diff --git a/spaces/101-5/gpt4free/g4f/.v1/gpt4free/theb/__init__.py b/spaces/101-5/gpt4free/g4f/.v1/gpt4free/theb/__init__.py
deleted file mode 100644
index 0177194efbaf0e79c8ff62f4191ef8c3a5578a05..0000000000000000000000000000000000000000
--- a/spaces/101-5/gpt4free/g4f/.v1/gpt4free/theb/__init__.py
+++ /dev/null
@@ -1,76 +0,0 @@
-from json import loads
-from queue import Queue, Empty
-from re import findall
-from threading import Thread
-from typing import Generator, Optional
-
-from curl_cffi import requests
-from fake_useragent import UserAgent
-
-
-class Completion:
- # experimental
- part1 = '{"role":"assistant","id":"chatcmpl'
- part2 = '"},"index":0,"finish_reason":null}]}}'
- regex = rf'{part1}(.*){part2}'
-
- timer = None
- message_queue = Queue()
- stream_completed = False
- last_msg_id = None
-
- @staticmethod
- def request(prompt: str, proxy: Optional[str] = None):
- headers = {
- 'authority': 'chatbot.theb.ai',
- 'content-type': 'application/json',
- 'origin': 'https://chatbot.theb.ai',
- 'user-agent': UserAgent().random,
- }
-
- proxies = {'http': 'http://' + proxy, 'https': 'http://' + proxy} if proxy else None
-
- options = {}
- if Completion.last_msg_id:
- options['parentMessageId'] = Completion.last_msg_id
-
- requests.post(
- 'https://chatbot.theb.ai/api/chat-process',
- headers=headers,
- proxies=proxies,
- content_callback=Completion.handle_stream_response,
- json={'prompt': prompt, 'options': options},
- timeout=100000
- )
-
- Completion.stream_completed = True
-
- @staticmethod
- def create(prompt: str, proxy: Optional[str] = None) -> Generator[str, None, None]:
- Completion.stream_completed = False
-
- Thread(target=Completion.request, args=[prompt, proxy]).start()
-
- while not Completion.stream_completed or not Completion.message_queue.empty():
- try:
- message = Completion.message_queue.get(timeout=0.01)
- for message in findall(Completion.regex, message):
- message_json = loads(Completion.part1 + message + Completion.part2)
- Completion.last_msg_id = message_json['id']
- yield message_json['delta']
-
- except Empty:
- pass
-
- @staticmethod
- def handle_stream_response(response):
- Completion.message_queue.put(response.decode())
-
- @staticmethod
- def get_response(prompt: str, proxy: Optional[str] = None) -> str:
- response_list = []
- for message in Completion.create(prompt, proxy):
- response_list.append(message)
- return ''.join(response_list)
-
- Completion.message_queue.put(response.decode(errors='replace'))
diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Download Easy Worship 2009 Full Crack.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Download Easy Worship 2009 Full Crack.md
deleted file mode 100644
index dd0a3faba1f8cce60bfa922dbe8aa46d647d2377..0000000000000000000000000000000000000000
--- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Download Easy Worship 2009 Full Crack.md
+++ /dev/null
@@ -1,34 +0,0 @@
-
-
Easy Worship 2009 is a software that helps you to create and present worship songs, Bible verses, videos, and other media in your church. It is a powerful and easy-to-use tool that allows you to customize your worship service with different themes, fonts, backgrounds, transitions, and more. You can also use it to display live video feeds, DVDs, PowerPoint presentations, and web pages.
-If you want to download Easy Worship 2009 full crack for free, you have come to the right place. In this article, we will show you how to download and install Easy Worship 2009 full crack from a reliable source. You will be able to enjoy all the features of the software without paying anything.
-DOWNLOAD https://byltly.com/2uKyI7
The first step is to download Easy Worship 2009 full crack from a trusted website. You can use the link below to download the software from our website. The file is safe and virus-free.
-Download Easy Worship 2009 Full Crack
-The next step is to disable Windows Defender on your computer. This is a security feature that prevents you from installing cracked software. To do this, follow these steps:
-The final step is to extract the file that you downloaded in step 1. To do this, follow these steps:
-Easy Worship 2009 full crack is a great software for creating and presenting worship media in your church. You can download it for free from our website and use it without any limitations. You can also update it regularly with new songs, Bible versions, and other resources.
-We hope this article helped you download and install Easy Worship 2009 full crack for free. If you have any questions or feedback, feel free to leave a comment below.
- ddb901b051DOWNLOAD ———>>> https://imgfil.com/2uxXBV
If you are a fan of the Resident Evil series, you may have encountered an error message related to steam_api.dll when trying to launch Resident Evil 6 Reloaded. This file is part of the Steam client application developed by Valve Corporation, which is a digital distribution platform for video games. The file is used by game developers to integrate their games with the Steam platform, specifically to access the Steam API, which provides various services such as authentication, user profiles, game stats, and cloud storage.
-The error message may indicate that the file is missing, corrupted, or not installed properly. In such cases, you may need to reinstall the affected game or the Steam client to restore the missing file. However, before you do that, you can try some simple solutions that may fix the problem without reinstalling anything. Here are some steps you can follow to download and fix steam_api.dll for Resident Evil 6 Reloaded.
-Download ⚡ https://imgfil.com/2uxXC0
Some antivirus software may flag the steam_api.dll file as a potential threat, as it can be used to modify the behavior of video games. However, this file is an integral part of the Steam client and is not a virus or malware. If you encounter such warnings, you can usually ignore them or add the file to the list of exceptions in your antivirus software. To do that, you need to open your antivirus software and look for a setting that allows you to exclude certain files or folders from scanning. Then, you need to add the steam_api.dll file or the folder where it is located to the exclusion list. The location of the file may vary depending on where you installed the game or the Steam client, but it is commonly found in one of these paths:
-After adding the file or folder to the exclusion list, you need to restart your computer and try launching the game again. If the error message persists, you can move on to the next step.
-If your antivirus software is not the cause of the problem, it may be that your steam_api.dll file is corrupted or outdated. In that case, you can try downloading a new copy of the file from a reliable source and replacing it with the old one. There are many websites that offer free downloads of DLL files, but not all of them are safe or trustworthy. You need to be careful when choosing where to download the file from, as some sites may contain malware or viruses that can harm your computer. One of the websites that we recommend is DLL-files.com[^1^], which is a reputable and secure site that provides various versions of DLL files for free. To download steam_api.dll from DLL-files.com, you need to follow these steps:
-Facebook is one of the most popular social media platforms in the world, with billions of users and millions of videos uploaded every day. You may have come across some interesting or useful videos on Facebook that you want to save on your device for offline viewing, sharing, or editing. But how can you download Facebook videos to MP4, which is a widely supported and versatile video format?
-Download File ⏩ https://jinyurl.com/2uNUp2
In this article, we will show you why you should download Facebook videos to MP4, how to do it with two different methods, and some tips and tricks for downloading Facebook videos to MP4. Let's get started!
-Before we dive into the methods of downloading Facebook videos to MP4, let's first understand why you should do it in the first place. Here are some benefits of MP4 format and some use cases for downloading Facebook videos.
