Datasets:
Commit
·
14c0afe
1
Parent(s):
9b3a92f
Update parquet files
Browse files- .gitattributes +0 -27
- AIC/scitldr-test.parquet +3 -0
- AIC/scitldr-train.parquet +3 -0
- AIC/scitldr-validation.parquet +3 -0
- Abstract/scitldr-test.parquet +3 -0
- Abstract/scitldr-train.parquet +3 -0
- Abstract/scitldr-validation.parquet +3 -0
- FullText/scitldr-test.parquet +3 -0
- FullText/scitldr-train.parquet +3 -0
- FullText/scitldr-validation.parquet +3 -0
- README.md +0 -305
- dataset_infos.json +0 -1
- scitldr.py +0 -169
.gitattributes
DELETED
|
@@ -1,27 +0,0 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AIC/scitldr-test.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fe2ea3bf6e17da6835f801e38abd4d66f6ce55f617e5efdcbde3cf25f8691163
|
| 3 |
+
size 2420420
|
AIC/scitldr-train.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bed1d1dcde67bb575f8951b78f1b3b375ab82cef4ede2b9ba6b832741f45f8e4
|
| 3 |
+
size 7225242
|
AIC/scitldr-validation.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:06260d11e4edd5c736e939e747ea52079250accea0e95cf9a34e9489257ca164
|
| 3 |
+
size 2246859
|
Abstract/scitldr-test.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1ecde965d8a5a0fa21872e43ffc402169669c2485edcfa6e2f401b09fcfe735
|
| 3 |
+
size 569390
|
Abstract/scitldr-train.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5dd84670937fc827083fa628172c0a0533ee2682e2de26dda74d57c99e6bf1bd
|
| 3 |
+
size 1462133
|
Abstract/scitldr-validation.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:830c859b310797d32d6e45ff3f9bd57d3badb4c937ad75623159ecc23d5dd4da
|
| 3 |
+
size 529207
|
FullText/scitldr-test.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:01943acff58815c010834dd5a14c1b33cda1f8d64350d089db108ef1b72fc1c8
|
| 3 |
+
size 10345754
|
FullText/scitldr-train.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8397c92d09f158f1d979dcbeae4d7fbc6d5ee45eaf6a4a04bb93adce626c70ab
|
| 3 |
+
size 32345466
|
FullText/scitldr-validation.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:23ba62cea503284c8e8cd16615d94f948facac26037d82b685e68cba46bfb1c0
|
| 3 |
+
size 9642576
|
README.md
DELETED
|
@@ -1,305 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
annotations_creators:
|
| 3 |
-
- no-annotation
|
| 4 |
-
language_creators:
|
| 5 |
-
- found
|
| 6 |
-
language:
|
| 7 |
-
- en
|
| 8 |
-
license:
|
| 9 |
-
- unknown
|
| 10 |
-
multilinguality:
|
| 11 |
-
- monolingual
|
| 12 |
-
size_categories:
|
| 13 |
-
- 1K<n<10K
|
| 14 |
-
source_datasets:
|
| 15 |
-
- original
|
| 16 |
-
task_categories:
|
| 17 |
-
- summarization
|
| 18 |
-
task_ids: []
|
| 19 |
-
paperswithcode_id: scitldr
|
| 20 |
-
pretty_name: SciTLDR
|
| 21 |
-
tags:
|
| 22 |
-
- scientific-documents-summarization
|
| 23 |
-
dataset_info:
|
| 24 |
-
- config_name: Abstract
|
| 25 |
-
features:
|
| 26 |
-
- name: source
|
| 27 |
-
sequence: string
|
| 28 |
-
- name: source_labels
|
| 29 |
-
sequence:
|
| 30 |
-
class_label:
|
| 31 |
-
names:
|
| 32 |
-
0: non-oracle
|
| 33 |
-
1: oracle
|
| 34 |
-
- name: rouge_scores
|
| 35 |
-
sequence: float32
|
| 36 |
-
- name: paper_id
|
| 37 |
-
dtype: string
|
| 38 |
-
- name: target
|
| 39 |
-
sequence: string
|
| 40 |
-
splits:
|
| 41 |
-
