Datasets:

Formats:
text
ArXiv:
Libraries:
Datasets
protenix / runner /train.py
Yimingbear's picture
Upload folder using huggingface_hub
2872543 verified
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime
import hashlib
import logging
import os
import time
from contextlib import nullcontext
import torch
import torch.distributed as dist
import wandb
from ml_collections.config_dict import ConfigDict
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
from configs.configs_base import configs as configs_base
from configs.configs_data import data_configs
from configs.configs_model_type import model_configs
from protenix.config import parse_configs, parse_sys_args
from protenix.config.config import save_config
from protenix.data.dataloader import get_dataloaders
from protenix.metrics.lddt_metrics import LDDTMetrics
from protenix.model.loss import ProtenixLoss
from protenix.model.protenix import Protenix
from protenix.utils.distributed import DIST_WRAPPER
from protenix.utils.lr_scheduler import FinetuneLRScheduler, get_lr_scheduler
from protenix.utils.metrics import SimpleMetricAggregator
from protenix.utils.permutation.permutation import SymmetricPermutation
from protenix.utils.seed import seed_everything
from protenix.utils.torch_utils import autocasting_disable_decorator, to_device
from protenix.utils.training import get_optimizer, is_loss_nan_check
from runner.ema import EMAWrapper
# Disable WANDB's console output capture to reduce unnecessary logging
os.environ["WANDB_CONSOLE"] = "off"
class AF3Trainer(object):
def __init__(self, configs):
self.configs = configs
self.init_env()
self.init_basics()
self.init_log()
self.init_model()
self.init_loss()
self.init_data()
self.try_load_checkpoint()
def init_basics(self):
# Step means effective step considering accumulation
self.step = 0
# Global_step equals to self.step * self.iters_to_accumulate
self.global_step = 0
self.start_step = 0
# Add for grad accumulation, it can increase real batch size
self.iters_to_accumulate = self.configs.iters_to_accumulate
self.run_name = self.configs.run_name + "_" + time.strftime("%Y%m%d_%H%M%S")
run_names = DIST_WRAPPER.all_gather_object(
self.run_name if DIST_WRAPPER.rank == 0 else None
)
self.run_name = [name for name in run_names if name is not None][0]
self.run_dir = f"{self.configs.base_dir}/{self.run_name}"
self.checkpoint_dir = f"{self.run_dir}/checkpoints"
self.prediction_dir = f"{self.run_dir}/predictions"
self.structure_dir = f"{self.run_dir}/structures"
self.dump_dir = f"{self.run_dir}/dumps"
self.error_dir = f"{self.run_dir}/errors"
if DIST_WRAPPER.rank == 0:
os.makedirs(self.run_dir)
os.makedirs(self.checkpoint_dir)
os.makedirs(self.prediction_dir)
os.makedirs(self.structure_dir)
os.makedirs(self.dump_dir)
os.makedirs(self.error_dir)
save_config(
self.configs,
os.path.join(self.configs.base_dir, self.run_name, "config.yaml"),
)
self.print(
f"Using run name: {self.run_name}, run dir: {self.run_dir}, checkpoint_dir: "
+ f"{self.checkpoint_dir}, prediction_dir: {self.prediction_dir}, structure_dir: "
+ f"{self.structure_dir}, error_dir: {self.error_dir}"
)
def init_log(self):
if self.configs.use_wandb and DIST_WRAPPER.rank == 0:
wandb.init(
project=self.configs.project,
name=self.run_name,
config=vars(self.configs),
id=self.configs.wandb_id or None,
)
self.train_metric_wrapper = SimpleMetricAggregator(["avg"])
def init_env(self):
"""Init pytorch/cuda envs."""
