File size: 18,545 Bytes
2872543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from os.path import join as opjoin
from typing import Dict, List, Tuple, Optional, Union, Any
import concurrent.futures
import multiprocessing
import math
from tqdm import tqdm
from utils import (
convert_to_shared_dict, # To create new shared dictionaries
release_shared_dict, # To manually release dictionaries
get_shared_dict_ids # To list available dictionaries
)
def process_block_binary(block_info):
"""Process a range of blocks with binary file reading for better performance
Args:
block_info (tuple): (start_block, end_block, file_path, block_size, file_size, num_blocks)
Returns:
dict: Dictionary of results from these blocks
"""
start_block, end_block, file_path, block_size, file_size, num_blocks = block_info
local_dict = {}
# Buffer size for reading across block boundaries
boundary_buffer_size = 8192 # 8KB should be enough for even very long lines
with open(file_path, 'rb') as f:
for block_num in range(start_block, end_block):
# Calculate block bounds
block_offset = block_num * block_size
# Determine the start position for reading this block
if block_num == 0:
# First block always starts at the beginning of the file
start_pos = 0
else:
# For subsequent blocks, we need to find where the first complete line starts
# First, check if the previous block ended with a newline
prev_block_end = block_offset - 1
f.seek(prev_block_end)
last_char_prev_block = f.read(1)
# If the previous block ended with a newline, start at the beginning of this block
if last_char_prev_block == b'\n':
start_pos = block_offset
else:
# Previous block didn't end with a newline, find the first newline in this block
f.seek(block_offset)
chunk = f.read(min(boundary_buffer_size, file_size - block_offset))
newline_pos = chunk.find(b'\n')
# If no newline found, this entire block is part of a line from previous block
if newline_pos == -1:
continue
# Start after the first newline
start_pos = block_offset + newline_pos + 1
# Calculate how much data to read from the start position
read_length = min(block_size - (start_pos - block_offset), file_size - start_pos)
# Skip if nothing to read after adjustments
if read_length <= 0:
continue
# Read the data block
f.seek(start_pos)
data = f.read(read_length)
# Skip if no data
if not data:
continue
# Split into lines and process
lines = data.split(b'\n')
# Process all lines except possibly the last one if it's incomplete
for i, line in enumerate(lines):
# Special handling for the last line in the block (if not the last block)
if i == len(lines) - 1 and block_num < num_blocks - 1:
end_pos = start_pos + len(data)
if end_pos < file_size and not data.endswith(b'\n'):
# Last line is incomplete, need to read more to complete it
incomplete_line = line
# Read ahead to find the rest of the line
f.seek(end_pos)
extra_data = f.read(min(boundary_buffer_size, file_size - end_pos))
# Find the end of the line
newline_pos = extra_data.find(b'\n')
if newline_pos != -1:
# Found the end of the line
line_remainder = extra_data[:newline_pos]
full_line = incomplete_line + line_remainder
else:
full_line = line
else:
full_line = line
# Process complete lines
if full_line: # Skip empty lines
try:
line_str = full_line.decode('utf-8')
line_list = line_str.split('\t')
hit_name = line_list[1]
ncbi_taxid = line_list[2]
local_dict[hit_name] = ncbi_taxid
except Exception:
# Skip problematic lines
continue
return local_dict
def read_a3m(a3m_file: str) -> Tuple[List[str], List[str], int]:
"""read a3m file from output of mmseqs
Args:
a3m_file (str): the a3m file searched by mmseqs(colabfold search)
Returns:
Tuple[List[str], List[str], int]: the header, seqs of a3m files, and uniref index
"""
heads = []
seqs = []
# Record the row index. The index before this index is the MSA of Uniref30 DB,
# and the index after this index is the MSA of ColabfoldDB.
uniref_index = 0
with open(a3m_file, "r") as infile:
for idx, line in enumerate(infile):
if line.startswith(">"):
heads.append(line)
if idx == 0:
query_name = line
elif idx > 0 and line == query_name:
uniref_index = idx
else:
seqs.append(line)
return heads, seqs, uniref_index
def read_m8(
m8_file: str,
max_workers: Optional[int] = None,
block_size_mb: int = 64
) -> Dict[str, str]:
"""Read the uniref_tax.m8 file from output of mmseqs using optimized block processing.
This implementation automatically selects the best processing approach based on file size:
1. Simple sequential processing for small to medium files
2. Block-wise processing with multiprocessing for large files when beneficial
Args:
m8_file (str): the uniref_tax.m8 from output of mmseqs(colabfold search)
max_workers (Optional[int]): maximum number of worker processes to use (defaults to CPU count - 1)
block_size_mb (int): size of each processing block in MB. Do not set too small, otherwise the
overhead of process creation and task management will be too high and unfound bugs will be introduced.