- name: train
|
| 42 |
-
num_bytes: 2738065
|
| 43 |
-
num_examples: 1992
|
| 44 |
-
- name: test
|
| 45 |
-
num_bytes: 1073656
|
| 46 |
-
num_examples: 618
|
| 47 |
-
- name: validation
|
| 48 |
-
num_bytes: 994876
|
| 49 |
-
num_examples: 619
|
| 50 |
-
download_size: 5483987
|
| 51 |
-
dataset_size: 4806597
|
| 52 |
-
- config_name: AIC
|
| 53 |
-
features:
|
| 54 |
-
- name: source
|
| 55 |
-
sequence: string
|
| 56 |
-
- name: source_labels
|
| 57 |
-
sequence:
|
| 58 |
-
class_label:
|
| 59 |
-
names:
|
| 60 |
-
0: 0
|
| 61 |
-
1: 1
|
| 62 |
-
- name: rouge_scores
|
| 63 |
-
sequence: float32
|
| 64 |
-
- name: paper_id
|
| 65 |
-
dtype: string
|
| 66 |
-
- name: ic
|
| 67 |
-
dtype: bool_
|
| 68 |
-
- name: target
|
| 69 |
-
sequence: string
|
| 70 |
-
splits:
|
| 71 |
-
- name: train
|
| 72 |
-
num_bytes: 14473822
|
| 73 |
-
num_examples: 1992
|
| 74 |
-
- name: test
|
| 75 |
-
num_bytes: 4822026
|
| 76 |
-
num_examples: 618
|
| 77 |
-
- name: validation
|
| 78 |
-
num_bytes: 4476237
|
| 79 |
-
num_examples: 619
|
| 80 |
-
download_size: 25545108
|
| 81 |
-
dataset_size: 23772085
|
| 82 |
-
- config_name: FullText
|
| 83 |
-
features:
|
| 84 |
-
- name: source
|
| 85 |
-
sequence: string
|
| 86 |
-
- name: source_labels
|
| 87 |
-
sequence:
|
| 88 |
-
class_label:
|
| 89 |
-
names:
|
| 90 |
-
0: non-oracle
|
| 91 |
-
1: oracle
|
| 92 |
-
- name: rouge_scores
|
| 93 |
-
sequence: float32
|
| 94 |
-
- name: paper_id
|
| 95 |
-
dtype: string
|
| 96 |
-
- name: target
|
| 97 |
-
sequence: string
|
| 98 |
-
splits:
|
| 99 |
-
- name: train
|
| 100 |
-
num_bytes: 66917363
|
| 101 |
-
num_examples: 1992
|
| 102 |
-
- name: test
|
| 103 |
-
num_bytes: 20182554
|
| 104 |
-
num_examples: 618
|
| 105 |
-
- name: validation
|
| 106 |
-
num_bytes: 18790651
|
| 107 |
-
num_examples: 619
|
| 108 |
-
download_size: 110904552
|
| 109 |
-
dataset_size: 105890568
|
| 110 |
-
---
|
| 111 |
-
|
| 112 |
-
# Dataset Card for SciTLDR
|
| 113 |
-
|
| 114 |
-
## Table of Contents
|
| 115 |
-
- [Dataset Description](#dataset-description)
|
| 116 |
-
- [Dataset Summary](#dataset-summary)
|
| 117 |
-
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
| 118 |
-
- [Languages](#languages)
|
| 119 |
-
- [Dataset Structure](#dataset-structure)
|
| 120 |
-
- [Data Instances](#data-instances)
|
| 121 |
-
- [Data Fields](#data-fields)
|
| 122 |
-
- [Data Splits](#data-splits)
|
| 123 |
-
- [Dataset Creation](#dataset-creation)
|
| 124 |
-
- [Curation Rationale](#curation-rationale)
|
| 125 |
-
- [Source Data](#source-data)
|
| 126 |
-
- [Annotations](#annotations)
|
| 127 |
-
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
| 128 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
| 129 |
-
- [Social Impact of Dataset](#social-impact-of-dataset)
|
| 130 |
-
- [Discussion of Biases](#discussion-of-biases)
|
| 131 |
-
- [Other Known Limitations](#other-known-limitations)
|
| 132 |
-
- [Additional Information](#additional-information)
|
| 133 |
-
- [Dataset Curators](#dataset-curators)
|
| 134 |
-
- [Licensing Information](#licensing-information)
|
| 135 |
-
- [Citation Information](#citation-information)
|
| 136 |
-
- [Contributions](#contributions)
|
| 137 |
-
|
| 138 |
-