logging.info(
f"Distributed environment: world size: {DIST_WRAPPER.world_size}, "
+ f"global rank: {DIST_WRAPPER.rank}, local rank: {DIST_WRAPPER.local_rank}"
)
self.use_cuda = torch.cuda.device_count() > 0
if self.use_cuda:
self.device = torch.device("cuda:{}".format(DIST_WRAPPER.local_rank))
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
all_gpu_ids = ",".join(str(x) for x in range(torch.cuda.device_count()))
devices = os.getenv("CUDA_VISIBLE_DEVICES", all_gpu_ids)
logging.info(
f"LOCAL_RANK: {DIST_WRAPPER.local_rank} - CUDA_VISIBLE_DEVICES: [{devices}]"
)
torch.cuda.set_device(self.device)
else:
self.device = torch.device("cpu")
if DIST_WRAPPER.world_size > 1:
timeout_seconds = int(os.environ.get("NCCL_TIMEOUT_SECOND", 600))
dist.init_process_group(
backend="nccl", timeout=datetime.timedelta(seconds=timeout_seconds)
)
if not self.configs.deterministic_seed:
# use rank-specific seed
hash_string = f"({self.configs.seed},{DIST_WRAPPER.rank},init_seed)"
rank_seed = int(hashlib.sha256(hash_string.encode("utf8")).hexdigest(), 16)
rank_seed = rank_seed % (2**32)
else:
rank_seed = self.configs.seed
seed_everything(
seed=rank_seed,
deterministic=self.configs.deterministic,
) # diff ddp process got diff seeds
if self.configs.use_deepspeed_evo_attention:
env = os.getenv("CUTLASS_PATH", None)
print(f"env: {env}")
assert (
env is not None
), "if use ds4sci, set env as https://www.deepspeed.ai/tutorials/ds4sci_evoformerattention/"
logging.info("Finished init ENV.")
def init_loss(self):
self.loss = ProtenixLoss(self.configs)
self.symmetric_permutation = SymmetricPermutation(
self.configs, error_dir=self.error_dir
)
self.lddt_metrics = LDDTMetrics(self.configs)
def init_model(self):
self.raw_model = Protenix(self.configs).to(self.device)
self.use_ddp = False
if DIST_WRAPPER.world_size > 1:
self.print(f"Using DDP")
self.use_ddp = True
# Fix DDP/checkpoint https://discuss.pytorch.org/t/ddp-and-gradient-checkpointing/132244
self.model = DDP(
self.raw_model,
find_unused_parameters=self.configs.find_unused_parameters,
device_ids=[DIST_WRAPPER.local_rank],
output_device=DIST_WRAPPER.local_rank,
static_graph=True,
)
else:
self.model = self.raw_model
def count_parameters(model):
total_params = sum(p.numel() for p in model.parameters())
return total_params / 1000.0 / 1000.0
self.print(f"Model Parameters: {count_parameters(self.model)}")
if self.configs.get("ema_decay", -1) > 0:
assert self.configs.ema_decay < 1
self.ema_wrapper = EMAWrapper(
self.model,
self.configs.ema_decay,
self.configs.ema_mutable_param_keywords,
)
self.ema_wrapper.register()
torch.cuda.empty_cache()
self.optimizer = get_optimizer(
self.configs,
self.model,
param_names=self.configs.get("finetune_params_with_substring", [""]),
)
self.init_scheduler()
def init_scheduler(self, **kwargs):
# init finetune lr scheduler if available
finetune_params = self.configs.get("finetune_params_with_substring", [""])
is_finetune = len(finetune_params[0]) > 0
if is_finetune:
self.lr_scheduler = FinetuneLRScheduler(
self.optimizer,
self.configs,
self.configs.finetune,
**kwargs,
)
else:
self.lr_scheduler = get_lr_scheduler(self.configs, self.optimizer, **kwargs)
def init_data(self):
self.train_dl, self.test_dls = get_dataloaders(
self.configs,
DIST_WRAPPER.world_size,
seed=self.configs.seed,
error_dir=self.error_dir,
)
def save_checkpoint(self, ema_suffix=""):
if DIST_WRAPPER.rank == 0:
path = f"{self.checkpoint_dir}/{self.step}{ema_suffix}.pt"
checkpoint = {
"model": self.model.state_dict(),
"optimizer": self.optimizer.state_dict(),
"scheduler": (
self.lr_scheduler.state_dict()
if self.lr_scheduler is not None
else None
),
"step": self.step,
}
torch.save(checkpoint, path)
self.print(f"Saved checkpoint to {path}")
def try_load_checkpoint(self):
def _load_checkpoint(
checkpoint_path: str,
load_params_only: bool,
skip_load_optimizer: bool = False,