Returns:
Dict[str, str]: the dict mapping uniref hit_name to NCBI TaxID
"""
# Get file size to report progress
file_size = os.path.getsize(m8_file)
print(f"Reading m8 file ({file_size/(1024*1024):.1f} MB)...")
# Calculate block size and number of blocks based on input parameter
block_size = block_size_mb * 1024 * 1024 # Convert MB to bytes
num_blocks = math.ceil(file_size / block_size)
# Calculate available CPU resources
available_cpus = multiprocessing.cpu_count() - 1 or 1 # At least 1
# Determine if multiprocessing would be beneficial
# We use multiprocessing if:
# 1. We have more than 1 block
# 2. We have at least 2 CPUs available
use_multiprocessing = (
num_blocks > 1 and
available_cpus > 1
)
# Set up number of workers if we're using multiprocessing
if use_multiprocessing:
if max_workers is None:
# Use a reasonable number of workers based on blocks and CPUs
max_workers = min(available_cpus, num_blocks, 16)
else:
# Ensure we don't use more workers than blocks or available CPUs
max_workers = min(max_workers, available_cpus, num_blocks)
# If we only have 1 worker, fall back to sequential processing
if max_workers <= 1:
use_multiprocessing = False
uniref_to_ncbi_taxid = {}
# For multiprocessing approach (large files with sufficient CPU resources)
if use_multiprocessing:
print(f"File is large, using multiprocessing with {max_workers} workers for {num_blocks} blocks")
# Create batches of blocks
batches = []
for i in range(0, num_blocks):
batches.append((i, i+1, m8_file, block_size, file_size, num_blocks))
# Process batches with progress tracking
with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor:
futures = [executor.submit(process_block_binary, batch) for batch in batches]
with tqdm(total=len(batches), desc="Processing file blocks") as pbar:
for future in concurrent.futures.as_completed(futures):
try:
batch_dict = future.result()
# Merge results
uniref_to_ncbi_taxid.update(batch_dict)
pbar.update(1)
except Exception as e:
print(f"Error processing batch: {e}")
pbar.update(1)
# Sequential processing approach (for small to medium files)
else:
print(f"Using sequential processing for {file_size/(1024*1024):.1f} MB file")
# Original single-threaded line-by-line processing
with open(m8_file, "r") as infile:
for line in tqdm(infile, desc="Reading m8 file", unit="lines"):
line_list = line.rstrip().split("\t")
hit_name = line_list[1]
ncbi_taxid = line_list[2]
uniref_to_ncbi_taxid[hit_name] = ncbi_taxid
print(f"Processed {len(uniref_to_ncbi_taxid):,} unique entries")
return uniref_to_ncbi_taxid
def update_a3m(
a3m_path: str,
uniref_to_ncbi_taxid: Dict[str, str],
save_root: str,
) -> None:
"""add NCBI TaxID to header if "UniRef" in header
Args:
a3m_path (str): the original a3m path returned by mmseqs(colabfold search)
uniref_to_ncbi_taxid (Dict): the dict mapping uniref hit_name to NCBI TaxID
save_root (str): the updated a3m
"""
heads, seqs, uniref_index = read_a3m(a3m_path)
fname = a3m_path.split("/")[-1]
out_a3m_path = opjoin(save_root, fname)
with open(out_a3m_path, "w") as ofile:
for idx, (head, seq) in enumerate(zip(heads, seqs)):
uniref_id = head.split("\t")[0][1:]
ncbi_taxid = uniref_to_ncbi_taxid.get(uniref_id, None)
if (ncbi_taxid is not None) and (idx < (uniref_index // 2)):
if not uniref_id.startswith("UniRef100_"):
head = head.replace(
uniref_id, f"UniRef100_{uniref_id}_{ncbi_taxid}/"
)
else:
head = head.replace(uniref_id, f"{uniref_id}_{ncbi_taxid}/")
ofile.write(f"{head}{seq}")
def update_a3m_batch(batch_paths: List[str], uniref_to_ncbi_taxid: Dict[str, str], save_root: str) -> int:
"""Process a batch of a3m files.
Args:
batch_paths (List[str]): List of paths to a3m files to process
uniref_to_ncbi_taxid (Dict[str, str]): Dictionary mapping UniRef IDs to NCBI TaxIDs
save_root (str): Directory to save processed files
Returns:
int: Number of files processed
"""
for a3m_path in batch_paths:
update_a3m(
a3m_path=a3m_path,
uniref_to_ncbi_taxid=uniref_to_ncbi_taxid,
save_root=save_root
)
return len(batch_paths)
def process_files(
a3m_paths: List[str],
uniref_to_ncbi_taxid: Union[Dict[str, str], Any],
output_msa_dir: str,
num_workers: Optional[int] = None,
batch_size: Optional[int] = None
) -> None:
"""Process multiple a3m files with optimized performance.
This function uses a more efficient approach for multiprocessing by using batched
processing to reduce the overhead of process creation and task management.