## Dataset Description
|
| 139 |
-
|
| 140 |
-
- **Homepage:** https://github.com/allenai/scitldr
|
| 141 |
-
- **Repository:** https://github.com/allenai/scitldr
|
| 142 |
-
- **Paper:** https://arxiv.org/abs/2004.15011
|
| 143 |
-
- **Leaderboard:**
|
| 144 |
-
- **Point of Contact:** {isabelc,kylel,armanc,danw}@allenai.org
|
| 145 |
-
|
| 146 |
-
### Dataset Summary
|
| 147 |
-
`SciTLDR`: Extreme Summarization of Scientific Documents
|
| 148 |
-
|
| 149 |
-
SciTLDR is a new multi-target dataset of 5.4K TLDRs over 3.2K papers. SciTLDR contains both author-written and expert-derived TLDRs, where the latter are collected using a novel annotation protocol that produces high-quality summaries while minimizing annotation burden.
|
| 150 |
-
|
| 151 |
-
### Supported Tasks and Leaderboards
|
| 152 |
-
|
| 153 |
-
summarization
|
| 154 |
-
|
| 155 |
-
### Languages
|
| 156 |
-
|
| 157 |
-
English
|
| 158 |
-
|
| 159 |
-
## Dataset Structure
|
| 160 |
-
|
| 161 |
-
SciTLDR is split in to a 60/20/20 train/dev/test split. For each file, each line is a json, formatted as follows
|
| 162 |
-
```
|
| 163 |
-
{
|
| 164 |
-
"source":[
|
| 165 |
-
"sent0",
|
| 166 |
-
"sent1",
|
| 167 |
-
"sent2",
|
| 168 |
-
...
|
| 169 |
-
],
|
| 170 |
-
"source_labels":[binary list in which 1 is the oracle sentence],
|
| 171 |
-
"rouge_scores":[precomputed rouge-1 scores],
|
| 172 |
-
"paper_id":"PAPER-ID",
|
| 173 |
-
"target":[
|
| 174 |
-
"author-tldr",
|
| 175 |
-
"pr-tldr0",
|
| 176 |
-
"pr-tldr1",
|
| 177 |
-
...
|
| 178 |
-
],
|
| 179 |
-
"title":"TITLE"
|
| 180 |
-
}
|
| 181 |
-
```
|
| 182 |
-
The keys `rouge_scores` and `source_labels` are not necessary for any code to run, precomputed Rouge scores are provided for future research.
|
| 183 |
-
|
| 184 |
-
### Data Instances
|
| 185 |
-
|
| 186 |
-
{
|
| 187 |
-
"source": [
|
| 188 |
-
"Mixed precision training (MPT) is becoming a practical technique to improve the speed and energy efficiency of training deep neural networks by leveraging the fast hardware support for IEEE half-precision floating point that is available in existing GPUs.",
|
| 189 |
-
"MPT is typically used in combination with a technique called loss scaling, that works by scaling up the loss value up before the start of backpropagation in order to minimize the impact of numerical underflow on training.",
|
| 190 |
-
"Unfortunately, existing methods make this loss scale value a hyperparameter that needs to be tuned per-model, and a single scale cannot be adapted to different layers at different training stages.",
|
| 191 |
-
"We introduce a loss scaling-based training method called adaptive loss scaling that makes MPT easier and more practical to use, by removing the need to tune a model-specific loss scale hyperparameter.",
|
| 192 |
-
"We achieve this by introducing layer-wise loss scale values which are automatically computed during training to deal with underflow more effectively than existing methods.",
|
| 193 |
-
"We present experimental results on a variety of networks and tasks that show our approach can shorten the time to convergence and improve accuracy, compared with using the existing state-of-the-art MPT and single-precision floating point."
