Datasets:
Updated Readme
Browse files
README.md
CHANGED
|
@@ -49,10 +49,199 @@ dataset = load_dataset("VLR-CVC/ComPAP", skill, split=split)
|
|
| 49 |
```
|
| 50 |
|
| 51 |
<details>
|
|
|
|
| 52 |
<summary>Map to single images</summary>
|
|
|
|
| 53 |
If your model can only process single images, you can render each sample as a single image:
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
</details>
|
| 58 |
|
|
|
|
| 49 |
```
|
| 50 |
|
| 51 |
<details>
|
| 52 |
+
|
| 53 |
<summary>Map to single images</summary>
|
| 54 |
+
|
| 55 |
If your model can only process single images, you can render each sample as a single image:
|
| 56 |
|
| 57 |
+

|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 62 |
+
import numpy as np
|
| 63 |
+
from datasets import Features, Value, Image as ImageFeature
|
| 64 |
+
|
| 65 |
+
class SingleImagePickAPanel:
|
| 66 |
+
def __init__(self, max_size=500, margin=10, label_space=20, font_path="Arial.ttf"):
|
| 67 |
+
self.max_size = max_size
|
| 68 |
+
self.margin = margin
|
| 69 |
+
self.label_space = label_space
|
| 70 |
+
# Add separate font sizes
|
| 71 |
+
self.label_font_size = 20
|
| 72 |
+
self.number_font_size = 24
|
| 73 |
+
|
| 74 |
+
self.font_path = font_path
|
| 75 |
+
|
| 76 |
+
def resize_image(self, img):
|
| 77 |
+
"""Resize image keeping aspect ratio if longest edge > max_size"""
|
| 78 |
+
if max(img.size) > self.max_size:
|
| 79 |
+
ratio = self.max_size / max(img.size)
|
| 80 |
+
new_size = tuple(int(dim * ratio) for dim in img.size)
|
| 81 |
+
return img.resize(new_size, Image.Resampling.LANCZOS)
|
| 82 |
+
return img
|
| 83 |
+
|
| 84 |
+
def create_mask_panel(self, width, height):
|
| 85 |
+
"""Create a question mark panel"""
|
| 86 |
+
mask_panel = Image.new("RGB", (width, height), (200, 200, 200))
|
| 87 |
+
draw = ImageDraw.Draw(mask_panel)
|
| 88 |
+
font_size = int(height * 0.8)
|
| 89 |
+
try:
|
| 90 |
+
font = ImageFont.truetype(self.font_path, font_size)
|
| 91 |
+
except:
|
| 92 |
+
raise ValueError("Font file not found")
|
| 93 |
+
|
| 94 |
+
text = "?"
|
| 95 |
+
bbox = draw.textbbox((0, 0), text, font=font)
|
| 96 |
+
text_x = (width - (bbox[2] - bbox[0])) // 2
|
| 97 |
+
text_y = (height - (bbox[3] - bbox[1])) // 2
|
| 98 |
+
draw.text((text_x, text_y), text, fill="black", font=font)
|
| 99 |
+
return mask_panel
|
| 100 |
+
|
| 101 |
+
def draw_number_on_panel(self, panel, number, font):
|
| 102 |
+
"""Draw number on the bottom of the panel with background"""
|
| 103 |
+
draw = ImageDraw.Draw(panel)
|
| 104 |
+
|
| 105 |
+
# Get text size
|
| 106 |
+
bbox = draw.textbbox((0, 0), str(number), font=font)
|
| 107 |
+
text_width = bbox[2] - bbox[0]
|
| 108 |
+
text_height = bbox[3] - bbox[1]
|
| 109 |
+
|
| 110 |
+
# Calculate position (bottom-right corner)
|
| 111 |
+
padding = 2
|
| 112 |
+
text_x = panel.size[0] - text_width - padding
|
| 113 |
+
text_y = panel.size[1] - text_height - padding
|
| 114 |
+
|
| 115 |
+
# Draw semi-transparent background
|
| 116 |
+
bg_rect = [(text_x - padding, text_y - padding),
|
| 117 |
+
(text_x + text_width + padding, text_y + text_height + padding)]
|
| 118 |
+
draw.rectangle(bg_rect, fill=(255, 255, 255, 180))
|
| 119 |
+
|
| 120 |
+
# Draw text
|
| 121 |
+
draw.text((text_x, text_y), str(number), fill="black", font=font)
|
| 122 |
+
return panel
|
| 123 |
+
|
| 124 |
+
def map_to_single_image(self, examples):
|
| 125 |
+
"""Process a batch of examples from a HuggingFace dataset"""
|
| 126 |
+
single_images = []
|
| 127 |
+
|
| 128 |
+
for i in range(len(examples['sample_id'])):
|
| 129 |
+
# Get context and options for current example
|
| 130 |
+
context = examples['context'][i] if len(examples['context'][i]) > 0 else []
|
| 131 |
+
options = examples['options'][i]
|
| 132 |
+
|
| 133 |
+
# Resize all images
|
| 134 |
+
context = [self.resize_image(img) for img in context]
|
| 135 |
+
options = [self.resize_image(img) for img in options]
|
| 136 |
+
|
| 137 |
+
# Calculate common panel size (use median size to avoid outliers)
|
| 138 |
+
all_panels = context + options
|
| 139 |
+
if len(all_panels) > 0:
|
| 140 |
+
widths = [img.size[0] for img in all_panels]
|
| 141 |
+
heights = [img.size[1] for img in all_panels]
|
| 142 |
+
panel_width = int(np.median(widths))
|
| 143 |
+
panel_height = int(np.median(heights))
|
| 144 |
+
|
| 145 |
+
# Resize all panels to common size
|
| 146 |
+
context = [img.resize((panel_width, panel_height)) for img in context]