skip_load_step: bool = False,
skip_load_scheduler: bool = False,
load_step_for_scheduler: bool = True,
):
if not os.path.exists(checkpoint_path):
raise Exception(f"Given checkpoint path not exist [{checkpoint_path}]")
self.print(
f"Loading from {checkpoint_path}, strict: {self.configs.load_strict}"
)
checkpoint = torch.load(checkpoint_path, self.device)
sample_key = [k for k in checkpoint["model"].keys()][0]
self.print(f"Sampled key: {sample_key}")
if sample_key.startswith("module.") and not self.use_ddp:
# DDP checkpoint has module. prefix
checkpoint["model"] = {
k[len("module.") :]: v for k, v in checkpoint["model"].items()
}
self.model.load_state_dict(
state_dict=checkpoint["model"],
strict=self.configs.load_strict,
)
if not load_params_only:
if not skip_load_optimizer:
self.print(f"Loading optimizer state")
self.optimizer.load_state_dict(checkpoint["optimizer"])
if not skip_load_step:
self.print(f"Loading checkpoint step")
self.step = checkpoint["step"] + 1
self.start_step = self.step
self.global_step = self.step * self.iters_to_accumulate
if not skip_load_scheduler:
self.print(f"Loading scheduler state")
self.lr_scheduler.load_state_dict(checkpoint["scheduler"])
elif load_step_for_scheduler:
assert (
not skip_load_step
), "if load_step_for_scheduler is True, you must load step first"
# reinitialize LR scheduler using the updated optimizer and step
self.init_scheduler(last_epoch=self.step - 1)
self.print(f"Finish loading checkpoint, current step: {self.step}")
# Load EMA model parameters
if self.configs.load_ema_checkpoint_path:
_load_checkpoint(
self.configs.load_ema_checkpoint_path,
load_params_only=True,
)
self.ema_wrapper.register()
# Load model
if self.configs.load_checkpoint_path:
_load_checkpoint(
self.configs.load_checkpoint_path,
self.configs.load_params_only,
skip_load_optimizer=self.configs.skip_load_optimizer,
skip_load_scheduler=self.configs.skip_load_scheduler,
skip_load_step=self.configs.skip_load_step,
load_step_for_scheduler=self.configs.load_step_for_scheduler,
)
def print(self, msg: str):
if DIST_WRAPPER.rank == 0:
logging.info(msg)
def model_forward(self, batch: dict, mode: str = "train") -> tuple[dict, dict]:
assert mode in ["train", "eval"]
batch["pred_dict"], batch["label_dict"], log_dict = self.model(
input_feature_dict=batch["input_feature_dict"],
label_dict=batch["label_dict"],
label_full_dict=batch["label_full_dict"],
mode=mode,
current_step=self.step if mode == "train" else None,
symmetric_permutation=self.symmetric_permutation,
)
return batch, log_dict
def get_loss(
self, batch: dict, mode: str = "train"
) -> tuple[torch.Tensor, dict, dict]:
assert mode in ["train", "eval"]
loss, loss_dict = autocasting_disable_decorator(self.configs.skip_amp.loss)(
self.loss
)(
feat_dict=batch["input_feature_dict"],
pred_dict=batch["pred_dict"],
label_dict=batch["label_dict"],
mode=mode,
)
return loss, loss_dict, batch
@torch.no_grad()
def get_metrics(self, batch: dict) -> dict:
lddt_dict = self.lddt_metrics.compute_lddt(
batch["pred_dict"], batch["label_dict"]
)
return lddt_dict
@torch.no_grad()
def aggregate_metrics(self, lddt_dict: dict, batch: dict) -> dict:
simple_metrics, _ = self.lddt_metrics.aggregate_lddt(
lddt_dict, batch["pred_dict"]["summary_confidence"]
)
return simple_metrics
@torch.no_grad()
def evaluate(self, mode: str = "eval"):
if not self.configs.eval_ema_only:
self._evaluate()
if hasattr(self, "ema_wrapper"):
self.ema_wrapper.apply_shadow()
self._evaluate(ema_suffix=f"ema{self.ema_wrapper.decay}_", mode=mode)
self.ema_wrapper.restore()
@torch.no_grad()
def _evaluate(self, ema_suffix: str = "", mode: str = "eval"):
# Init Metric Aggregator
simple_metric_wrapper = SimpleMetricAggregator(["avg"])
eval_precision = {
"fp32": torch.float32,
"bf16": torch.bfloat16,
"fp16": torch.float16,
}[self.configs.dtype]
enable_amp = (