|
| 194 |
-
],
|
| 195 |
-
"source_labels": [
|
| 196 |
-
0,
|
| 197 |
-
0,
|
| 198 |
-
0,
|
| 199 |
-
1,
|
| 200 |
-
0,
|
| 201 |
-
0
|
| 202 |
-
],
|
| 203 |
-
"rouge_scores": [
|
| 204 |
-
0.2399999958000001,
|
| 205 |
-
0.26086956082230633,
|
| 206 |
-
0.19999999531250012,
|
| 207 |
-
0.38095237636054424,
|
| 208 |
-
0.2051282003944774,
|
| 209 |
-
0.2978723360796741
|
| 210 |
-
],
|
| 211 |
-
"paper_id": "rJlnfaNYvB",
|
| 212 |
-
"target": [
|
| 213 |
-
"We devise adaptive loss scaling to improve mixed precision training that surpass the state-of-the-art results.",
|
| 214 |
-
"Proposal for an adaptive loss scaling method during backpropagation for mix precision training where scale rate is decided automatically to reduce the underflow.",
|
| 215 |
-
"The authors propose a method to train models in FP16 precision that adopts a more elaborate way to minimize underflow in every layer simultaneously and automatically."
|
| 216 |
-
],
|
| 217 |
-
"title": "Adaptive Loss Scaling for Mixed Precision Training"
|
| 218 |
-
}
|
| 219 |
-
|
| 220 |
-
### Data Fields
|
| 221 |
-
|
| 222 |
-
- `source`: The Abstract, Introduction and Conclusion (AIC) or Full text of the paper, with one sentence per line.
|
| 223 |
-
- `source_labels`: Binary 0 or 1, 1 denotes the oracle sentence.
|
| 224 |
-
- `rouge_scores`: Precomputed ROUGE baseline scores for each sentence.
|
| 225 |
-
- `paper_id`: Arxiv Paper ID.
|
| 226 |
-
- `target`: Multiple summaries for each sentence, one sentence per line.
|
| 227 |
-
- `title`: Title of the paper.
|
| 228 |
-
### Data Splits
|
| 229 |
-
|
| 230 |
-
| | train | valid | test |
|
| 231 |
-
|-------------------|-------|--------|------|
|
| 232 |
-
| SciTLDR-A | 1992 | 618 | 619 |
|
| 233 |
-
| SciTLDR-AIC | 1992 | 618 | 619 |
|
| 234 |
-
| SciTLDR-FullText | 1992 | 618 | 619 |
|
| 235 |
-
|
| 236 |
-
## Dataset Creation
|
| 237 |
-
|
| 238 |
-
[More Information Needed]
|
| 239 |
-
|
| 240 |
-
### Curation Rationale
|
| 241 |
-
|
| 242 |
-
[More Information Needed]
|
| 243 |
-
|
| 244 |
-
### Source Data
|
| 245 |
-
|
| 246 |
-
#### Initial Data Collection and Normalization
|
| 247 |
-
|
| 248 |
-
[More Information Needed]
|
| 249 |
-
|
| 250 |
-
#### Who are the source language producers?
|
| 251 |
-
https://allenai.org/
|
| 252 |
-
|
| 253 |
-
### Annotations
|
| 254 |
-
|
| 255 |
-
#### Annotation process
|
| 256 |
-
|
| 257 |
-
Given the title and first 128 words of a reviewer comment about a paper,
|
| 258 |
-
re-write the summary (if it exists) into a single sentence or an incomplete
|
| 259 |
-
phrase. Summaries must be no more than one sentence.
|
| 260 |
-
Most summaries are between 15 and 25 words. The average rewritten summary is
|
| 261 |
-
20 words long.
