Datasets:

Formats:
text
ArXiv:
Libraries:
Datasets
protenix / inference_demo.sh
Yimingbear's picture
Upload folder using huggingface_hub
2872543 verified
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
export LAYERNORM_TYPE=fast_layernorm
export USE_DEEPSPEED_EVO_ATTENTION=true
N_sample=5
N_step=200
N_cycle=10
seed=101
input_json_path="./examples/example.json"
dump_dir="./output"
# model_name="protenix_base_default_v0.5.0"
model_name = 'protenix_tiny_detault_v0.5.0'
python3 runner/inference.py \
--model_name ${model_name} \
--seeds ${seed} \
--dump_dir ${dump_dir} \
--input_json_path ${input_json_path} \
--model.N_cycle ${N_cycle} \
--sample_diffusion.N_sample ${N_sample} \
--sample_diffusion.N_step ${N_step}
# The following is a demo to use DDP for inference
# torchrun \
# --nproc_per_node $NPROC \
# --master_addr $WORKER_0_HOST \
# --master_port $WORKER_0_PORT \
# --node_rank=$ID \
# --nnodes=$WORKER_NUM \
# runner/inference.py \
# --seeds ${seed} \
# --dump_dir ${dump_dir} \
# --input_json_path ${input_json_path} \
# --model.N_cycle ${N_cycle} \
# --sample_diffusion.N_sample ${N_sample} \
# --sample_diffusion.N_step ${N_step}