File size: 1,804 Bytes
2872543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import unittest
import torch
from protenix.model.modules.transformer import ConditionedTransitionBlock
class TestConditionedTransitionBlock(unittest.TestCase):
def setUp(self) -> None:
self._start_time = time.time()
self.device = "cuda" if torch.cuda.is_available() else "cpu"
super().setUp()
def get_model(self, c_a: int = 768, c_s: int = 384, n: int = 2):
model = ConditionedTransitionBlock(c_a=c_a, c_s=c_s, n=n).to(self.device)
return model
def test_shape(self) -> None:
c_a = 5 * 55
c_s = 123
N_token = 135
bs_dims = (2, 3, 5)
inputs = {
"a": torch.rand(size=(*bs_dims, N_token, c_a)).to(self.device),
"s": torch.rand(size=(*bs_dims, N_token, c_s)).to(self.device),
}
model = self.get_model(c_a=c_a, c_s=c_s)
out = model(**inputs)
target_shape = (*bs_dims, N_token, c_a)
self.assertEqual(out.shape, out.reshape(target_shape).shape)
def tearDown(self):
elapsed_time = time.time() - self._start_time
print(f"Test {self.id()} took {elapsed_time:.6f}s")
if __name__ == "__main__":
unittest.main()
|