|
| 147 |
+
options = [img.resize((panel_width, panel_height)) for img in options]
|
| 148 |
+
|
| 149 |
+
# Create mask panel for sequence filling tasks if needed
|
| 150 |
+
if 'index' in examples and len(context) > 0:
|
| 151 |
+
mask_idx = examples['index'][i]
|
| 152 |
+
mask_panel = self.create_mask_panel(panel_width, panel_height)
|
| 153 |
+
context.insert(mask_idx, mask_panel)
|
| 154 |
+
|
| 155 |
+
# Calculate canvas dimensions based on whether we have context
|
| 156 |
+
if len(context) > 0:
|
| 157 |
+
context_row_width = panel_width * len(context) + self.margin * (len(context) - 1)
|
| 158 |
+
options_row_width = panel_width * len(options) + self.margin * (len(options) - 1)
|
| 159 |
+
canvas_width = max(context_row_width, options_row_width)
|
| 160 |
+
canvas_height = (panel_height * 2 +
|
| 161 |
+
self.label_space * 2)
|
| 162 |
+
else:
|
| 163 |
+
# Only options row for caption_relevance
|
| 164 |
+
canvas_width = panel_width * len(options) + self.margin * (len(options) - 1)
|
| 165 |
+
canvas_height = (panel_height +
|
| 166 |
+
self.label_space)
|
| 167 |
+
|
| 168 |
+
# Create canvas
|
| 169 |
+
final_image = Image.new("RGB", (canvas_width, canvas_height), "white")
|
| 170 |
+
draw = ImageDraw.Draw(final_image)
|
| 171 |
+
|
| 172 |
+
try:
|
| 173 |
+
label_font = ImageFont.truetype(self.font_path, self.label_font_size)
|
| 174 |
+
number_font = ImageFont.truetype(self.font_path, self.number_font_size)
|
| 175 |
+
except:
|
| 176 |
+
raise ValueError("Font file not found")
|
| 177 |
+
|
| 178 |
+
current_y = 0
|
| 179 |
+
|
| 180 |
+
# Add context section if it exists
|
| 181 |
+
if len(context) > 0:
|
| 182 |
+
# Draw "Context" label
|
| 183 |
+
bbox = draw.textbbox((0, 0), "Context", font=label_font)
|
| 184 |
+
text_x = (canvas_width - (bbox[2] - bbox[0])) // 2
|
| 185 |
+
draw.text((text_x, current_y), "Context", fill="black", font=label_font)
|
| 186 |
+
current_y += self.label_space
|
| 187 |
+
|
| 188 |
+
# Paste context panels
|
| 189 |
+
x_offset = (canvas_width - (panel_width * len(context) +
|
| 190 |
+
self.margin * (len(context) - 1))) // 2
|
| 191 |
+
for panel in context:
|
| 192 |
+
final_image.paste(panel, (x_offset, current_y))
|
| 193 |
+
x_offset += panel_width + self.margin
|
| 194 |
+
current_y += panel_height
|
| 195 |
+
|
| 196 |
+
# Add "Options" label
|
| 197 |
+
bbox = draw.textbbox((0, 0), "Options", font=label_font)
|
| 198 |
+
text_x = (canvas_width - (bbox[2] - bbox[0])) // 2
|
| 199 |
+
draw.text((text_x, current_y), "Options", fill="black", font=label_font)
|
| 200 |
+
current_y += self.label_space
|
| 201 |
+
|
| 202 |
+
# Paste options with numbers on panels
|
| 203 |
+
x_offset = (canvas_width - (panel_width * len(options) +
|
| 204 |
+
self.margin * (len(options) - 1))) // 2
|
| 205 |
+
for idx, panel in enumerate(options):
|
| 206 |
+
# Create a copy of the panel to draw on
|
| 207 |
+
panel_with_number = panel.copy()
|
| 208 |
+
if panel_with_number.mode != 'RGBA':
|
| 209 |
+
panel_with_number = panel_with_number.convert('RGBA')
|
| 210 |
+
|
| 211 |
+
# Draw number on panel
|
| 212 |
+
panel_with_number = self.draw_number_on_panel(
|
| 213 |
+
panel_with_number,
|
| 214 |
+
idx,
|
| 215 |
+
number_font
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
# Paste the panel with number
|
| 219 |
+
final_image.paste(panel_with_number, (x_offset, current_y), panel_with_number)
|
| 220 |
+
x_offset += panel_width + self.margin
|
| 221 |
+
|
| 222 |
+
# Convert final_image to PIL Image format (instead of numpy array)
|
| 223 |
+
single_images.append(final_image)
|
| 224 |
+
|
| 225 |
+
# Prepare batch output
|
| 226 |
+
examples['single_image'] = single_images
|
| 227 |
+
|
| 228 |
+
return examples
|
| 229 |
+
|
| 230 |
+
from datasets import load_dataset
|
| 231 |
+
|
| 232 |
+
skill = "sequence_filling" # "sequence_filling", "char_coherence", "visual_closure", "text_closure", "caption_relevance"
|
| 233 |
+
split = "val" # "val", "test"
|
| 234 |
+
dataset = load_dataset("VLR-CVC/ComPAP", skill, split=split)
|
| 235 |
+
|
| 236 |
+
processor = SingleImagePickAPanel()
|
| 237 |
+
dataset = dataset.map(
|
| 238 |
+
processor.map_to_single_image,
|
| 239 |
+
batched=True,
|
| 240 |
+
batch_size=32,
|
| 241 |
+
remove_columns=['context', 'options']
|
| 242 |
+
)
|
| 243 |
+
dataset.save_to_disk(f"ComPAP_{skill}_{split}_single_images")
|
| 244 |
+
```
|
| 245 |
|
| 246 |
</details>
|
| 247 |
|