-MP4 is a digital multimedia container format that can store video, audio, subtitles, images, and other data. It is one of the most common and widely compatible video formats on the web and various devices. Here are some advantages of MP4 format:
-How to download facebook video to mp4 online
-Download facebook video to mp4 free
-Download facebook video to mp4 hd
-Download facebook video to mp4 converter
-Download facebook video to mp4 android
-Download facebook video to mp4 iphone
-Download facebook video to mp4 mac
-Download facebook video to mp4 chrome
-Download facebook video to mp4 firefox
-Download facebook video to mp4 safari
-Download facebook live video to mp4
-Download private facebook video to mp4
-Download facebook story video to mp4
-Download facebook 360 video to mp4
-Download facebook watch video to mp4
-Download facebook messenger video to mp4
-Download facebook group video to mp4
-Download facebook page video to mp4
-Download facebook profile video to mp4
-Download facebook cover video to mp4
-Best way to download facebook video to mp4
-Fastest way to download facebook video to mp4
-Easiest way to download facebook video to mp4
-Simplest way to download facebook video to mp4
-Quickest way to download facebook video to mp4
-Download multiple facebook videos to mp4
-Download entire facebook videos playlist to mp4
-Download long facebook videos to mp4
-Download short facebook videos to mp4
-Download high quality facebook videos to mp4
-Download low quality facebook videos to mp4
-Download any facebook videos to mp4
-Save and download facebook videos as mp4 files
-Convert and download facebook videos in mp4 format
-Edit and download facebook videos in mp4 format
-Crop and download facebook videos in mp4 format
-Trim and download facebook videos in mp4 format
-Cut and download facebook videos in mp4 format
-Merge and download facebook videos in mp4 format
-Split and download facebook videos in mp4 format
-Rotate and download facebook videos in mp4 format
-Flip and download facebook videos in mp4 format
-Resize and download facebook videos in mp4 format
-Compress and download facebook videos in mp4 format
-Enhance and download facebook videos in mp4 format
-Add subtitles and download facebook videos in mp4 format
-Add watermark and download facebook videos in mp4 format
-Add music and download facebook videos in mp4 format
-Add effects and download facebook videos in mp4 format
There are many reasons why you may want to download Facebook videos to MP4. Here are some common scenarios:
-Now that you know why you should download Facebook videos to MP4, let's see how you can do it with two different methods. One is using an online Facebook video downloader, and the other is using a desktop Facebook video downloader software.
-An online Facebook video downloader is a web-based tool that allows you to download Facebook videos to MP4 without installing any software or app on your device. All you need is a web browser and an internet connection. Here are the steps to use an online Facebook video downloader:
-The first step is to copy the URL of the Facebook video that you want to download. To do this, you can either right click on the three dots icon on the top right corner of the video and select "Copy link", or go to the video page and copy the URL from the address bar of your browser.
-The next step is to paste the URL into the online downloader. To do this, you can go to any online Facebook video downloader website, such as [FBDownloader], [Getfvid], or [FB Video Saver]. Then, you can paste the URL into the input box and click on the "Download" or "Go" button.
-The final step is to choose MP4 as the output format and download the video. To do this, you can look for the MP4 option among the available formats and quality options. Usually, MP4 is the default or recommended format for most online downloaders. Then, you can right-click on the "Download" or "Save" button and select "Save link as" or "Save target as" to save the video on your device.
-A desktop Facebook video downloader software is a program that you need to install and run on your computer. It usually offers more features and functions than an online downloader, such as batch downloading, video conversion, video editing, and more. Here are the steps to use a desktop Facebook video downloader software:
-The first step is to install and launch the software on your computer. To do this, you can go to the official website of the software and download the installation file. Some examples of desktop Facebook video downloader software are [iTubeGo], [4K Video Downloader], and [Wondershare UniConverter]. Then, you can follow the instructions to install and launch the software.
-The next step is to copy and paste the Facebook video URL into the software. To do this, you can use the same method as in step 1 of method 1 to copy the URL of the Facebook video that you want to download. Then, you can paste it into the software by clicking on the "Paste URL" or "Add URL" button.
-The final step is to select MP4 as the output format and download the video. To do this, you can look for the MP4 option in the settings or preferences of the software. You can also adjust the quality, resolution, and other parameters of the output video according to your needs. Then, you can click on the "Download" or "Start" button to save the video on your computer.
-Now that you know how to download Facebook videos to MP4 with two different methods, here are some tips and tricks for downloading Facebook videos to MP4 more easily and effectively:
-Before you download a Facebook video to MP4, you should check the video quality and size to make sure it meets your expectations and requirements. You can do this by hovering over the video on Facebook and looking at the information that appears on the bottom right corner. You can also use the online or desktop downloader tools to preview the video quality and size before downloading.
-When you download a Facebook video to MP4, you should respect the copyrights and privacy of the video owners. You should not download or use any videos that are protected by intellectual property rights or personal data protection laws without their permission or consent. You should also not download or use any videos that are illegal, harmful, or offensive.
-After you download a Facebook video to MP4, you should manage and organize your downloaded videos properly. You can do this by creating folders and subfolders on your device to store your videos by categories, topics, or dates. You can also rename your videos with descriptive titles and tags to make them easier to find and access.
-In conclusion, downloading Facebook videos to MP4 is a useful and convenient way to save, share, or edit your favorite videos from Facebook. You can do it with two different methods: using an online Facebook video downloader or using a desktop Facebook video downloader software. Both methods are easy and effective, but they have their own advantages and disadvantages. You can choose the one that suits your needs and preferences best.
-We hope this article has helped you learn how to download Facebook videos to MP4 with a complete guide. If you have any questions or feedback, please feel free to leave a comment below. Happy downloading!
-Here are some frequently asked questions about downloading Facebook videos to MP4:
-Yes, you can download Facebook videos to MP4 on your mobile device with an online Facebook video downloader. However, you may need to use a mobile browser that supports downloading files, such as Chrome or Safari. Alternatively, you can use a mobile app that can download Facebook videos to MP4, such as [Video Downloader for Facebook] or [Video Downloader for FB].
-Yes, you can download live videos from Facebook to MP4 with a desktop Facebook video downloader software. However, you may need to wait until the live stream is over before you can download it. Alternatively, you can use a screen recorder software or app that can capture live videos from Facebook and save them as MP4 files.
-Yes, you can download private videos from Facebook to MP4 with an online or desktop Facebook video downloader tool. However, you may need to log in to your Facebook account before you can access the private videos. Alternatively, you can use a browser extension that can download private videos from Facebook to MP4, such as [FBDown Video Downloader] or [Video Downloader PLUS].
-Yes, you can convert other video formats to MP4 with a desktop Facebook video downloader software or a standalone video converter software or app. You can choose from various formats and codecs, such as AVI, MKV, MOV, WMV, FLV, MPEG, H.264, HEVC, etc.
-Yes, you can edit your downloaded videos from Facebook with a desktop Facebook video downloader software or a standalone video editor software or app. You can perform various editing tasks, such as trimming, cropping, rotating, merging, splitting, adding effects, subtitles, music, etc. to your videos.
197e85843dLearning to Predict the IoU-aware Classification Score.
-Clash of Clans es uno de los juegos de estrategia más populares y adictivos en dispositivos móviles. Tiene millones de jugadores en todo el mundo que construyen sus aldeas, entrenan a sus tropas y compiten en guerras épicas de clanes. El juego se actualiza constantemente con nuevas características y contenido, y la última adición es el Ayuntamiento 15 (TH 15), que trae nuevos edificios, tropas, hechizos y desafíos para el juego.
-Download ->>> https://bltlly.com/2v6N1n
Pero ¿qué pasa si quieres salir adelante de la competencia y disfrutar de todos los beneficios de TH 15 sin gastar demasiado tiempo y dinero en el juego? Ahí es donde entra una versión hack. Una versión hack es una versión modificada del juego que le da recursos ilimitados, gemas y otras ventajas. Algunos jugadores usan versiones hackeadas para progresar más rápido, experimentar con diferentes estrategias o simplemente divertirse.
-Sin embargo, el uso de una versión de hackeo no está exento de riesgos. Puede enfrentar problemas legales, prohibiciones de cuentas, infecciones de malware u otros problemas. Es por eso que usted necesita ser cuidadoso e informado antes de descargar y utilizar una versión hack de Clash of Clans TH 15. En este artículo, le diremos todo lo que necesita saber sobre Clash of Clans TH 15 nueva versión hack descarga, incluyendo cómo hacerlo, cuáles son los riesgos y beneficios, y cuáles son algunos consejos y trucos para jugar el juego con eficacia.