torch.autocast(device_type="cuda", dtype=eval_precision)
if torch.cuda.is_available()
else nullcontext()
)
self.model.eval()
for test_name, test_dl in self.test_dls.items():
self.print(f"Testing on {test_name}")
evaluated_pids = []
total_batch_num = len(test_dl)
for index, batch in enumerate(tqdm(test_dl)):
batch = to_device(batch, self.device)
pid = batch["basic"]["pdb_id"]
if index + 1 == total_batch_num and DIST_WRAPPER.world_size > 1:
# Gather all pids across ranks for avoiding duplicated evaluations when drop_last = False
all_data_ids = DIST_WRAPPER.all_gather_object(evaluated_pids)
dedup_ids = set(sum(all_data_ids, []))
if pid in dedup_ids:
print(
f"Rank {DIST_WRAPPER.rank}: Drop data_id {pid} as it is already evaluated."
)
break
evaluated_pids.append(pid)
simple_metrics = {}
with enable_amp:
# Model forward
batch, _ = self.model_forward(batch, mode=mode)
# Loss forward
loss, loss_dict, batch = self.get_loss(batch, mode="eval")
# lDDT metrics
lddt_dict = self.get_metrics(batch)
lddt_metrics = self.aggregate_metrics(lddt_dict, batch)
simple_metrics.update(
{k: v for k, v in lddt_metrics.items() if "diff" not in k}
)
simple_metrics.update(loss_dict)
# Metrics
for key, value in simple_metrics.items():
simple_metric_wrapper.add(
f"{ema_suffix}{key}", value, namespace=test_name
)
del batch, simple_metrics
if index % 5 == 0:
# Release some memory periodically
torch.cuda.empty_cache()
metrics = simple_metric_wrapper.calc()
self.print(f"Step {self.step}, eval {test_name}: {metrics}")
if self.configs.use_wandb and DIST_WRAPPER.rank == 0:
wandb.log(metrics, step=self.step)
def update(self):
# Clip the gradient
if self.configs.grad_clip_norm != 0.0:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.configs.grad_clip_norm
)
def train_step(self, batch: dict):
self.model.train()
# FP16 training has not been verified yet
train_precision = {
"fp32": torch.float32,
"bf16": torch.bfloat16,
"fp16": torch.float16,
}[self.configs.dtype]
enable_amp = (
torch.autocast(
device_type="cuda", dtype=train_precision, cache_enabled=False
)
if torch.cuda.is_available()
else nullcontext()
)
scaler = torch.GradScaler(
device="cuda" if torch.cuda.is_available() else "cpu",
enabled=(self.configs.dtype == "float16"),
)
with enable_amp:
batch, _ = self.model_forward(batch, mode="train")
loss, loss_dict, _ = self.get_loss(batch, mode="train")
if self.configs.dtype in ["bf16", "fp32"]:
if is_loss_nan_check(loss):
self.print(f"Skip iteration with NaN loss: {self.step} steps")
loss = torch.tensor(0.0, device=loss.device, requires_grad=True)
scaler.scale(loss / self.iters_to_accumulate).backward()
# For simplicity, the global training step is used
if (self.global_step + 1) % self.iters_to_accumulate == 0:
self.print(
f"self.step {self.step}, self.iters_to_accumulate: {self.iters_to_accumulate}"
)
# Unscales the gradients of optimizer's assigned parameters in-place
scaler.unscale_(self.optimizer)
# Do grad clip only
self.update()
scaler.step(self.optimizer)
scaler.update()
self.optimizer.zero_grad(set_to_none=True)
self.lr_scheduler.step()
for key, value in loss_dict.items():
if "loss" not in key:
continue
self.train_metric_wrapper.add(key, value, namespace="train")
torch.cuda.empty_cache()
def progress_bar(self, desc: str = ""):
if DIST_WRAPPER.rank != 0:
return
if self.global_step % (
self.configs.eval_interval * self.iters_to_accumulate
) == 0 or (not hasattr(self, "_ipbar")):
# Start a new progress bar
self._pbar = tqdm(
range(
self.global_step
% (self.iters_to_accumulate * self.configs.eval_interval),
self.iters_to_accumulate * self.configs.eval_interval,
)
)
self._ipbar = iter(self._pbar)
step = next(self._ipbar)
self._pbar.set_description(
f"[step {self.step}: {step}/{self.iters_to_accumulate * self.configs.eval_interval}] {desc}"
)
return
def run(self):
"""
Main entry for the AF3Trainer.