|
| 262 |
-
|
| 263 |
-
#### Who are the annotators?
|
| 264 |
-
|
| 265 |
-
[More Information Needed]
|
| 266 |
-
|
| 267 |
-
### Personal and Sensitive Information
|
| 268 |
-
|
| 269 |
-
[More Information Needed]
|
| 270 |
-
|
| 271 |
-
## Considerations for Using the Data
|
| 272 |
-
|
| 273 |
-
### Social Impact of Dataset
|
| 274 |
-
|
| 275 |
-
To encourage further research in the area of extreme summarization of scientific documents.
|
| 276 |
-
|
| 277 |
-
### Discussion of Biases
|
| 278 |
-
|
| 279 |
-
[More Information Needed]
|
| 280 |
-
|
| 281 |
-
### Other Known Limitations
|
| 282 |
-
|
| 283 |
-
[More Information Needed]
|
| 284 |
-
|
| 285 |
-
## Additional Information
|
| 286 |
-
|
| 287 |
-
### Dataset Curators
|
| 288 |
-
|
| 289 |
-
[More Information Needed]
|
| 290 |
-
|
| 291 |
-
### Licensing Information
|
| 292 |
-
|
| 293 |
-
Apache License 2.0
|
| 294 |
-
|
| 295 |
-
### Citation Information
|
| 296 |
-
@article{cachola2020tldr,
|
| 297 |
-
title={{TLDR}: Extreme Summarization of Scientific Documents},
|
| 298 |
-
author={Isabel Cachola and Kyle Lo and Arman Cohan and Daniel S. Weld},
|
| 299 |
-
journal={arXiv:2004.15011},
|
| 300 |
-
year={2020},
|
| 301 |
-
}
|
| 302 |
-
|
| 303 |
-
### Contributions
|
| 304 |
-
|
| 305 |
-
Thanks to [@Bharat123rox](https://github.com/Bharat123rox) for adding this dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
{"Abstract": {"description": "A new multi-target dataset of 5.4K TLDRs over 3.2K papers.\nSCITLDR contains both author-written and expert-derived TLDRs,\nwhere the latter are collected using a novel annotation protocol\nthat produces high-quality summaries while minimizing annotation burden.\n", "citation": "@article{cachola2020tldr,\n title={{TLDR}: Extreme Summarization of Scientific Documents},\n author={Isabel Cachola and Kyle Lo and Arman Cohan and Daniel S. Weld},\n journal={arXiv:2004.15011},\n year={2020},\n}\n", "homepage": "https://github.com/allenai/scitldr", "license": "Apache License 2.0", "features": {"source": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "source_labels": {"feature": {"num_classes": 2, "names": ["non-oracle", "oracle"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "rouge_scores": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "paper_id": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": {"input": "source", "output": "target"}, "builder_name": "scitldr", "config_name": "Abstract", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2738065, "num_examples": 1992, "dataset_name": "scitldr"}, "test": {"name": "test", "num_bytes": 1073656, "num_examples": 618, "dataset_name": "scitldr"}, "validation": {"name": "validation", "num_bytes": 994876, "num_examples": 619, "dataset_name": "scitldr"}}, "download_checksums": {"https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-A/train.jsonl": {"num_bytes": 3155015, "checksum": "b222771d387be585cfdf5ae957b36757138415a352e0a3e3b23f73f87c3b1119"}, "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-A/dev.jsonl": {"num_bytes": 1124865, "checksum": "3191fa98ccc09521332b7a1cd63b1930be4e8df125a235ccd31e40329709525e"}, "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-A/test.jsonl": {"num_bytes": 1204107, "checksum": "fb42dd6cd4f4a1928ae8a01a189456fbfe994a07e938bd49f68653933f6503c9"}}, "download_size": 5483987, "post_processing_size": null, "dataset_size": 4806597, "size_in_bytes": 10290584}, "AIC": {"description": "A new multi-target dataset of 5.4K TLDRs over 3.2K papers.\nSCITLDR contains both author-written and expert-derived TLDRs,\nwhere the latter are collected using a novel annotation protocol\nthat produces high-quality summaries while minimizing annotation burden.