, `piqa`, `piqa:mc`, `socialiqa`, `socialiqa:mc`, `squad`, `triviaqa`, `winogrande`, `winogrande:mc`
</details>
<details>
<summary>List of Included Models</summary>
- Intermediate checkpoint models (2): `allenai/OLMo-2-1124-13B`, `allenai/OLMo-2-1124-7B`
- Ladder models (25): `allenai/OLMo-Ladder-{190M|370M|760M|1B|3B}-{0.5xC|1xC|2xC|5xC|10xC}`
- Datadecide models (225): `allenai/DataDecide-{c4|dclm-baseline|dclm-baseline-25p-dolma1.7-75p|dclm-baseline-50p-dolma1.7-50p|dclm-baseline-75p-dolma1.7-25p|dclm-baseline-qc-10p|dclm-baseline-qc-20p|dclm-baseline-qc-7p-fw2|dclm-baseline-qc-7p-fw3|dclm-baseline-qc-fw-10p|dclm-baseline-qc-fw-3p|dolma1_6plus|dolma1_7|dolma1_7-no-code|dolma1_7-no-flan|dolma1_7-no-math-code|dolma1_7-no-reddit|falcon|falcon-and-cc|falcon-and-cc-qc-10p|falcon-and-cc-qc-20p|falcon-and-cc-qc-orig-10p|falcon-and-cc-qc-tulu-10p|fineweb-edu|fineweb-pro}-{4M|20M|60M|90M|150M|300M|530M|750M|1B}`
- External models (119): `01-ai/Yi-1.5-34B`, `01-ai/Yi-1.5-6B`, `01-ai/Yi-1.5-9B`, `01-ai/Yi-1.5-9B-32K`, `01-ai/Yi-34B`, `01-ai/Yi-6B`, `01-ai/Yi-6B-200K`, `01-ai/Yi-9B`, `01-ai/Yi-9B-200K`, `BEE-spoke-data/smol_llama-220M-GQA`, `BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu`, `CortexLM/btlm-7b-base-v0.2`, `Deci/DeciLM-7B`, `EleutherAI/pythia-1.4b`, `EleutherAI/pythia-12b`, `EleutherAI/pythia-14m`, `EleutherAI/pythia-160m`, `EleutherAI/pythia-1b`, `EleutherAI/pythia-2.8b`, `EleutherAI/pythia-6.9b`, `EleutherAI/pythia-70m`, `HelpingAI/Priya-3B`, `HuggingFaceTB/SmolLM-1.7B`, `HuggingFaceTB/SmolLM-135M`, `HuggingFaceTB/SmolLM-360M`, `HuggingFaceTB/SmolLM2-1.7B`, `HuggingFaceTB/SmolLM2-135M`, `Qwen/CodeQwen1.5-7B`, `Qwen/Qwen1.5-1.8B`, `Qwen/Qwen1.5-110B`, `Qwen/Qwen1.5-14B`, `Qwen/Qwen1.5-32B`, `Qwen/Qwen1.5-4B`, `Qwen/Qwen1.5-72B`, `Qwen/Qwen1.5-7B`, `Qwen/Qwen2-0.5B`, `Qwen/Qwen2-1.5B`, `Qwen/Qwen2-72B`, `Qwen/Qwen2-7B`, `Qwen/Qwen2.5-0.5B`, `Qwen/Qwen2.5-1.5B`, `Qwen/Qwen2.5-14B`, `Qwen/Qwen2.5-32B`, `Qwen/Qwen2.5-3B`, `Qwen/Qwen2.5-72B`, `Qwen/Qwen2.5-7B`, `Qwen/Qwen2.5-Coder-14B`, `Qwen/Qwen2.5-Coder-7B`, `Qwen/Qwen2.5-Math-7B`, `TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T`, `TinyLlama/TinyLlama_v1.1`, `allenai/OLMo-1B-0724-hf`, `allenai/OLMo-1B-hf`, `allenai/OLMo-2-0325-32B`, `allenai/OLMo-2-0425-1B`, `allenai/OLMo-2-1124-13B`, `allenai/OLMo-2-1124-7B`, `allenai/OLMo-7B-0424-hf`, `allenai/OLMo-7B-0724-hf`, `allenai/OLMo-7B-Twin-2T-hf`, `allenai/OLMo-7B-hf`, `allenai/OLMoE-1B-7B-0924`, `amd/AMD-Llama-135m`, `beomi/gemma-mling-7b`, `bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `databricks/dolly-v1-6b`, `deepseek-ai/deepseek-llm-67b-base`, `deepseek-ai/deepseek-llm-7b-base`, `deepseek-ai/deepseek-moe-16b-base`, `dicta-il/dictalm2.0`, `facebook/opt-1.3b`, `google/codegemma-1.1-2b`, `google/gemma-2-2b`, `