# Copyright 2024 ByteDance and/or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import concurrent.futures import multiprocessing from functools import partial from os.path import join as opjoin from typing import Callable, Dict, Tuple, List, Set, Any, Mapping, Union, Optional from tqdm import tqdm import time import fcntl # For file locking from utils import ( convert_to_shared_dict, # To create new shared dictionaries SharedDict, # To handle type annotation release_shared_dict, # To manually release dictionaries get_shared_dict_ids # To list available dictionaries ) # Type alias for dictionary-like objects (regular dict or Manager.dict) DictLike = Union[Dict[str, Any], Mapping[str, Any], SharedDict] def load_mapping_data(seq_to_pdb_id_path: str, seq_to_pdb_index_path: str, use_shared_memory: bool = False) -> Tuple[Dict[str, Any], DictLike, DictLike]: """ Load mapping data from JSON files. Args: seq_to_pdb_id_path: Path to the seq_to_pdb_id_entity_id.json file seq_to_pdb_index_path: Path to the seq_to_pdb_index.json file use_shared_memory: Whether to use shared memory for dictionaries Returns: Tuple containing (seq_to_pdbid, first_pdbid_to_seq, seq_to_pdb_index) dictionaries """ # Load sequence to PDB ID mapping with open(seq_to_pdb_id_path, "r") as f: seq_to_pdbid: Dict[str, Any] = json.load(f) # Create reverse mapping for easy lookup first_pdbid_to_seq_data = {"_".join(v[0]): k for k, v in seq_to_pdbid.items()} # Load sequence to PDB index mapping with open(seq_to_pdb_index_path, "r") as f: seq_to_pdb_index_data = json.load(f) # If using shared memory, convert the dictionaries to shared objects if use_shared_memory: # Create shared dictionaries first_pdbid_to_seq = convert_to_shared_dict(first_pdbid_to_seq_data) seq_to_pdb_index = convert_to_shared_dict(seq_to_pdb_index_data) print(f"Created shared memory dictionaries: {len(first_pdbid_to_seq)} PDB IDs, {len(seq_to_pdb_index)} index mappings") else: first_pdbid_to_seq = first_pdbid_to_seq_data seq_to_pdb_index = seq_to_pdb_index_data return seq_to_pdbid, first_pdbid_to_seq, seq_to_pdb_index def rematch(pdb_line: str, first_pdbid_to_seq: DictLike, seq_to_pdb_index: DictLike) -> Tuple[str, str]: """ Match a PDB line to its corresponding sequence and index. Args: pdb_line: PDB header line first_pdbid_to_seq: Dictionary mapping PDB IDs to sequences seq_to_pdb_index: Dictionary mapping sequences to PDB indices Returns: Tuple of (pdb_index, origin_query_seq) """ pdb_id = pdb_line[1:-1] origin_query_seq = first_pdbid_to_seq[pdb_id] pdb_index = seq_to_pdb_index[origin_query_seq] return pdb_index, origin_query_seq def write_log( msg: str, fname: str, log_root: str, ) -> None: """ Write a log message to a file with proper file locking to handle concurrency. Args: msg: Message to log fname: File name associated with the log log_root: Root directory for log files """ basename = fname.split(".")[0] log_path = opjoin(log_root, f"{basename}-{msg}") # Create a directory for lock files lock_dir = opjoin(log_root, "locks") os.makedirs(lock_dir, exist_ok=True) # Use a separate lock file for each log file lock_path = opjoin(lock_dir, f"{basename}-{msg}.lock") try: # Open (or create) the lock file with open(lock_path, 'w') as lock_file: # Acquire an exclusive lock (blocking) fcntl.flock(lock_file, fcntl.LOCK_EX) # Now safely create the log file with open(log_path, "w") as f: f.write(msg) # The lock is automatically released when the file is closed except Exception as e: # If something goes wrong, log it but don't crash print(f"Warning: Failed to write log for {fname}: {e}") def process_one_file( fname: str, msa_root: str, save_root: str, logger: Callable, first_pdbid_to_seq: DictLike, seq_to_pdb_index: DictLike ) -> None: """ Process a single MSA file. Args: fname: Filename of the MSA file to process msa_root: Root directory containing MSA files save_root: Root directory to save processed files logger: Function to log events first_pdbid_to_seq: Dictionary mapping PDB IDs to sequences seq_to_pdb_index: Dictionary mapping sequences to PDB indices """ with open(file_path := opjoin(msa_root, fname), "r") as f: for i, line in enumerate(f): if i == 0: pdb_line = line if i == 1: if len(line) == 1: logger("empty_query_seq", fname) return query_line = line break save_fname, origin_query_seq = rematch(pdb_line, first_pdbid_to_seq, seq_to_pdb_index) os.makedirs(sub_dir_path := opjoin(save_root, f"{save_fname}"), exist_ok=True) uniref100_lines = [">query\n", f"{origin_query_seq}\n"] other_lines = [">query\n", f"{origin_query_seq}\n"] with open(file_path, "r") as f: lines = f.readlines() for i, line in enumerate(lines): if i < 2: continue if i % 2 == 0: # header if not line.startswith(">"): logger(f"bad_header_{i}", fname) return seq = lines[i + 1] if line.startswith(">UniRef100"): uniref100_lines.extend([line, seq]) else: other_lines.extend([line, seq]) assert len(other_lines) + len(uniref100_lines) - 2 == len(lines) other_lines = other_lines[0:2] + other_lines[4:] for i, line in enumerate(other_lines): if i > 0 and i % 2 == 0: assert "\t" in line with open(opjoin(sub_dir_path, "uniref100_hits.a3m"), "w") as f: for line in uniref100_lines: f.write(line) with open(opjoin(sub_dir_path, "mmseqs_other_hits.a3m"), "w") as f: for line in other_lines: f.write(line) def process_file_batch( file_batch: List[str], msa_root: str, save_root: str, log_root: str, first_pdbid_to_seq: DictLike, seq_to_pdb_index: DictLike ) -> Set[str]: """ Process a batch of MSA files. Args: file_batch: List of filenames to process in this batch msa_root: Root directory containing MSA files save_root: Root directory to save processed files log_root: Root directory for log files first_pdbid_to_seq: Dictionary mapping PDB IDs to sequences seq_to_pdb_index: Dictionary mapping sequences to PDB indices Returns: Set of files that were processed successfully """ # Create a logger for this batch batch_logger = partial(write_log, log_root=log_root) # Track completed files completed_files = set() # Process each file in the batch for fname in file_batch: try: process_one_file( fname=fname, msa_root=msa_root, save_root=save_root, logger=batch_logger, first_pdbid_to_seq=first_pdbid_to_seq, seq_to_pdb_index=seq_to_pdb_index ) completed_files.add(fname) except Exception as e: # Log any exceptions but continue processing the batch basename = fname.split(".")[0] error_path = opjoin(log_root, f"{basename}-exception") lock_dir = opjoin(log_root, "locks") lock_path = opjoin(lock_dir, f"{basename}-exception.lock") try: # Ensure lock directory exists os.makedirs(lock_dir, exist_ok=True) # Use file locking for the error log too with open(lock_path, 'w') as lock_file: fcntl.flock(lock_file, fcntl.LOCK_EX) with open(error_path, "w") as f: f.write(str(e)) # Lock is released when file is closed except Exception as log_error: # If locking fails, try direct write as fallback try: with open(error_path, "w") as f: f.write(f"{str(e)}\nAdditional error during logging: {str(log_error)}") except Exception: # Last resort - print to stdout print(f"Error processing {fname} and failed to log: {str(e)}") return completed_files def chunk_list(lst: List, chunk_size: int) -> List[List]: """ Split a list into chunks of specified size. Args: lst: List to split chunk_size: Size of each chunk Returns: List of chunked lists """ return [lst[i:i + chunk_size] for i in range(0, len(lst), chunk_size)] def process_files_batched( file_list: List[str], msa_root: str, save_root: str, log_root: str, first_pdbid_to_seq: DictLike, seq_to_pdb_index: DictLike, num_workers: int, batch_size: Optional[int], ) -> None: """ Process files in batches using parallel processing. Args: file_list: List of files to process msa_root: Root directory containing