Works with both regular dictionaries and shared dictionaries.
Args:
a3m_paths (List[str]): List of a3m file paths to process
uniref_to_ncbi_taxid (Union[Dict[str, str], Any]):
Dictionary mapping UniRef IDs to NCBI TaxIDs, can be either a regular dict or a shared dict
output_msa_dir (str): Directory to save processed files
num_workers (int, optional): Number of worker processes. Defaults to None (uses CPU count).
batch_size (int, optional): Size of batches for processing. Defaults to None (auto-calculated).
"""
if num_workers is None:
# Use a smaller number of workers to avoid excessive overhead
num_workers = max(1, min(multiprocessing.cpu_count() - 1, 16))
total_files = len(a3m_paths)
if batch_size is None:
# Calculate an optimal batch size based on number of files and workers
# Aim for each worker to get 2-5 batches for good load balancing
target_batches_per_worker = 3
batch_size = max(1, math.ceil(total_files / (num_workers * target_batches_per_worker)))
# Create batches
batches = [a3m_paths[i:i + batch_size] for i in range(0, len(a3m_paths), batch_size)]
# Process in single-threaded mode if we have very few files or only one worker
if total_files < 10 or num_workers == 1:
for a3m_path in tqdm(a3m_paths, desc="Processing a3m files"):
update_a3m(
a3m_path=a3m_path,
uniref_to_ncbi_taxid=uniref_to_ncbi_taxid,
save_root=output_msa_dir,
)
return
# Use ProcessPoolExecutor for parallel processing
with concurrent.futures.ProcessPoolExecutor(max_workers=num_workers) as executor:
# Submit batch tasks instead of individual files
futures = []
for batch in batches:
future = executor.submit(
update_a3m_batch,
batch,
uniref_to_ncbi_taxid,
output_msa_dir
)
futures.append(future)
# Track progress across all batches
with tqdm(total=total_files, desc="Processing a3m files") as pbar:
for future in concurrent.futures.as_completed(futures):
try:
# Each result is a list of file paths processed in the batch
batch_size = future.result()
pbar.update(batch_size)
except Exception as e:
print(f"Error processing batch: {e}")
# Estimate how many files might have been in this failed batch
avg_batch_size = total_files / len(batches)
pbar.update(int(avg_batch_size))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--input_msa_dir", type=str, default="./scripts/msa/data/mmcif_msa_initial")
parser.add_argument("--output_msa_dir", type=str, default="./scripts/msa/data/mmcif_msa_with_taxid")
parser.add_argument("--num_workers", type=int, default=None,
help="Number of worker processes for a3m processing. Defaults to auto.")
parser.add_argument("--batch_size", type=int, default=None,
help="Number of a3m files per batch. Defaults to auto.")
parser.add_argument("--shared_memory", action="store_true",
help="Use shared memory for dictionary to reduce memory usage.")
parser.add_argument("--mp_read_workers", type=int, default=None,
help="Number of worker processes for reading m8 file. Defaults to auto.")
parser.add_argument("--block_size_mb", type=int, default=64,
help="Size of each processing block in MB (smaller blocks can improve parallelism).")
args = parser.parse_args()
# Set up directories
input_msa_dir = args.input_msa_dir
output_msa_dir = args.output_msa_dir
os.makedirs(output_msa_dir, exist_ok=True)
# Find input files
a3m_paths = os.listdir(input_msa_dir)
a3m_paths = [opjoin(input_msa_dir, x) for x in a3m_paths if x.endswith(".a3m")]
m8_file = f"{input_msa_dir}/uniref_tax.m8"
# Read m8 file with improved parameters
print(f"Reading m8 file with block size: {args.block_size_mb}MB")
uniref_to_ncbi_taxid = read_m8(
m8_file=m8_file,
max_workers=args.mp_read_workers,
block_size_mb=args.block_size_mb
)
print(f"Successfully read m8 file with {len(uniref_to_ncbi_taxid):,} entries")
# Convert to shared memory if needed for a3m processing
if args.shared_memory:
try:
print("Converting dictionary to shared memory for a3m processing...")
uniref_to_ncbi_taxid = convert_to_shared_dict(uniref_to_ncbi_taxid)
print("Successfully converted dictionary to shared memory")
except Exception as e:
print(f"⚠️ Error converting to shared memory: {e}")
# Process the a3m files
print(f"Processing {len(a3m_paths)} a3m files...")
process_files(
a3m_paths=a3m_paths,
uniref_to_ncbi_taxid=uniref_to_ncbi_taxid,
output_msa_dir=output_msa_dir,
num_workers=args.num_workers,
batch_size=args.batch_size
)
# Release all shared dictionaries if necessary
if args.shared_memory:
for dict_id in get_shared_dict_ids():
try:
release_shared_dict(dict_id)
except Exception as e:
print(f"Warning: Failed to release shared dict {dict_id}: {e}")
print("Processing complete")
|