# Copyright 2024 ByteDance and/or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from protenix.model.modules.primitives import ( rearrange_qk_to_dense_trunk, rearrange_to_dense_trunk, ) def create_qkv(batch_size_dims, n_q, n_kv, d): q = torch.rand(size=(*batch_size_dims, n_q, d)) k = torch.rand(size=(*batch_size_dims, n_kv, d)) v = torch.rand(size=(*batch_size_dims, n_kv, d)) return q, k, v class TestUtils(unittest.TestCase): def setUp(self): return super().setUp() def test_equivalence(self): batch_size_dims = (3, 5) n = 128 * 2 + 18 d = 9 n_queries = 32 n_keys = 128 inf = 10e10 torch.random.manual_seed(42) q, k, v = create_qkv(batch_size_dims, n, n, d) q_trunked, k_trunked, _, attn_bias_trunked, q_pad_length = ( rearrange_to_dense_trunk( q, k, v, n_queries, n_keys, inf=inf, ) ) q_b, k_b, padding_info = rearrange_qk_to_dense_trunk( q, k, dim_q=-2, dim_k=-2, n_queries=n_queries, n_keys=n_keys ) self.assertTrue( torch.allclose( padding_info["mask_trunked"] > 0, attn_bias_trunked[0, 0] > -1 ) ) self.assertTrue(torch.allclose(q_b, q_trunked)) self.assertTrue(torch.allclose(k_b, k_trunked)) if __name__ == "__main__": unittest.main()