MSA files save_root: Root directory to save processed files log_root: Root directory for log files first_pdbid_to_seq: Dictionary mapping PDB IDs to sequences (possibly shared) seq_to_pdb_index: Dictionary mapping sequences to PDB indices (possibly shared) num_workers: Number of parallel workers to use batch_size: Number of files to process in each batch """ if batch_size is None: batch_size = max(1, len(file_list) // num_workers) # Split files into batches batches = chunk_list(file_list, batch_size) print(f"Split {len(file_list)} files into {len(batches)} batches of size ~{batch_size}") # Create a partial function with fixed arguments batch_processor = partial( process_file_batch, msa_root=msa_root, save_root=save_root, log_root=log_root, first_pdbid_to_seq=first_pdbid_to_seq, seq_to_pdb_index=seq_to_pdb_index ) # Track progress and timing start_time = time.time() total_processed = 0 # Use ProcessPoolExecutor for parallel processing with concurrent.futures.ProcessPoolExecutor(max_workers=num_workers) as executor: # Process batches with progress tracking with tqdm(total=len(file_list), desc="Processing MSA files") as pbar: futures = [] # Submit all batches to the executor for batch in batches: futures.append(executor.submit(batch_processor, batch)) # Process results as they complete for future in concurrent.futures.as_completed(futures): try: # Get the set of completed files completed_files = future.result() batch_count = len(completed_files) total_processed += batch_count pbar.update(batch_count) # Calculate and display statistics elapsed = time.time() - start_time files_per_second = total_processed / elapsed if elapsed > 0 else 0 pbar.set_postfix( {"processed": total_processed, "files/sec": f"{files_per_second:.2f}"} ) except Exception as e: print(f"Error processing batch: {e}") if __name__ == "__main__": # Set start method to spawn to ensure compatibility with shared memory multiprocessing.set_start_method('spawn', force=True) import argparse parser = argparse.ArgumentParser() parser.add_argument("--input_msa_dir", type=str, default="./scripts/msa/data/mmcif_msa_with_taxid") parser.add_argument("--output_msa_dir", type=str, default="./scripts/msa/data/mmcif_msa") parser.add_argument("--seq_to_pdb_id", type=str, default="./scripts/msa/data/pdb_seqs/seq_to_pdb_id_entity_id.json") parser.add_argument("--seq_to_pdb_index", type=str, default="./scripts/msa/data/pdb_seqs/seq_to_pdb_index.json") parser.add_argument("--num_workers", type=int, default=multiprocessing.cpu_count(), help="Number of parallel workers to use (default: half of all CPU cores or 1)") parser.add_argument("--batch_size", type=int, default=None, help="Number of files to process in each batch (default: adjusted automatically)") parser.add_argument("--shared_memory", action="store_true", help="Use shared memory for dictionaries to reduce memory usage") args = parser.parse_args() msa_root = args.input_msa_dir save_root = args.output_msa_dir log_root = "./scripts/msa/data/mmcif_msa_log" # Load mapping data print("Loading mapping data...") _, first_pdbid_to_seq, seq_to_pdb_index = load_mapping_data( args.seq_to_pdb_id, args.seq_to_pdb_index, use_shared_memory=args.shared_memory ) print("Mapping data loaded successfully") os.makedirs(log_root, exist_ok=True) os.makedirs(save_root, exist_ok=True) print("Loading file names...") file_list = os.listdir(msa_root) print(f"Found {len(file_list)} MSA files to process") # Process files in batches process_files_batched( file_list=file_list, msa_root=msa_root, save_root=save_root, log_root=log_root, first_pdbid_to_seq=first_pdbid_to_seq, seq_to_pdb_index=seq_to_pdb_index, num_workers=args.num_workers, batch_size=args.batch_size ) # Release all shared dictionaries if necessary if args.shared_memory: for dict_id in get_shared_dict_ids(): release_shared_dict(dict_id) print("Processing complete")