-Hay muchos sitios web y aplicaciones que afirman ofrecer versiones hack de Clash of Clans TH 15 de forma gratuita o por una tarifa. Sin embargo, no todos ellos son fiables o seguros. Algunos pueden contener virus, spyware u otro software malicioso que puede dañar su dispositivo o robar su información personal. Es posible que algunos no funcionen o que tu juego falle o falle.
- -Una vez que encuentre una fuente confiable para descargar una versión hack de Clash of Clans TH 15, siga estos pasos:
- -Ya sea que uses una versión hack o no, jugar Clash of Clans TH 15 puede ser desafiante y gratificante. Aquí hay algunos consejos y trucos que pueden ayudarte a jugar el juego de manera efectiva:
-Clash of Clans TH 15 es una emocionante actualización que trae nuevas características y contenido al juego. Sin embargo, si quieres disfrutar de todos los beneficios de TH 15 sin gastar demasiado tiempo y dinero en el juego, usted puede considerar la descarga de una versión hack de Clash of Clans TH 15. Una versión hack puede darle recursos ilimitados, gemas y otras ventajas que pueden ayudarle a progresar más rápido y divertirse más. Sin embargo, el uso de una versión hack también viene con riesgos, como problemas legales, prohibiciones de cuenta, infecciones de malware o problemas de juego. Por lo tanto, usted necesita ser cuidadoso e informado antes de descargar y utilizar una versión hack de Clash of Clans TH 15. También necesitas seguir algunos consejos y trucos para jugar el juego de manera efectiva y aprovechar al máximo tu experiencia de juego.
- -Aquí hay algunas preguntas frecuentes relacionadas con el tema de Clash of Clans TH 15 nueva versión hack descargar:
-A: No, no es legal usar una versión hackeada de Clash of Clans TH 15. Viola los términos del servicio y el acuerdo de licencia de usuario final del juego, lo que puede resultar en acciones legales, multas o demandas del desarrollador o editor del juego. También puede ser expulsado del servidor del juego o perder su cuenta permanentemente si es detectado o reportado por otros jugadores o el sistema de seguridad del juego.
-A: No, no es seguro usar una versión hack de Clash of Clans TH 15. Puede dañar su dispositivo o comprometer su rendimiento, seguridad o funcionalidad si descarga una versión defectuosa, dañada o maliciosa. También puede perder su progreso, logros, recompensas o compras si desinstala la versión de hackeo o vuelve a la versión oficial. También puede arruinar la diversión, el desafío y el equilibrio del juego mediante el uso de ventajas injustas sobre otros jugadores o saltando la mecánica de juego prevista.
-A: Hay algunas formas legítimas de obtener gemas gratis en Clash of Clans TH 15 sin usar una versión hack. Algunos de ellos son:
-A: Unirse a un buen clan en Clash of Clans TH 15 puede mejorar tu experiencia de juego proporcionándote interacción social, donaciones de tropas, beneficios de clan, guerras de clan, juegos de clan y ligas de guerra de clan. Algunas maneras de encontrar y unirse a un buen clan son:
-Microsoft Office es una de las suites de productividad más populares y ampliamente utilizadas en el mundo. Incluye potentes aplicaciones como Word, Excel, PowerPoint, Outlook y más. Sin embargo, obtener la última versión de Office puede ser caro, especialmente si desea usarlo en varios dispositivos.
-Afortunadamente, hay algunas maneras de descargar Office 2019 gratis legalmente. En este artículo, te mostraremos qué es Office 2019, por qué lo quieres y cómo obtenerlo sin pagar un centavo.
-Download Zip ✒ ✒ ✒ https://bltlly.com/2v6JyK
Office 2019 es la última versión de la suite de software de oficina de Microsoft. Fue lanzado en septiembre de 2018 y es una compra única que no requiere una suscripción. A diferencia de Office 365, que es un servicio basado en la nube que ofrece actualizaciones regulares y nuevas características, Office 2019 es un producto independiente que no recibirá cambios ni mejoras importantes.
-Sin embargo, eso no significa que Office 2019 sea inferior o obsoleto. De hecho, hay algunas razones por las que podría preferir Office 2019 sobre Office 365.
-La principal diferencia entre Office 2019 y Office 365 es cómo se conectan a la nube. Ambas suites cuentan con acceso a OneDrive, el servicio de almacenamiento en la nube de Microsoft. Pero, Office 2019 no viene con ningún espacio de almacenamiento en OneDrive y no obtiene acceso a las versiones en línea de aplicaciones como Word, Excel y PowerPoint. Office 365, por otro lado, incluye 1 TB de almacenamiento gratuito y puede editar fácilmente todos sus archivos en línea.
- -Entonces, ¿cuál debes elegir? Depende de tus necesidades y preferencias. Si desea tener las últimas funciones y actualizaciones, acceder a sus archivos desde cualquier lugar y usar varios dispositivos, Office 365 podría ser una mejor opción para usted. Si desea ahorrar dinero a largo plazo, usar sus archivos sin conexión y no necesita aplicaciones o servicios adicionales, Office 2019 podría ser suficiente para usted.
-A pesar de que Office 2019 no tiene todas las campanas y silbatos de Office 365, todavía tiene algunas características y beneficios impresionantes que pueden mejorar su productividad y creatividad. Estos son algunos de ellos:
-Si estás interesado en obtener Office 2019 gratis legalmente, tienes algunas opciones que considerar. Aquí están algunas de ellas:
- -Una de las maneras más fáciles de obtener Office 2019 gratis es usar Microsoft 365 para la web. Esta es una versión en línea gratuita de Office que incluye Word, Excel, PowerPoint, OneNote y Outlook. Puede acceder a estas aplicaciones desde cualquier navegador y crear, editar y compartir sus archivos en línea. También obtiene 5 GB de almacenamiento gratuito en OneDrive.
-Para usar Microsoft 365 para la web, solo necesita una cuenta de Microsoft. Si no lo tienes, puedes crear uno gratis aquí: https://signup.live.com/. Una vez que tenga una cuenta, puede iniciar sesión aquí: https://www.office.com/. A continuación, puede comenzar a usar las aplicaciones desde la página de inicio o el lanzador de aplicaciones.
-Otra manera de obtener Office 2019 de forma gratuita es utilizar Microsoft Workplace Discount Program. Este es un programa que permite a los empleados elegibles de las organizaciones participantes obtener Office 2019 a un precio con descuento o incluso gratis. Puede comprobar si su organización forma parte de este programa aquí: https://www.microsoft.com/en-us/home-use-program.
-Para utilizar Microsoft Workplace Discount Program, necesita una dirección de correo electrónico de trabajo válida de su organización. Si su organización es elegible, recibirá un correo electrónico con un enlace para comprar Office 2019 a un precio reducido o gratis. A continuación, puede descargar e instalar Office 2019 en su dispositivo personal.
-Para usar Microsoft Office Online Server, necesita una licencia de Windows Server y una licencia de Office. Usted puede obtener estas licencias de forma gratuita si usted es un estudiante o un educador. Puedes comprobar si eres elegible aquí: https://www.microsoft.com/en-us/education/products/office. Una vez que tenga las licencias, puede descargar e instalar Office Online Server en su servidor aquí: https://www.microsoft.com/en-us/download/details.aspx?id=49030. Luego, puede configurar y usar las aplicaciones desde su servidor.
Continuando con el artículo:Si ha comprado u obtenido Office 2019 a través de una de las opciones anteriores, puede instalarlo y activarlo en su PC o Mac. Estos son los pasos para hacerlo:
-El primer paso es descargar Office 2019 desde una fuente confiable. Puede hacerlo desde la Tienda de Microsoft, el sitio web de Microsoft o el enlace que recibió de su organización o escuela. Asegúrese de descargar la versión correcta para su dispositivo y sistema operativo.