This function handles the training process, evaluation, logging, and checkpoint saving.
"""
if self.configs.eval_only or self.configs.eval_first:
self.evaluate()
if self.configs.eval_only:
return
use_ema = hasattr(self, "ema_wrapper")
self.print(f"Using ema: {use_ema}")
while True:
for batch in self.train_dl:
is_update_step = (self.global_step + 1) % self.iters_to_accumulate == 0
is_last_step = (self.step + 1) == self.configs.max_steps
step_need_log = (self.step + 1) % self.configs.log_interval == 0
step_need_eval = (
self.configs.eval_interval > 0
and (self.step + 1) % self.configs.eval_interval == 0
)
step_need_save = (
self.configs.checkpoint_interval > 0
and (self.step + 1) % self.configs.checkpoint_interval == 0
)
is_last_step &= is_update_step
step_need_log &= is_update_step
step_need_eval &= is_update_step
step_need_save &= is_update_step
batch = to_device(batch, self.device)
self.progress_bar()
self.train_step(batch)
if use_ema and is_update_step:
self.ema_wrapper.update()
if step_need_log or is_last_step:
metrics = self.train_metric_wrapper.calc()
self.print(f"Step {self.step} train: {metrics}")
last_lr = self.lr_scheduler.get_last_lr()
if DIST_WRAPPER.rank == 0:
if self.configs.use_wandb:
lr_dict = {"train/lr": last_lr[0]}
for group_i, group_lr in enumerate(last_lr):
lr_dict[f"train/group{group_i}_lr"] = group_lr
wandb.log(lr_dict, step=self.step)
self.print(f"Step {self.step}, lr: {last_lr}")
if self.configs.use_wandb and DIST_WRAPPER.rank == 0:
wandb.log(metrics, step=self.step)
if step_need_save or is_last_step:
self.save_checkpoint()
if use_ema:
self.ema_wrapper.apply_shadow()
self.save_checkpoint(
ema_suffix=f"_ema_{self.ema_wrapper.decay}"
)
self.ema_wrapper.restore()
if step_need_eval or is_last_step:
self.evaluate()
self.global_step += 1
if self.global_step % self.iters_to_accumulate == 0:
self.step += 1
if self.step >= self.configs.max_steps:
self.print(f"Finish training after {self.step} steps")
break
if self.step >= self.configs.max_steps:
break
def main():
LOG_FORMAT = "%(asctime)s,%(msecs)-3d %(levelname)-8s [%(filename)s:%(lineno)s %(funcName)s] %(message)s"
logging.basicConfig(
format=LOG_FORMAT,
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S",
filemode="w",
)
configs_base["use_deepspeed_evo_attention"] = (
os.environ.get("USE_DEEPSPEED_EVO_ATTENTION", False) == "true"
)
configs = {**configs_base, **{"data": data_configs}}
configs = parse_configs(
configs,
parse_sys_args(),
)
model_name = configs.model_name
model_specfics_configs = ConfigDict(model_configs[model_name])
# update model specific configs
configs.update(model_specfics_configs)
print(configs.run_name)
print(configs)
trainer = AF3Trainer(configs)
trainer.run()
if __name__ == "__main__":
main()