\n", "citation": "@article{cachola2020tldr,\n title={{TLDR}: Extreme Summarization of Scientific Documents},\n author={Isabel Cachola and Kyle Lo and Arman Cohan and Daniel S. Weld},\n journal={arXiv:2004.15011},\n year={2020},\n}\n", "homepage": "https://github.com/allenai/scitldr", "license": "Apache License 2.0", "features": {"source": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "source_labels": {"feature": {"num_classes": 2, "names": [0, 1], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "rouge_scores": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "paper_id": {"dtype": "string", "id": null, "_type": "Value"}, "ic": {"dtype": "bool_", "id": null, "_type": "Value"}, "target": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": {"input": "source", "output": "target"}, "builder_name": "scitldr", "config_name": "AIC", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 14473822, "num_examples": 1992, "dataset_name": "scitldr"}, "test": {"name": "test", "num_bytes": 4822026, "num_examples": 618, "dataset_name": "scitldr"}, "validation": {"name": "validation", "num_bytes": 4476237, "num_examples": 619, "dataset_name": "scitldr"}}, "download_checksums": {"https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-AIC/train.jsonl": {"num_bytes": 15569568, "checksum": "64b08af6de479671a12afd04770f66bcbc1c2c5f3098a08392b0fd7c1070d621"}, "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-AIC/dev.jsonl": {"num_bytes": 4811551, "checksum": "ac5168c27d25181fc17bb6f1fb41d11dbe30c627bebee14457feb3bad2c839dd"}, "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-AIC/test.jsonl": {"num_bytes": 5163989, "checksum": "7cb9230d3eb4863884762154918360d1c063aa18fc76de928801a14f4bcf4d37"}}, "download_size": 25545108, "post_processing_size": null, "dataset_size": 23772085, "size_in_bytes": 49317193}, "FullText": {"description": "A new multi-target dataset of 5.4K TLDRs over 3.2K papers.\nSCITLDR contains both author-written and expert-derived TLDRs,\nwhere the latter are collected using a novel annotation protocol\nthat produces high-quality summaries while minimizing annotation burden.\n", "citation": "@article{cachola2020tldr,\n title={{TLDR}: Extreme Summarization of Scientific Documents},\n author={Isabel Cachola and Kyle Lo and Arman Cohan and Daniel S. Weld},\n journal={arXiv:2004.15011},\n year={2020},\n}\n", "homepage": "https://github.com/allenai/scitldr", "license": "Apache License 2.0", "features": {"source": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "source_labels": {"feature": {"num_classes": 2, "names": ["non-oracle", "oracle"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "rouge_scores": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "paper_id": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": {"input": "source", "output": "target"}, "builder_name": "scitldr", "config_name": "FullText", "version": "0.0.0", "splits": {"train": {"name": "train", "num_bytes": 66917363, "num_examples": 1992, "dataset_name": "scitldr"}, "test": {"name": "test", "num_bytes": 20182554, "num_examples": 618, "dataset_name": "scitldr"}, "validation": {"name": "validation", "num_bytes": 18790651, "num_examples": 619, "dataset_name": "scitldr"}}, "download_checksums": {"https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-FullText/train.jsonl": {"num_bytes": 71263949, "checksum": "e35461c1665cb4f7b46daba6dd5ac3cff03a61eb196e6ce9983edda44d867604"}, "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-FullText/dev.jsonl": {"num_bytes": 19111616, "checksum": "11c3fd77a7ec447adc44ca34c0fa41a7ab6bdacdf3b8e15748e6f8b8e4f698bf"}, "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-FullText/test.jsonl": {"num_bytes": 20528987, "checksum": "1584bd3f5fff5859cb8428cfbacc8d38c671f5fc6a24a8140ea5350cbd86a751"}}, "download_size": 110904552, "post_processing_size": null, "dataset_size": 105890568, "size_in_bytes": 216795120}}
|
|
|
|
|
|
scitldr.py
DELETED
|
@@ -1,169 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
"""Dataset for TLDR: Extreme Summarization of Scientific Documents"""
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
import json
|
| 19 |
-
import os
|
| 20 |
-
|
| 21 |
-
import datasets
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
_SOURCE = "source"
|
| 25 |
-
_TARGET = "target"
|
| 26 |
-
|
| 27 |
-
_CITATION = """\
|
| 28 |
-
@article{cachola2020tldr,
|
| 29 |
-
title={{TLDR}: Extreme Summarization of Scientific Documents},
|
| 30 |
-
author={Isabel Cachola and Kyle Lo and Arman Cohan and Daniel S. Weld},
|
| 31 |
-
journal={arXiv:2004.15011},
|
| 32 |
-
year={2020},
|
| 33 |
-
}
|
| 34 |
-
"""
|
| 35 |
-
|
| 36 |
-
_DESCRIPTION = """\
|
| 37 |
-
A new multi-target dataset of 5.4K TLDRs over 3.2K papers.