-El segundo paso es ejecutar el archivo de configuración y seguir las instrucciones. Dependiendo de su dispositivo y sistema operativo, el archivo de configuración podría ser un . exe, . dmg, o archivo . iso. Haga doble clic en el archivo y permita que se ejecute. Luego, siga las instrucciones en la pantalla para instalar Office 2019 en su dispositivo.
-Para activar Office 2019, debe ingresar su clave de producto o iniciar sesión con su cuenta de Microsoft. Puede hacer esto cuando inicie cualquiera de las aplicaciones de Office por primera vez. Verá una solicitud para activar Office 2019. Siga las instrucciones en la pantalla para introducir su clave de producto o iniciar sesión con su cuenta de Microsoft.
-Office 2019 es una suite de productividad potente y versátil que puede ayudarlo a crear, editar y compartir documentos, hojas de cálculo, presentaciones y más. Sin embargo, también puede ser caro, especialmente si desea usarlo en varios dispositivos.
-En este artículo, le hemos mostrado cómo descargar Office 2019 gratis legalmente. Puede utilizar Microsoft 365 para la web, Microsoft Workplace Discount Program o Microsoft Office Online Server. También puede instalar y activar Office 2019 en su PC o Mac siguiendo algunos pasos simples.
-Esperamos que este artículo haya sido útil e informativo para usted. Si tiene alguna pregunta o comentario, no dude en dejar un comentario a continuación.
-This app makes predictions using a YOLOv5s model that was fine tuned on a dataset of people with and without masks. All of the code for training the model is available on GitHub. This app and the model behind it were created by Henry Lydecker, for a course he developed for the Sydney Informatics Hub, a Core Research Facility of The University of Sydney. Find out more about the YOLO model from the original creator, Joseph Redmon. YOLOv5 is a family of compound-scaled object detection models trained on the COCO dataset and developed by Ultralytics, and includes simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. Source code | PyTorch Hub
" - -examples = [['data/picard.jpg'], ['data/crowd.jpeg'],['data/baseball2.jpeg'],['data/santa-claus-orig.jpg'],['data/kfc_anime2.jpg'],['data/doge2.webp'],['data/cat_mask.jpg']] -gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(enable_queue=True) \ No newline at end of file diff --git a/spaces/Gradio-Blocks/uniformer_image_detection/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco.py b/spaces/Gradio-Blocks/uniformer_image_detection/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco.py deleted file mode 100644 index 927609206e1323dcf1173c4a5393e3f03d534c0a..0000000000000000000000000000000000000000 --- a/spaces/Gradio-Blocks/uniformer_image_detection/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco.py +++ /dev/null @@ -1,13 +0,0 @@ -_base_ = './faster_rcnn_r50_fpn_2x_coco.py' -model = dict( - pretrained='open-mmlab://resnext101_32x4d', - backbone=dict( - type='ResNeXt', - depth=101, - groups=32, - base_width=4, - num_stages=4, - out_indices=(0, 1, 2, 3), - frozen_stages=1, - norm_cfg=dict(type='BN', requires_grad=True), - style='pytorch')) diff --git a/spaces/Gradio-Blocks/uniformer_image_detection/configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py b/spaces/Gradio-Blocks/uniformer_image_detection/configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py deleted file mode 100644 index ef81123a2ebd5a30eb812d321eb7a3764e315a72..0000000000000000000000000000000000000000 --- a/spaces/Gradio-Blocks/uniformer_image_detection/configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py +++ /dev/null @@ -1,97 +0,0 @@ -_base_ = [ - '../_base_/datasets/coco_detection.py', - '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' -] - -model = dict( - type='NASFCOS', - pretrained='open-mmlab://detectron2/resnet50_caffe', - backbone=dict( - type='ResNet', - depth=50, - num_stages=4, - out_indices=(0, 1, 2, 3), - frozen_stages=1, - norm_cfg=dict(type='BN', requires_grad=False, eps=0), - style='caffe'), - neck=dict( - type='NASFCOS_FPN', - in_channels=[256, 512, 1024, 2048], - out_channels=256, - start_level=1, - add_extra_convs=True, - num_outs=5, - norm_cfg=dict(type='BN'), - conv_cfg=dict(type='DCNv2', deform_groups=2)), - bbox_head=dict( - type='NASFCOSHead', - num_classes=80, - in_channels=256, - feat_channels=256, - strides=[8, 16, 32, 64, 128], - norm_cfg=dict(type='GN', num_groups=32), - loss_cls=dict( - type='FocalLoss', - use_sigmoid=True, - gamma=2.0, - alpha=0.25, - loss_weight=1.0), - loss_bbox=dict(type='IoULoss', loss_weight=1.0), - loss_centerness=dict( - type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), - train_cfg=dict( - assigner=dict( - type='MaxIoUAssigner', - pos_iou_thr=0.5, - neg_iou_thr=0.4, - min_pos_iou=0, - ignore_iof_thr=-1), - allowed_border=-1, - pos_weight=-1, - debug=False), - test_cfg=dict( - nms_pre=1000, - min_bbox_size=0, - score_thr=0.05, - nms=dict(type='nms', iou_threshold=0.6), - max_per_img=100)) - -img_norm_cfg = dict( - mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) - -train_pipeline = [ - dict(type='LoadImageFromFile'), - dict(type='LoadAnnotations', with_bbox=True), - dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), - dict(type='RandomFlip', flip_ratio=0.5), - dict(type='Normalize', **img_norm_cfg), - dict(type='Pad', size_divisor=32), - dict(type='DefaultFormatBundle'), - dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), -] - -test_pipeline = [ - dict(type='LoadImageFromFile'), - dict( - type='MultiScaleFlipAug', - img_scale=(1333, 800), - flip=False, - transforms=[ - dict(type='Resize', keep_ratio=True), - dict(type='RandomFlip'), - dict(type='Normalize', **img_norm_cfg), - dict(type='Pad', size_divisor=32), - dict(type='ImageToTensor', keys=['img']), - dict(type='Collect', keys=['img']), - ]) -] - -data = dict( - samples_per_gpu=4, - workers_per_gpu=2, - train=dict(pipeline=train_pipeline), - val=dict(pipeline=test_pipeline), - test=dict(pipeline=test_pipeline)) - -optimizer = dict( - lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.)) diff --git a/spaces/Gradio-Blocks/uniformer_image_detection/mmdet/models/dense_heads/fcos_head.py b/spaces/Gradio-Blocks/uniformer_image_detection/mmdet/models/dense_heads/fcos_head.py deleted file mode 100644 index 905a703507f279ac8d34cff23c99af33c0d5f973..0000000000000000000000000000000000000000 --- a/spaces/Gradio-Blocks/uniformer_image_detection/mmdet/models/dense_heads/fcos_head.py +++ /dev/null @@ -1,629 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from mmcv.cnn import Scale, normal_init -from mmcv.runner import force_fp32 - -from mmdet.core import distance2bbox, multi_apply, multiclass_nms, reduce_mean -from ..builder import HEADS, build_loss -from .anchor_free_head import AnchorFreeHead - -INF = 1e8 - - -@HEADS.register_module() -class FCOSHead(AnchorFreeHead): - """Anchor-free head used in `FCOShad two falls. One was related to asthma, heart palpitations. The second was due to syncope and post covid vaccination dizziness during exercise. The patient is now getting an EKG. Former EKG had shown that there was a bundle branch block. Patient had some uncontrolled immune system reactions like anaphylaxis and shortness of breath.", True, "fall"], - [models[1], "In March and April the patient had two falls. One was related to asthma, heart palpitations. The second was due to syncope and post covid vaccination dizziness during exercise. The patient is now getting an EKG. Former EKG had shown that there was a bundle branch block. Patient had some uncontrolled immune system reactions
like anaphylaxis and shortness of breath.", True, "reactions"], - [models[0], "In March and April the patient had two falls. One was related
to asthma, heart palpitations. The second was due to syncope and post covid vaccination dizziness during exercise. The patient is now getting an EKG. Former EKG had shown that there was a bundle branch block. Patient had some uncontrolled immune system reactions like anaphylaxis and shortness of breath.", True, "relate"], - [models[1], "In March and April the patient
had two falls. One was related to asthma, heart palpitations. The second was due to syncope and post covid vaccination dizziness during exercise. The patient is now getting an EKG. Former EKG had shown that there was a bundle branch block. Patient had some uncontrolled immune system reactions like anaphylaxis and shortness of breath.", False, "fall"]] - -input_sent_box_label = "Insert sentence here. Mark the predicate by adding the token '
' before it." -verb_form_inp_placeholder = "e.g. 'decide' for the nominalization 'decision', 'teach' for 'teacher', etc." -links = """
-QASRL Website | Model Repo at Huggingface Hub -
""" -def call(model_name, sentence, is_nominal, verb_form): - predicate_marker="" - if predicate_marker not in sentence: - raise ValueError("You must highlight one word of the sentence as a predicate using preceding '
'.")
