File size: 15,014 Bytes
2872543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import concurrent.futures
import multiprocessing
from functools import partial
from os.path import join as opjoin
from typing import Callable, Dict, Tuple, List, Set, Any, Mapping, Union, Optional
from tqdm import tqdm
import time
import fcntl # For file locking
from utils import (
convert_to_shared_dict, # To create new shared dictionaries
SharedDict, # To handle type annotation
release_shared_dict, # To manually release dictionaries
get_shared_dict_ids # To list available dictionaries
)
# Type alias for dictionary-like objects (regular dict or Manager.dict)
DictLike = Union[Dict[str, Any], Mapping[str, Any], SharedDict]
def load_mapping_data(seq_to_pdb_id_path: str, seq_to_pdb_index_path: str, use_shared_memory: bool = False) -> Tuple[Dict[str, Any], DictLike, DictLike]:
"""
Load mapping data from JSON files.
Args:
seq_to_pdb_id_path: Path to the seq_to_pdb_id_entity_id.json file
seq_to_pdb_index_path: Path to the seq_to_pdb_index.json file
use_shared_memory: Whether to use shared memory for dictionaries
Returns:
Tuple containing (seq_to_pdbid, first_pdbid_to_seq, seq_to_pdb_index) dictionaries
"""
# Load sequence to PDB ID mapping
with open(seq_to_pdb_id_path, "r") as f:
seq_to_pdbid: Dict[str, Any] = json.load(f)
# Create reverse mapping for easy lookup
first_pdbid_to_seq_data = {"_".join(v[0]): k for k, v in seq_to_pdbid.items()}
# Load sequence to PDB index mapping
with open(seq_to_pdb_index_path, "r") as f:
seq_to_pdb_index_data = json.load(f)
# If using shared memory, convert the dictionaries to shared objects
if use_shared_memory:
# Create shared dictionaries
first_pdbid_to_seq = convert_to_shared_dict(first_pdbid_to_seq_data)
seq_to_pdb_index = convert_to_shared_dict(seq_to_pdb_index_data)
print(f"Created shared memory dictionaries: {len(first_pdbid_to_seq)} PDB IDs, {len(seq_to_pdb_index)} index mappings")
else:
first_pdbid_to_seq = first_pdbid_to_seq_data
seq_to_pdb_index = seq_to_pdb_index_data
return seq_to_pdbid, first_pdbid_to_seq, seq_to_pdb_index
def rematch(pdb_line: str, first_pdbid_to_seq: DictLike, seq_to_pdb_index: DictLike) -> Tuple[str, str]:
"""
Match a PDB line to its corresponding sequence and index.
Args:
pdb_line: PDB header line
first_pdbid_to_seq: Dictionary mapping PDB IDs to sequences
seq_to_pdb_index: Dictionary mapping sequences to PDB indices
Returns:
Tuple of (pdb_index, origin_query_seq)
"""
pdb_id = pdb_line[1:-1]
origin_query_seq = first_pdbid_to_seq[pdb_id]
pdb_index = seq_to_pdb_index[origin_query_seq]
return pdb_index, origin_query_seq
def write_log(
msg: str,
fname: str,
log_root: str,
) -> None:
"""
Write a log message to a file with proper file locking to handle concurrency.
Args:
msg: Message to log
fname: File name associated with the log
log_root: Root directory for log files
"""
basename = fname.split(".")[0]
log_path = opjoin(log_root, f"{basename}-{msg}")
# Create a directory for lock files
lock_dir = opjoin(log_root, "locks")
os.makedirs(lock_dir, exist_ok=True)
# Use a separate lock file for each log file
lock_path = opjoin(lock_dir, f"{basename}-{msg}.lock")
try:
# Open (or create) the lock file
with open(lock_path, 'w') as lock_file:
# Acquire an exclusive lock (blocking)
fcntl.flock(lock_file, fcntl.LOCK_EX)
# Now safely create the log file
with open(log_path, "w") as f:
f.write(msg)
# The lock is automatically released when the file is closed
except Exception as e:
# If something goes wrong, log it but don't crash
print(f"Warning: Failed to write log for {fname}: {e}")
def process_one_file(
fname: str,
msa_root: str,
save_root: str,
logger: Callable,
first_pdbid_to_seq: DictLike,
seq_to_pdb_index: DictLike
) -> None:
"""
Process a single MSA file.