|
| 38 |
-
SCITLDR contains both author-written and expert-derived TLDRs,
|
| 39 |
-
where the latter are collected using a novel annotation protocol
|
| 40 |
-
that produces high-quality summaries while minimizing annotation burden.
|
| 41 |
-
"""
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
_LICENSE = "Apache License 2.0"
|
| 45 |
-
|
| 46 |
-
# TODO: Add link to the official dataset URLs here
|
| 47 |
-
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
| 48 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 49 |
-
_URLs = {
|
| 50 |
-
"Abstract": "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-A/",
|
| 51 |
-
"AIC": "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-AIC/",
|
| 52 |
-
"FullText": "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-FullText/",
|
| 53 |
-
}
|
| 54 |
-
|
| 55 |
-
_TRAIN_DATA = "train.jsonl"
|
| 56 |
-
_TEST_DATA = "test.jsonl"
|
| 57 |
-
_VALID_DATA = "dev.jsonl"
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
# There are several preprocessing scripts given in the original SciTLDR GitHub repository to preprocess this data.
|
| 61 |
-
class Scitldr(datasets.GeneratorBasedBuilder):
|
| 62 |
-
"""Dataset for TLDR: Extreme Summarization of Scientific Documents."""
|
| 63 |
-
|
| 64 |
-
VERSION = datasets.Version("1.1.0")
|
| 65 |
-
|
| 66 |
-
# You will be able to load one or the other configurations in the following list with
|
| 67 |
-
# data = datasets.load_dataset('scitldr', 'Abstract')
|
| 68 |
-
# data = datasets.load_dataset('scitldr', 'AIC')
|
| 69 |
-
BUILDER_CONFIGS = [
|
| 70 |
-
datasets.BuilderConfig(name="Abstract", description="This part contains only abstracts of the paper"),
|
| 71 |
-
datasets.BuilderConfig(
|
| 72 |
-
name="AIC",
|
| 73 |
-
description="This part contains Abstracts, Introduction and Conclusion (AIC) sections of the paper",
|
| 74 |
-
),
|
| 75 |
-
datasets.BuilderConfig(name="FullText", description="This part contains the full text of the paper"),
|
| 76 |
-
]
|
| 77 |
-
|
| 78 |
-
DEFAULT_CONFIG_NAME = (
|
| 79 |
-
"Abstract" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
def _info(self):
|
| 83 |
-
if self.config.name == "AIC": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
| 84 |
-
features = datasets.Features(
|
| 85 |
-
{
|
| 86 |
-
"source": datasets.Sequence(datasets.Value("string")),
|
| 87 |
-
"source_labels": datasets.Sequence(datasets.ClassLabel(num_classes=2, names=[0, 1])),
|
| 88 |
-
"rouge_scores": datasets.Sequence(datasets.Value("float32")),
|
| 89 |
-
"paper_id": datasets.Value("string"),
|
| 90 |
-
"ic": datasets.Value("bool_"),
|
| 91 |
-
"target": datasets.features.Sequence(datasets.Value("string"))