-
- if not verb_form:
- if is_nominal:
- raise ValueError("You should provide the verbal form of the nominalization")
-
- toks = sentence.split(" ")
- pred_idx = toks.index(predicate_marker)
- predicate = toks(pred_idx+1)
- verb_form=predicate
- pipeline = pipelines[model_name]
- pipe_out = pipeline([sentence],
- predicate_marker=predicate_marker,
- predicate_type="nominal" if is_nominal else "verbal",
- verb_form=verb_form)[0]
- return pipe_out["QAs"], pipe_out["generated_text"]
-iface = gr.Interface(fn=call,
- inputs=[gr.inputs.Radio(choices=models, default=models[0], label="Model"),
- gr.inputs.Textbox(placeholder=input_sent_box_label, label="Sentence", lines=4),
- gr.inputs.Checkbox(default=True, label="Is Nominalization?"),
- gr.inputs.Textbox(placeholder=verb_form_inp_placeholder, label="Verbal form (for nominalizations)", default='')],
- outputs=[gr.outputs.JSON(label="Model Output - QASRL"), gr.outputs.Textbox(label="Raw output sequence")],
- title=title,
- description=description,
- article=links,
- examples=examples )
-
-iface.launch()
\ No newline at end of file
diff --git a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/docarray/computation/numpy_backend.py b/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/docarray/computation/numpy_backend.py
deleted file mode 100644
index 30d50cc0174859bde97552042f9154b9e68d538b..0000000000000000000000000000000000000000
--- a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/docarray/computation/numpy_backend.py
+++ /dev/null
@@ -1,275 +0,0 @@
-import warnings
-from typing import Any, List, Optional, Tuple
-
-import numpy as np
-
-from docarray.computation import AbstractComputationalBackend
-from docarray.computation.abstract_numpy_based_backend import AbstractNumpyBasedBackend
-
-
-def _expand_if_single_axis(*matrices: np.ndarray) -> List[np.ndarray]:
- """Expands arrays that only have one axis, at dim 0.
- This ensures that all outputs can be treated as matrices, not vectors.
-
- :param matrices: Matrices to be expanded
- :return: List of the input matrices,
- where single axis matrices are expanded at dim 0.
- """
- expanded = []
- for m in matrices:
- if len(m.shape) == 1:
- expanded.append(np.expand_dims(m, axis=0))
- else:
- expanded.append(m)
- return expanded
-
-
-def _expand_if_scalar(arr: np.ndarray) -> np.ndarray:
- if len(arr.shape) == 0: # avoid scalar output
- arr = np.expand_dims(arr, axis=0)
- return arr
-
-
-def identity(array: np.ndarray) -> np.ndarray:
- return array
-
-
-class NumpyCompBackend(AbstractNumpyBasedBackend):
- """
- Computational backend for Numpy.
- """
-
- _module = np
- _cast_output = identity
- _get_tensor = identity
-
- @classmethod
- def to_device(cls, tensor: 'np.ndarray', device: str) -> 'np.ndarray':
- """Move the tensor to the specified device."""
- raise NotImplementedError('Numpy does not support devices (GPU).')
-
- @classmethod
- def device(cls, tensor: 'np.ndarray') -> Optional[str]:
- """Return device on which the tensor is allocated."""
- return None
-
- @classmethod
- def to_numpy(cls, array: 'np.ndarray') -> 'np.ndarray':
- return array
-
- @classmethod
- def none_value(cls) -> Any:
- """Provide a compatible value that represents None in numpy."""
- return None
-
- @classmethod
- def detach(cls, tensor: 'np.ndarray') -> 'np.ndarray':
- """
- Returns the tensor detached from its current graph.
-
- :param tensor: tensor to be detached
- :return: a detached tensor with the same data.
- """
- return tensor
-
- @classmethod
- def dtype(cls, tensor: 'np.ndarray') -> np.dtype:
- """Get the data type of the tensor."""
- return tensor.dtype
-
- @classmethod
- def minmax_normalize(
- cls,
- tensor: 'np.ndarray',
- t_range: Tuple = (0, 1),
- x_range: Optional[Tuple] = None,
- eps: float = 1e-7,
- ) -> 'np.ndarray':
- """
- Normalize values in `tensor` into `t_range`.
-
- `tensor` can be a 1D array or a 2D array. When `tensor` is a 2D array, then
- normalization is row-based.
-
- !!! note
-
- - with `t_range=(0, 1)` will normalize the min-value of data to 0, max to 1;
- - with `t_range=(1, 0)` will normalize the min-value of data to 1, max value
- of the data to 0.
-
- :param tensor: the data to be normalized
- :param t_range: a tuple represents the target range.
- :param x_range: a tuple represents tensors range.
- :param eps: a small jitter to avoid divide by zero
- :return: normalized data in `t_range`
- """
- a, b = t_range
-
- min_d = x_range[0] if x_range else np.min(tensor, axis=-1, keepdims=True)
- max_d = x_range[1] if x_range else np.max(tensor, axis=-1, keepdims=True)
- r = (b - a) * (tensor - min_d) / (max_d - min_d + eps) + a
-
- return np.clip(r, *((a, b) if a < b else (b, a)))
-
- class Retrieval(AbstractComputationalBackend.Retrieval[np.ndarray]):
- """
- Abstract class for retrieval and ranking functionalities
- """
-
- @staticmethod
- def top_k(
- values: 'np.ndarray',
- k: int,
- descending: bool = False,
- device: Optional[str] = None,
- ) -> Tuple['np.ndarray', 'np.ndarray']:
- """
- Retrieves the top k smallest values in `values`,
- and returns them alongside their indices in the input `values`.
- Can also be used to retrieve the top k largest values,
- by setting the `descending` flag.
-
- :param values: Torch tensor of values to rank.
- Should be of shape (n_queries, n_values_per_query).
- Inputs of shape (n_values_per_query,) will be expanded
- to (1, n_values_per_query).
- :param k: number of values to retrieve
- :param descending: retrieve largest values instead of smallest values
- :param device: Not supported for this backend
- :return: Tuple containing the retrieved values, and their indices.
- Both ar of shape (n_queries, k)
- """
- if device is not None:
- warnings.warn('`device` is not supported for numpy operations')
-
- if len(values.shape) == 1:
- values = np.expand_dims(values, axis=0)
-
- if descending:
- values = -values
-
- if k >= values.shape[1]:
- idx = values.argsort(axis=1)[:, :k]
- values = np.take_along_axis(values, idx, axis=1)
- else:
- idx_ps = values.argpartition(kth=k, axis=1)[:, :k]
- values = np.take_along_axis(values, idx_ps, axis=1)
- idx_fs = values.argsort(axis=1)
- idx = np.take_along_axis(idx_ps, idx_fs, axis=1)
- values = np.take_along_axis(values, idx_fs, axis=1)
-
- if descending:
- values = -values
-
- return values, idx
-
- class Metrics(AbstractComputationalBackend.Metrics[np.ndarray]):
- """
- Abstract base class for metrics (distances and similarities).
