# Copyright 2024 ByteDance and/or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import time import unittest import torch from protenix.model.modules.transformer import DiffusionTransformer class TestDiffusionTransformer(unittest.TestCase): def setUp(self) -> None: self._start_time = time.time() self.device = "cuda" if torch.cuda.is_available() else "cpu" super().setUp() def get_model( self, c_a: int = 128, c_s: int = 384, c_z: int = 64, n_blocks: int = 3, n_heads: int = 4, ): model = DiffusionTransformer( c_a=c_a, c_s=c_s, c_z=c_z, n_blocks=n_blocks, n_heads=n_heads ).to(self.device) return model def test_shape(self) -> None: n_heads = 2 c_a = 13 * n_heads c_s = 23 c_z = 17 N = 45 bs_dims = (2, 3) inputs = { "a": torch.rand(size=(*bs_dims, N, c_a)).to(self.device), "s": torch.rand(size=(*bs_dims, N, c_s)).to(self.device), "z": torch.rand(size=(*bs_dims, N, N, c_z)).to(self.device), "n_queries": None, "n_keys": None, } model = self.get_model(c_a=c_a, c_s=c_s, c_z=c_z, n_heads=n_heads) out = model(**inputs) target_shape = (*bs_dims, N, c_a) self.assertEqual(out.shape, out.reshape(target_shape).shape) N_q = 32 N_k = 128 N_blocks = math.ceil(N / N_q) inputs = { "a": torch.rand(size=(*bs_dims, N, c_a)).to(self.device), "s": torch.rand(size=(*bs_dims, N, c_s)).to(self.device), "z": torch.rand(size=(*bs_dims, N_blocks, N_q, N_k, c_z)).to(self.device), "n_queries": 32, "n_keys": 128, } out = model(**inputs) target_shape = (*bs_dims, N, c_a) self.assertEqual(out.shape, out.reshape(target_shape).shape) def tearDown(self): elapsed_time = time.time() - self._start_time print(f"Test {self.id()} took {elapsed_time:.6f}s") if __name__ == "__main__": unittest.main()