feat: script
Browse files- makeup-detection-dataset.py +93 -0
makeup-detection-dataset.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datasets
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
_CITATION = """\
|
| 5 |
+
@InProceedings{huggingface:dataset,
|
| 6 |
+
title = {makeup-detection-dataset},
|
| 7 |
+
author = {TrainingDataPro},
|
| 8 |
+
year = {2023}
|
| 9 |
+
}
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
_DESCRIPTION = """\
|
| 13 |
+
The dataset consists of photos featuring the same individuals captured in two
|
| 14 |
+
distinct scenarios - *with and without makeup*. The dataset contains a diverse
|
| 15 |
+
range of individuals with various *ages, ethnicities and genders*. The images
|
| 16 |
+
themselves would be of high quality, ensuring clarity and detail for each
|
| 17 |
+
subject.
|
| 18 |
+
In photos with makeup, it is applied **to only specific parts** of the face,
|
| 19 |
+
such as *eyes, lips, or skin*.
|
| 20 |
+
In photos without makeup, individuals have a bare face with no visible
|
| 21 |
+
cosmetics or beauty enhancements. These images would provide a clear contrast
|
| 22 |
+
to the makeup images, allowing for significant visual analysis.
|
| 23 |
+
"""
|
| 24 |
+
_NAME = 'makeup-detection-dataset'
|
| 25 |
+
|
| 26 |
+
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
| 27 |
+
|
| 28 |
+
_LICENSE = ""
|
| 29 |
+
|
| 30 |
+
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class MakeupDetectionDataset(datasets.GeneratorBasedBuilder):
|
| 34 |
+
"""Small sample of image-text pairs"""
|
| 35 |
+
|
| 36 |
+
def _info(self):
|
| 37 |
+
return datasets.DatasetInfo(
|
| 38 |
+
description=_DESCRIPTION,
|
| 39 |
+
features=datasets.Features({
|
| 40 |
+
'no_makeup': datasets.Image(),
|
| 41 |
+
'with_makeup': datasets.Image(),
|
| 42 |
+
'part': datasets.Value('string'),
|
| 43 |
+
'gender': datasets.Value('string'),
|
| 44 |
+
'age': datasets.Value('int8'),
|
| 45 |
+
'country': datasets.Value('string')
|
| 46 |
+
}),
|
| 47 |
+
supervised_keys=None,
|
| 48 |
+
homepage=_HOMEPAGE,
|
| 49 |
+
citation=_CITATION,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def _split_generators(self, dl_manager):
|
| 53 |
+
no_makeup = dl_manager.download(f"{_DATA}no_makeup.tar.gz")
|
| 54 |
+
with_makeup = dl_manager.download(f"{_DATA}with_makeup.tar.gz")
|
| 55 |
+
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
|
| 56 |
+
no_makeup = dl_manager.iter_archive(no_makeup)
|
| 57 |
+
with_makeup = dl_manager.iter_archive(with_makeup)
|
| 58 |
+
return [
|
| 59 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
| 60 |
+
gen_kwargs={
|
| 61 |
+
"no_makeup": no_makeup,
|
| 62 |
+
'with_makeup': with_makeup,
|
| 63 |
+
'annotations': annotations
|
| 64 |
+
}),
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
def _generate_examples(self, no_makeup, with_makeup, annotations):
|
| 68 |
+
annotations_df = pd.read_csv(annotations, sep=';')
|
| 69 |
+
|
| 70 |
+
for idx, ((image_path, image),
|
| 71 |
+
(mask_path, mask)) in enumerate(zip(no_makeup, with_makeup)):
|
| 72 |
+
yield idx, {
|
| 73 |
+
"no_makeup": {
|
| 74 |
+
"path": image_path,
|
| 75 |
+
"bytes": image.read()
|
| 76 |
+
},
|
| 77 |
+
"with_makeup": {
|
| 78 |
+
"path": mask_path,
|
| 79 |
+
"bytes": mask.read()
|
| 80 |
+
},
|
| 81 |
+
'part':
|
| 82 |
+
annotations_df.loc[annotations_df['no_makeup'].str.lower() ==
|
| 83 |
+
image_path.lower()]['part'].values[0],
|
| 84 |
+
'gender':
|
| 85 |
+
annotations_df.loc[annotations_df['no_makeup'].str.lower() ==
|
| 86 |
+
image_path.lower()]['gender'].values[0],
|
| 87 |
+
'age':
|
| 88 |
+
annotations_df.loc[annotations_df['no_makeup'].str.lower() ==
|
| 89 |
+
image_path.lower()]['age'].values[0],
|
| 90 |
+
'country':
|
| 91 |
+
annotations_df.loc[annotations_df['no_makeup'].str.lower() ==
|
| 92 |
+
image_path.lower()]['country'].values[0]
|
| 93 |
+
}
|