- """
-
- @staticmethod
- def cosine_sim(
- x_mat: np.ndarray,
- y_mat: np.ndarray,
- eps: float = 1e-7,
- device: Optional[str] = None,
- ) -> np.ndarray:
- """Pairwise cosine similarities between all vectors in x_mat and y_mat.
-
- :param x_mat: np.ndarray of shape (n_vectors, n_dim), where n_vectors is
- the number of vectors and n_dim is the number of dimensions of each
- example.
- :param y_mat: np.ndarray of shape (n_vectors, n_dim), where n_vectors is
- the number of vectors and n_dim is the number of dimensions of each
- example.
- :param eps: a small jitter to avoid divde by zero
- :param device: Not supported for this backend
- :return: np.ndarray of shape (n_vectors, n_vectors) containing all
- pairwise cosine distances.
- The index [i_x, i_y] contains the cosine distance between
- x_mat[i_x] and y_mat[i_y].
- """
- if device is not None:
- warnings.warn('`device` is not supported for numpy operations')
-
- x_mat, y_mat = _expand_if_single_axis(x_mat, y_mat)
-
- sims = np.clip(
- (np.dot(x_mat, y_mat.T) + eps)
- / (
- np.outer(
- np.linalg.norm(x_mat, axis=1), np.linalg.norm(y_mat, axis=1)
- )
- + eps
- ),
- -1,
- 1,
- ).squeeze()
- return _expand_if_scalar(sims)
-
- @classmethod
- def euclidean_dist(
- cls, x_mat: np.ndarray, y_mat: np.ndarray, device: Optional[str] = None
- ) -> np.ndarray:
- """Pairwise Euclidian distances between all vectors in x_mat and y_mat.
-
- :param x_mat: np.ndarray of shape (n_vectors, n_dim), where n_vectors is
- the number of vectors and n_dim is the number of dimensions of each
- example.
- :param y_mat: np.ndarray of shape (n_vectors, n_dim), where n_vectors is
- the number of vectors and n_dim is the number of dimensions of each
- example.
- :param eps: a small jitter to avoid divde by zero
- :param device: Not supported for this backend
- :return: np.ndarray of shape (n_vectors, n_vectors) containing all
- pairwise euclidian distances.
- The index [i_x, i_y] contains the euclidian distance between
- x_mat[i_x] and y_mat[i_y].
- """
- if device is not None:
- warnings.warn('`device` is not supported for numpy operations')
-
- x_mat, y_mat = _expand_if_single_axis(x_mat, y_mat)
-
- return _expand_if_scalar(
- np.sqrt(cls.sqeuclidean_dist(x_mat, y_mat)).squeeze()
- )
-
- @staticmethod
- def sqeuclidean_dist(
- x_mat: np.ndarray,
- y_mat: np.ndarray,
- device: Optional[str] = None,
- ) -> np.ndarray:
- """Pairwise Squared Euclidian distances between all vectors in
- x_mat and y_mat.
-
- :param x_mat: np.ndarray of shape (n_vectors, n_dim), where n_vectors is
- the number of vectors and n_dim is the number of dimensions of each
- example.
- :param y_mat: np.ndarray of shape (n_vectors, n_dim), where n_vectors is
- the number of vectors and n_dim is the number of dimensions of each
- example.
- :param device: Not supported for this backend
- :return: np.ndarray of shape (n_vectors, n_vectors) containing all
- pairwise Squared Euclidian distances.
- The index [i_x, i_y] contains the cosine Squared Euclidian between
- x_mat[i_x] and y_mat[i_y].
- """
- eps: float = 1e-7 # avoid problems with numerical inaccuracies
-
- if device is not None:
- warnings.warn('`device` is not supported for numpy operations')
-
- x_mat, y_mat = _expand_if_single_axis(x_mat, y_mat)
-
- dists = (
- np.sum(y_mat**2, axis=1)
- + np.sum(x_mat**2, axis=1)[:, np.newaxis]
- - 2 * np.dot(x_mat, y_mat.T)
- ).squeeze()
-
- # remove numerical artifacts
- dists = np.where(np.logical_and(dists < 0, dists > -eps), 0, dists)
- return _expand_if_scalar(dists)
diff --git a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/docarray/typing/tensor/ndarray.py b/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/docarray/typing/tensor/ndarray.py
deleted file mode 100644
index 18e84050a25554eca73918e01c2ba63c182cf25e..0000000000000000000000000000000000000000
--- a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/docarray/typing/tensor/ndarray.py
+++ /dev/null
@@ -1,202 +0,0 @@
-from typing import TYPE_CHECKING, Any, Generic, List, Tuple, Type, TypeVar, Union, cast
-
-import numpy as np
-
-from docarray.typing.proto_register import _register_proto
-from docarray.typing.tensor.abstract_tensor import AbstractTensor
-
-if TYPE_CHECKING:
- from pydantic import BaseConfig
- from pydantic.fields import ModelField
-
- from docarray.computation.numpy_backend import NumpyCompBackend
- from docarray.proto import NdArrayProto
-
-from docarray.base_doc.base_node import BaseNode
-
-T = TypeVar('T', bound='NdArray')
-ShapeT = TypeVar('ShapeT')
-
-tensor_base: type = type(BaseNode)
-
-
-# the mypy error suppression below should not be necessary anymore once the following
-# is released in mypy: https://github.com/python/mypy/pull/14135
-class metaNumpy(AbstractTensor.__parametrized_meta__, tensor_base): # type: ignore
- pass
-
-
-@_register_proto(proto_type_name='ndarray')
-class NdArray(np.ndarray, AbstractTensor, Generic[ShapeT]):
- """
- Subclass of `np.ndarray`, intended for use in a Document.
- This enables (de)serialization from/to protobuf and json, data validation,
- and coersion from compatible types like `torch.Tensor`.
-
- This type can also be used in a parametrized way, specifying the shape of the array.
-
- ---
-
- ```python
- from docarray import BaseDoc
- from docarray.typing import NdArray
- import numpy as np
-
-
- class MyDoc(BaseDoc):
- arr: NdArray
- image_arr: NdArray[3, 224, 224]
- square_crop: NdArray[3, 'x', 'x']
- random_image: NdArray[3, ...] # first dimension is fixed, can have arbitrary shape
-
-
- # create a document with tensors
- doc = MyDoc(
- arr=np.zeros((128,)),
- image_arr=np.zeros((3, 224, 224)),
- square_crop=np.zeros((3, 64, 64)),
- random_image=np.zeros((3, 128, 256)),
- )
- assert doc.image_arr.shape == (3, 224, 224)
-
- # automatic shape conversion
- doc = MyDoc(
- arr=np.zeros((128,)),
- image_arr=np.zeros((224, 224, 3)), # will reshape to (3, 224, 224)
- square_crop=np.zeros((3, 128, 128)),
- random_image=np.zeros((3, 64, 128)),
- )
- assert doc.image_arr.shape == (3, 224, 224)
-
- # !! The following will raise an error due to shape mismatch !!