google/gemma-2-9b`, `google/gemma-2b`, `google/gemma-7b`, `h2oai/h2o-danube3-4b-base`, `huggyllama/llama-13b`, `huggyllama/llama-30b`, `huggyllama/llama-65b`, `huggyllama/llama-7b`, `ibm/PowerLM-3b`, `jebish7/Nemotron-4-Mini-Hindi-4B-Base`, `m-a-p/neo_7b`, `meta-llama/Llama-2-13b-hf`, `meta-llama/Llama-2-7b-hf`, `meta-llama/Llama-3.1-70B`, `meta-llama/Llama-3.1-8B`, `meta-llama/Llama-3.2-1B`, `meta-llama/Llama-3.2-3B`, `meta-llama/Meta-Llama-3-70B`, `meta-llama/Meta-Llama-3-8B`, `meta-llama/Meta-Llama-3.1-70B`, `meta-llama/Meta-Llama-3.1-8B`, `microsoft/Orca-2-13b`, `microsoft/Orca-2-7b`, `microsoft/phi-1`, `microsoft/phi-1_5`, `microsoft/phi-2`, `microsoft/phi-4`, `mistralai/Mathstral-7B-v0.1`, `mistralai/Mixtral-8x22B-v0.1`, `mistralai/Mixtral-8x7B-v0.1`, `mosaicml/mpt-7b`, `princeton-nlp/Sheared-LLaMA-1.3B`, `princeton-nlp/Sheared-LLaMA-2.7B`, `qingy2024/Qwen2.5-4B`, `speakleash/Bielik-11B-v2`, `stabilityai/stablelm-2-1_6b`, `stabilityai/stablelm-3b-4e1t`, `tiiuae/Falcon3-10B-Base`, `tiiuae/Falcon3-3B-Base`, `tiiuae/Falcon3-Mamba-7B-Base`, `tiiuae/falcon-11B`, `tiiuae/falcon-7b`, `togethercomputer/RedPajama-INCITE-7B-Base`, `upstage/SOLAR-10.7B-v1.0`, `vonjack/MobileLLM-125M-HF`
</details>
### DataDecide Eval Suite (225 models with 4M to 1B params)
```python
import pandas as pd
from snr.download.hf import pull_predictions_from_hf
local_path = pull_predictions_from_hf("allenai/signal-and-noise", split_name='datadecide_intermediate')
df = pd.read_parquet(local_path)
print(f'Loaded {len(df):,} model evaluations')
>>> Loaded 212,047 model evaluations
```
### Random Seed Eval Suite (20 models with 1B params)
```python
import pandas as pd
from snr.download.hf import pull_predictions_from_hf
local_path = pull_predictions_from_hf("allenai/signal-and-noise", split_name='random_seeds')
df = pd.read_parquet(local_path)
print(f'Loaded {len(df):,} model evaluations')
>>> Loaded 296,358 model evaluations
```
### AutoBencher QA Benchmark
For the AutoBencher evaluation used in our work, please refer to [huggingface.co/datasets/allenai/autobencher-qa-33k](https://huggingface.co/datasets/allenai/autobencher-qa-33k).
### Dataset Description
- **Developed by:** Allen Institute for AI (Ai2)
- **Language(s) (NLP):** English
- **License:** The model evaluations are intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use)
- **Contact:** Technical inquiries: `[email protected]`. Press: `[email protected]`
### Citation
```
@article{heineman2025signal,
title={Signal and Noise: A Framework for Reducing Uncertainty in Language Model Evaluation},
author={Heineman, David and Hofmann, Valentin and Magnusson, Ian and Gu, Yuling and Smith, Noah A and Hajishirzi, Hannaneh and Lo, Kyle and Dodge, Jesse},
journal={arXiv preprint arXiv:2508.13144},
year={2025}
}
``` |