|
| 92 |
-
# These are the features of your dataset like images, labels ...
|
| 93 |
-
}
|
| 94 |
-
)
|
| 95 |
-
else:
|
| 96 |
-
features = datasets.Features(
|
| 97 |
-
{
|
| 98 |
-
"source": datasets.Sequence(datasets.Value("string")),
|
| 99 |
-
"source_labels": datasets.Sequence(
|
| 100 |
-
datasets.ClassLabel(num_classes=2, names=["non-oracle", "oracle"])
|
| 101 |
-
),
|
| 102 |
-
"rouge_scores": datasets.Sequence(datasets.Value("float32")),
|
| 103 |
-
"paper_id": datasets.Value("string"),
|
| 104 |
-
"target": datasets.Sequence(datasets.Value("string"))
|
| 105 |
-
# These are the features of your dataset like images, labels ...
|
| 106 |
-
}
|
| 107 |
-
)
|
| 108 |
-
return datasets.DatasetInfo(
|
| 109 |
-
# This is the description that will appear on the datasets page.
|
| 110 |
-
description=_DESCRIPTION,
|
| 111 |
-
# This defines the different columns of the dataset and their types
|
| 112 |
-
features=features, # Here we define them above because they are different between the two configurations
|
| 113 |
-
# If there's a common (input, target) tuple from the features,
|
| 114 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 115 |
-
# builder.as_dataset.
|
| 116 |
-
supervised_keys=(_SOURCE, _TARGET),
|
| 117 |
-
# Homepage of the dataset for documentation
|
| 118 |
-
homepage="https://github.com/allenai/scitldr",
|
| 119 |
-
# License for the dataset if available
|
| 120 |
-
license=_LICENSE,
|
| 121 |
-
# Citation for the dataset
|
| 122 |
-
citation=_CITATION,
|
| 123 |
-
)
|
| 124 |
-
|
| 125 |
-
def _split_generators(self, dl_manager):
|
| 126 |
-
"""Returns SplitGenerators."""
|
| 127 |
-
urls = {
|
| 128 |
-
"train": _URLs[self.config.name] + _TRAIN_DATA,
|
| 129 |
-
"valid": _URLs[self.config.name] + _VALID_DATA,
|
| 130 |
-
"test": _URLs[self.config.name] + _TEST_DATA,
|
| 131 |
-
}
|
| 132 |
-
data_dir = dl_manager.download(urls)
|
| 133 |
-
return [
|
| 134 |
-
datasets.SplitGenerator(
|
| 135 |
-
name=datasets.Split.TRAIN,
|
| 136 |
-
gen_kwargs={"filepath": os.path.join(data_dir["train"])},
|
| 137 |
-
),
|
| 138 |
-
datasets.SplitGenerator(
|
| 139 |
-
name=datasets.Split.TEST,
|
| 140 |
-
gen_kwargs={"filepath": os.path.join(data_dir["test"])},
|
| 141 |
-
),
|
| 142 |
-
datasets.SplitGenerator(
|
| 143 |
-
name=datasets.Split.VALIDATION,
|
| 144 |
-
gen_kwargs={"filepath": os.path.join(data_dir["valid"])},
|
| 145 |
-
),
|
| 146 |
-
]
|
| 147 |
-
|
| 148 |
-
def _generate_examples(self, filepath):
|
| 149 |
-
"""Yields examples."""
|
| 150 |
-
with open(filepath, encoding="utf-8") as f:
|
| 151 |
-
for id_, row in enumerate(f):
|
| 152 |
-
data = json.loads(row)
|
| 153 |
-
if self.config.name == "AIC":
|
| 154 |
-
yield id_, {
|
| 155 |
-
"source": data["source"],
|
| 156 |
-
"source_labels": data["source_labels"],
|
| 157 |
-
"rouge_scores": data["rouge_scores"],
|
| 158 |
-
"paper_id": data["paper_id"],
|
| 159 |
-
"ic": True if data["ic"] else False,
|
| 160 |
-
"target": data["target"],
|
| 161 |
-
}
|
| 162 |
-
else:
|
| 163 |
-
yield id_, {
|
| 164 |
-
"source": data["source"],
|
| 165 |
-
"source_labels": data["source_labels"],
|
| 166 |
-
"rouge_scores": data["rouge_scores"],
|
| 167 |
-
"paper_id": data["paper_id"],
|
| 168 |
-
"target": data["target"],
|
| 169 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|