- from pydantic import ValidationError
-
- try:
- doc = MyDoc(
- arr=np.zeros((128,)),
- image_arr=np.zeros((224, 224)), # this will fail validation
- square_crop=np.zeros((3, 128, 64)), # this will also fail validation
- random_image=np.zeros((4, 64, 128)), # this will also fail validation
- )
- except ValidationError as e:
- pass
- ```
-
- ---
- """
-
- __parametrized_meta__ = metaNumpy
-
- @classmethod
- def __get_validators__(cls):
- # one or more validators may be yielded which will be called in the
- # order to validate the input, each validator will receive as an input
- # the value returned from the previous validator
- yield cls.validate
-
- @classmethod
- def validate(
- cls: Type[T],
- value: Union[T, np.ndarray, List[Any], Tuple[Any], Any],
- field: 'ModelField',
- config: 'BaseConfig',
- ) -> T:
- if isinstance(value, np.ndarray):
- return cls._docarray_from_native(value)
- elif isinstance(value, NdArray):
- return cast(T, value)
- elif isinstance(value, list) or isinstance(value, tuple):
- try:
- arr_from_list: np.ndarray = np.asarray(value)
- return cls._docarray_from_native(arr_from_list)
- except Exception:
- pass # handled below
- else:
- try:
- arr: np.ndarray = np.ndarray(value)
- return cls._docarray_from_native(arr)
- except Exception:
- pass # handled below
- raise ValueError(f'Expected a numpy.ndarray compatible type, got {type(value)}')
-
- @classmethod
- def _docarray_from_native(cls: Type[T], value: np.ndarray) -> T:
- if cls.__unparametrizedcls__: # This is not None if the tensor is parametrized
- return cast(T, value.view(cls.__unparametrizedcls__))
- return value.view(cls)
-
- def _docarray_to_json_compatible(self) -> np.ndarray:
- """
- Convert `NdArray` into a json compatible object
- :return: a representation of the tensor compatible with orjson
- """
- return self.unwrap()
-
- def unwrap(self) -> np.ndarray:
- """
- Return the original ndarray without any memory copy.
-
- The original view rest intact and is still a Document `NdArray`
- but the return object is a pure `np.ndarray` but both object share
- the same memory layout.
-
- ---
-
- ```python
- from docarray.typing import NdArray
- import numpy as np
-
- t1 = NdArray.validate(np.zeros((3, 224, 224)), None, None)
- # here t1 is a docarray NdArray
- t2 = t1.unwrap()
- # here t2 is a pure np.ndarray but t1 is still a Docarray NdArray
- # But both share the same underlying memory
- ```
-
- ---
-
- :return: a `numpy.ndarray`
- """
- return self.view(np.ndarray)
-
- @classmethod
- def from_protobuf(cls: Type[T], pb_msg: 'NdArrayProto') -> 'T':
- """
- Read ndarray from a proto msg
- :param pb_msg:
- :return: a numpy array
- """
- source = pb_msg.dense
- if source.buffer:
- x = np.frombuffer(bytearray(source.buffer), dtype=source.dtype)
- return cls._docarray_from_native(x.reshape(source.shape))
- elif len(source.shape) > 0:
- return cls._docarray_from_native(np.zeros(source.shape))
- else:
- raise ValueError(f'proto message {pb_msg} cannot be cast to a NdArray')
-
- def to_protobuf(self) -> 'NdArrayProto':
- """
- Transform self into a NdArrayProto protobuf message
- """
- from docarray.proto import NdArrayProto
-
- nd_proto = NdArrayProto()
-
- nd_proto.dense.buffer = self.tobytes()
- nd_proto.dense.ClearField('shape')
- nd_proto.dense.shape.extend(list(self.shape))
- nd_proto.dense.dtype = self.dtype.str
-
- return nd_proto
-
- @staticmethod
- def get_comp_backend() -> 'NumpyCompBackend':
- """Return the computational backend of the tensor"""
- from docarray.computation.numpy_backend import NumpyCompBackend
-
- return NumpyCompBackend()
-
- def __class_getitem__(cls, item: Any, *args, **kwargs):
- # see here for mypy bug: https://github.com/python/mypy/issues/14123
- return AbstractTensor.__class_getitem__.__func__(cls, item) # type: ignore
diff --git a/spaces/Swan608/Spaceair/app.py b/spaces/Swan608/Spaceair/app.py
deleted file mode 100644
index 213184a4e2be5569151d1f5af573676a7a1d58ea..0000000000000000000000000000000000000000
--- a/spaces/Swan608/Spaceair/app.py
+++ /dev/null
@@ -1,46 +0,0 @@
-import gradio as gr
-import numpy as np
-import keras
-import os
-
-model = keras.models.load_model("mnist_model.h5")
-
-def rgb2gray(rgb):
-
- return [255] - np.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])
-
-def number_classifier(target):
-
- target = rgb2gray(target).flatten()
-
- inputs = np.array([target])
-
- results = model.predict(inputs)
-
- result_as_dict = {}
-
- for i in range(10):
-
- result_as_dict[str(i)] = float(results[0][i])
-
- return result_as_dict
-
-# def add_two_number(a,b):
-# return str(a+b) + "입니다."
-
-# app = gr.Interface(fn=add_two_number, inputs=["number", "number"], outputs=["text"])
-
-# app.launch()
-
-examples_list = []
-
-for item in os.listdir("examples/"):
- examples_list.append("examples/" + item)
-
-app = gr.Interface(fn=number_classifier,
- inputs=[gr.Image(shape=(28, 28))],
- outputs=[gr.Label(num_top_classes=3)],
- examples=examples_list
- )
-
-app.launch()
\ No newline at end of file
diff --git a/spaces/TRaw/dtet/Dockerfile b/spaces/TRaw/dtet/Dockerfile
deleted file mode 100644
index fb4d04336ede050357a8846aba48ef5c42f13f88..0000000000000000000000000000000000000000
--- a/spaces/TRaw/dtet/Dockerfile
+++ /dev/null
@@ -1,121 +0,0 @@
-ARG MODEL_NAME
-ARG MODEL_PARAMS
-ARG APP_COLOR
-ARG APP_NAME
-
-
-FROM node:19 as chatui-builder
-ARG MODEL_NAME
-ARG MODEL_PARAMS
-ARG APP_COLOR
-ARG APP_NAME
-
-WORKDIR /app
-
-RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
- git gettext && \
- rm -rf /var/lib/apt/lists/*
-
-
-RUN git clone https://github.com/huggingface/chat-ui.git
-
-WORKDIR /app/chat-ui
-
-
-COPY .env.local.template .env.local.template
-
-RUN mkdir defaults
-ADD defaults /defaults
-RUN chmod -R 777 /defaults
-RUN --mount=type=secret,id=MONGODB_URL,mode=0444 \
- MODEL_NAME="${MODEL_NAME:="$(cat /defaults/MODEL_NAME)"}" && export MODEL_NAME \
- && MODEL_PARAMS="${MODEL_PARAMS:="$(cat /defaults/MODEL_PARAMS)"}" && export MODEL_PARAMS \
- && APP_COLOR="${APP_COLOR:="$(cat /defaults/APP_COLOR)"}" && export APP_COLOR \
- && APP_NAME="${APP_NAME:="$(cat /defaults/APP_NAME)"}" && export APP_NAME \
- && MONGODB_URL=$(cat /run/secrets/MONGODB_URL > /dev/null | grep '^' || cat /defaults/MONGODB_URL) && export MONGODB_URL && \
- echo "${MONGODB_URL}" && \
- envsubst < ".env.local.template" > ".env.local" \
- && rm .env.local.template
-
-
-
-RUN --mount=type=cache,target=/app/.npm \
- npm set cache /app/.npm && \
- npm ci
-
-RUN npm run build
-
-FROM ghcr.io/huggingface/text-generation-inference:0.9.4
-
-ARG MODEL_NAME
-ARG MODEL_PARAMS
-ARG APP_COLOR
-ARG APP_NAME
-
-ENV TZ=Europe/Paris \
- PORT=3000
-
-
-
-RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
- gnupg \
- curl \
- gettext && \
- rm -rf /var/lib/apt/lists/*
-COPY entrypoint.sh.template entrypoint.sh.template
-
-RUN mkdir defaults
-ADD defaults /defaults
-RUN chmod -R 777 /defaults
-
-RUN --mount=type=secret,id=MONGODB_URL,mode=0444 \