Args:
fname: Filename of the MSA file to process
msa_root: Root directory containing MSA files
save_root: Root directory to save processed files
logger: Function to log events
first_pdbid_to_seq: Dictionary mapping PDB IDs to sequences
seq_to_pdb_index: Dictionary mapping sequences to PDB indices
"""
with open(file_path := opjoin(msa_root, fname), "r") as f:
for i, line in enumerate(f):
if i == 0:
pdb_line = line
if i == 1:
if len(line) == 1:
logger("empty_query_seq", fname)
return
query_line = line
break
save_fname, origin_query_seq = rematch(pdb_line, first_pdbid_to_seq, seq_to_pdb_index)
os.makedirs(sub_dir_path := opjoin(save_root, f"{save_fname}"), exist_ok=True)
uniref100_lines = [">query\n", f"{origin_query_seq}\n"]
other_lines = [">query\n", f"{origin_query_seq}\n"]
with open(file_path, "r") as f:
lines = f.readlines()
for i, line in enumerate(lines):
if i < 2:
continue
if i % 2 == 0:
# header
if not line.startswith(">"):
logger(f"bad_header_{i}", fname)
return
seq = lines[i + 1]
if line.startswith(">UniRef100"):
uniref100_lines.extend([line, seq])
else:
other_lines.extend([line, seq])
assert len(other_lines) + len(uniref100_lines) - 2 == len(lines)
other_lines = other_lines[0:2] + other_lines[4:]
for i, line in enumerate(other_lines):
if i > 0 and i % 2 == 0:
assert "\t" in line
with open(opjoin(sub_dir_path, "uniref100_hits.a3m"), "w") as f:
for line in uniref100_lines:
f.write(line)
with open(opjoin(sub_dir_path, "mmseqs_other_hits.a3m"), "w") as f:
for line in other_lines:
f.write(line)
def process_file_batch(
file_batch: List[str],
msa_root: str,
save_root: str,
log_root: str,
first_pdbid_to_seq: DictLike,
seq_to_pdb_index: DictLike
) -> Set[str]:
"""
Process a batch of MSA files.
Args:
file_batch: List of filenames to process in this batch
msa_root: Root directory containing MSA files
save_root: Root directory to save processed files
log_root: Root directory for log files
first_pdbid_to_seq: Dictionary mapping PDB IDs to sequences
seq_to_pdb_index: Dictionary mapping sequences to PDB indices
Returns:
Set of files that were processed successfully
"""
# Create a logger for this batch
batch_logger = partial(write_log, log_root=log_root)
# Track completed files
completed_files = set()
# Process each file in the batch
for fname in file_batch:
try:
process_one_file(
fname=fname,
msa_root=msa_root,
save_root=save_root,
logger=batch_logger,
first_pdbid_to_seq=first_pdbid_to_seq,
seq_to_pdb_index=seq_to_pdb_index
)
completed_files.add(fname)
except Exception as e:
# Log any exceptions but continue processing the batch
basename = fname.split(".")[0]
error_path = opjoin(log_root, f"{basename}-exception")
lock_dir = opjoin(log_root, "locks")
lock_path = opjoin(lock_dir, f"{basename}-exception.lock")
try:
# Ensure lock directory exists
os.makedirs(lock_dir, exist_ok=True)
# Use file locking for the error log too
with open(lock_path, 'w') as lock_file:
fcntl.flock(lock_file, fcntl.LOCK_EX)
with open(error_path, "w") as f:
f.write(str(e))
# Lock is released when file is closed
except Exception as log_error:
# If locking fails, try direct write as fallback
try:
with open(error_path, "w") as f:
f.write(f"{str(e)}\nAdditional error during logging: {str(log_error)}")
except Exception:
# Last resort - print to stdout
print(f"Error processing {fname} and failed to log: {str(e)}")
return completed_files
def chunk_list(lst: List, chunk_size: int) -> List[List]:
"""
Split a list into chunks of specified size.
Args:
lst: List to split
chunk_size: Size of each chunk
Returns:
List of chunked lists
"""
return [lst[i:i + chunk_size] for i in range(0, len(lst), chunk_size)]
def process_files_batched(
file_list: List[str],
msa_root: str,
save_root: str,
log_root: str,
first_pdbid_to_seq: DictLike,
seq_to_pdb_index: DictLike,
num_workers: int,
batch_size: Optional[int],
) -> None:
"""
Process files in batches using parallel processing.
Args:
file_list: List of files to process
msa_root: Root directory containing MSA files
save_root: Root directory to save processed files
log_root: Root directory for log files
first_pdbid_to_seq: Dictionary mapping PDB IDs to sequences (possibly shared)
seq_to_pdb_index: Dictionary mapping sequences to PDB indices (possibly shared)
num_workers: Number of parallel workers to use
batch_size: Number of files to process in each batch
"""
if batch_size is None:
batch_size = max(1, len(file_list) // num_workers)
# Split files into batches
batches = chunk_list(file_list, batch_size)
print(f"Split {len(file_list)} files into {len(batches)} batches of size ~{batch_size}")
# Create a partial function with fixed arguments
batch_processor = partial(
process_file_batch,
msa_root=msa_root,
save_root=save_root,
log_root=log_root,
first_pdbid_to_seq=first_pdbid_to_seq,
seq_to_pdb_index=seq_to_pdb_index
)
# Track progress and timing
start_time = time.time()
total_processed = 0
# Use ProcessPoolExecutor for parallel processing
with concurrent.futures.ProcessPoolExecutor(max_workers=num_workers) as executor:
# Process batches with progress tracking
with tqdm(total=len(file_list), desc="Processing MSA files") as pbar:
futures = []
# Submit all batches to the executor
for batch in batches:
futures.append(executor.submit(batch_processor, batch))
# Process results as they complete
for future in concurrent.futures.as_completed(futures):
try:
# Get the set of completed files
completed_files = future.result()
batch_count = len(completed_files)
total_processed += batch_count
pbar.update(batch_count)
# Calculate and display statistics
elapsed = time.time() - start_time
files_per_second = total_processed / elapsed if elapsed > 0 else 0
pbar.set_postfix(
{"processed": total_processed, "files/sec": f"{files_per_second:.2f}"}
)
except Exception as e:
print(f"Error processing batch: {e}")
if __name__ == "__main__":
# Set start method to spawn to ensure compatibility with shared memory
multiprocessing.set_start_method('spawn', force=True)
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--input_msa_dir", type=str, default="./scripts/msa/data/mmcif_msa_with_taxid")
parser.add_argument("--output_msa_dir", type=str, default="./scripts/msa/data/mmcif_msa")
parser.add_argument("--seq_to_pdb_id", type=str,
default="./scripts/msa/data/pdb_seqs/seq_to_pdb_id_entity_id.json")
parser.add_argument("--seq_to_pdb_index", type=str,
default="./scripts/msa/data/pdb_seqs/seq_to_pdb_index.json")
parser.add_argument("--num_workers", type=int, default=multiprocessing.cpu_count(),
help="Number of parallel workers to use (default: half of all CPU cores or 1)")
parser.add_argument("--batch_size", type=int, default=None,
help="Number of files to process in each batch (default: adjusted automatically)")
parser.add_argument("--shared_memory", action="store_true",
help="Use shared memory for dictionaries to reduce memory usage")
args = parser.parse_args()
msa_root = args.input_msa_dir
save_root = args.output_msa_dir
log_root = "./scripts/msa/data/mmcif_msa_log"
# Load mapping data
print("Loading mapping data...")
_, first_pdbid_to_seq, seq_to_pdb_index = load_mapping_data(
args.seq_to_pdb_id,
args.seq_to_pdb_index,
use_shared_memory=args.shared_memory
)
print("Mapping data loaded successfully")
os.makedirs(log_root, exist_ok=True)
os.makedirs(save_root, exist_ok=True)
print("Loading file names...")
file_list = os.listdir(msa_root)
print(f"Found {len(file_list)} MSA files to process")
# Process files in batches
process_files_batched(
file_list=file_list,
msa_root=msa_root,
save_root=save_root,
log_root=log_root,
first_pdbid_to_seq=first_pdbid_to_seq,
seq_to_pdb_index=seq_to_pdb_index,
num_workers=args.num_workers,
batch_size=args.batch_size
)
# Release all shared dictionaries if necessary
if args.shared_memory:
for dict_id in get_shared_dict_ids():
release_shared_dict(dict_id)
print("Processing complete") |