- MODEL_NAME="${MODEL_NAME:="$(cat /defaults/MODEL_NAME)"}" && export MODEL_NAME \
- && MODEL_PARAMS="${MODEL_PARAMS:="$(cat /defaults/MODEL_PARAMS)"}" && export MODEL_PARAMS \
- && APP_COLOR="${APP_COLOR:="$(cat /defaults/APP_COLOR)"}" && export APP_COLOR \
- && APP_NAME="${APP_NAME:="$(cat /defaults/APP_NAME)"}" && export APP_NAME \
- && MONGODB_URL=$(cat /run/secrets/MONGODB_URL > /dev/null | grep '^' || cat /defaults/MONGODB_URL) && export MONGODB_URL && \
- envsubst < "entrypoint.sh.template" > "entrypoint.sh" \
- && rm entrypoint.sh.template
-
-
-RUN curl -fsSL https://pgp.mongodb.com/server-6.0.asc | \
- gpg -o /usr/share/keyrings/mongodb-server-6.0.gpg \
- --dearmor
-
-RUN echo "deb [ arch=amd64,arm64 signed-by=/usr/share/keyrings/mongodb-server-6.0.gpg ] https://repo.mongodb.org/apt/ubuntu focal/mongodb-org/6.0 multiverse" | tee /etc/apt/sources.list.d/mongodb-org-6.0.list
-
-RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
- mongodb-org && \
- rm -rf /var/lib/apt/lists/*
-
-RUN mkdir -p /data/db
-RUN chown -R 1000:1000 /data
-
-RUN curl -fsSL https://deb.nodesource.com/setup_19.x | /bin/bash -
-
-RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
- nodejs && \
- rm -rf /var/lib/apt/lists/*
-
-RUN mkdir /app
-RUN chown -R 1000:1000 /app
-
-RUN useradd -m -u 1000 user
-
-# Switch to the "user" user
-USER user
-
-ENV HOME=/home/user \
- PATH=/home/user/.local/bin:$PATH
-
-RUN npm config set prefix /home/user/.local
-RUN npm install -g pm2
-
-COPY --from=chatui-builder --chown=1000 /app/chat-ui/node_modules /app/node_modules
-COPY --from=chatui-builder --chown=1000 /app/chat-ui/package.json /app/package.json
-COPY --from=chatui-builder --chown=1000 /app/chat-ui/build /app/build
-
-ENTRYPOINT ["/bin/bash"]
-CMD ["entrypoint.sh"]
-
-
diff --git a/spaces/TachibanaYoshino/AnimeGANv3/app.py b/spaces/TachibanaYoshino/AnimeGANv3/app.py
deleted file mode 100644
index 677f429041bf7da6a7161135726355e315db4712..0000000000000000000000000000000000000000
--- a/spaces/TachibanaYoshino/AnimeGANv3/app.py
+++ /dev/null
@@ -1,108 +0,0 @@
-import os
-import cv2
-import gradio as gr
-import AnimeGANv3_src
-
-
-os.makedirs('output', exist_ok=True)
-
-
-def inference(img_path, Style, if_face=None):
- print(img_path, Style, if_face)
- try:
- img = cv2.imread(img_path)
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- if Style == "AnimeGANv3_Arcane":
- f = "A"
- elif Style == "AnimeGANv3_Trump v1.0":
- f = "T"
- elif Style == "AnimeGANv3_Shinkai":
- f = "S"
- elif Style == "AnimeGANv3_PortraitSketch":
- f = "P"
- elif Style == "AnimeGANv3_Hayao":
- f = "H"
- elif Style == "AnimeGANv3_Disney v1.0":
- f = "D"
- elif Style == "AnimeGANv3_JP_face v1.0":
- f = "J"
- else:
- f = "U"
-
- try:
- det_face = True if if_face=="Yes" else False
- output = AnimeGANv3_src.Convert(img, f, det_face)
- save_path = f"output/out.{img_path.rsplit('.')[-1]}"
- cv2.imwrite(save_path, output[:, :, ::-1])
- return output, save_path
- except RuntimeError as error:
- print('Error', error)
- except Exception as error:
- print('global exception', error)
- return None, None
-
-
-title = "AnimeGANv3: To produce your own animation."
-description = r"""Official online demo for AnimeGANv3. If you like what I'm doing you can tip me on **patreon**.
-It can be used to turn your photos or videos into anime.
-To use it, simply upload your image. It can convert landscape photos to Hayao Miyazaki or Makoto Shinkai style anime, as well as 6 style conversions about human faces.
-If AnimeGANv3 is helpful, please help to ⭐ the Github Repo and recommend it to your friends. 😊
-
-"""
-article = r"""
-
-[](https://github.com/TachibanaYoshino/AnimeGANv3)
-
-### 🔥 Demo
-I. Video to anime (Hayao Style)
-
DOWNLOAD ->->->-> https://urloso.com/2uySbf
'
- else:
- lines[i] = f'
'
- else:
- if i > 0:
- if count % 2 == 1:
- line = line.replace("`", "\`")
- line = line.replace("<", "<")
- line = line.replace(">", ">")
- line = line.replace(" ", " ")
- line = line.replace("*", "*")
- line = line.replace("_", "_")
- line = line.replace("-", "-")
- line = line.replace(".", ".")
- line = line.replace("!", "!")
- line = line.replace("(", "(")
- line = line.replace(")", ")")
- line = line.replace("$", "$")
- lines[i] = "")*/ $("#header_tv_icon").addClass("tv_highlighted"); $("#tv_icon").attr("src","/assets/tv_active.svg") } var navigation = [ '', '' ]; var layout_type = "movie" var items_count = "100" var platfrm = getShemarooCookies().mobile_browser_type if(layout_type == "song" || layout_type == "video" || layout_type == "videos") var items_0 = 1; var stage_padding = 50; var items_576 = 2; var items_768 = 3; var items_992 = 4; var items_1200 = 5 if(items_count > 5 && platfrm != "mobile") $(".see-more").show(); else if(items_count > 2 && platfrm == "mobile") $(".see-more").show(); else var items_0 = 2; var stage_padding = 25; var items_576 = 3; var items_768 = 4; var items_992 = 5; var items_1200 = 7; if(items_count > 7 && platfrm != "mobile") $(".see-more").show(); else if(items_count > 3 && platfrm == "mobile") $(".see-more").show(); $(".shemaroo_player").empty(); $(document).ready(function() if (getShemarooCookies().theme_option == "dark_theme") $(".preview_video_light").remove() $(".preview_video_dark").show() $(".watch_later_light").remove() $(".watch_later_dark").show() $(".share_light").remove() $(".share_dark").show() $(".download_light").remove() $(".download_dark").show() else if (getShemarooCookies().theme_option == "light_theme" ); var list_count = "1" $("#content_info_0").addClass("active") for(var i = 0; i < list_count ; i++) $("#content_info_" + i).click(function() $(".tab_chk").removeClass("active") var data = $(this).data("value").split(",") $("#content_info_"+data[2]).addClass("active") if(data[2] == 0) $("#synopsis_data").show() $('.season_all_results').html(''); else if(data[2] == 1) $("#synopsis_data").hide() $('.season_all_results').html(''); $(".relative-content-scroll").css("padding-bottom", 184); $(".scroll_loader").show(); trailer_list(data[0],data[1]) )function trailer_list(catalog_id,home_link){ $(".relative-content-scroll").css("padding-bottom", 120); $(".scroll_loader").show(); // var item_id = '' $.ajax({ url: "/catalogs/get_trailers", type: "GET", data: catalog_id : catalog_id, item_id : home_link , success: function(response){ $('.season_all_results').html(''); var list_data = ""; var list_items = ""; var trailer_list = response.trailer_list; for (var i=0; i< trailer_list.length; i++){ console.log(trailer_list[i]) var item= trailer_list[i].split("$"); list_data += ''+item[1].split("|")[0]+'
-download Madrsi unlimited Movies and videos Download Here.Madrsi Hd,3gp. mp4 320p and More Videos You Can Download Easyly. tamilrockers and movierulz, tamilgun, filmywap, and pagalworld videos and Movies download.
-DOWNLOAD 🌟 https://tinurli.com/2uwjhy
Download ✓✓✓ https://tinurli.com/2uwkCi
Download ✓ https://tinurli.com/2uwk1u