File size: 3,475 Bytes
453eff2
 
30be8b3
 
 
 
 
 
 
 
 
 
 
 
 
453eff2
5e90340
 
 
 
 
 
30be8b3
5e90340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30be8b3
5e90340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30be8b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: cc-by-nc-nd-4.0
tags:
- medical
- Chest X-Ray
- Medicine
- Computer Vision
- Segmentation
- Classification
- Machine Learning
task_categories:
- image-segmentation
- image-to-image
size_categories:
- n<1K
---
# Chest X-ray

The dataset consists of .dcm files containing **X-ray images of the thorax**. The images are **labeled** by the doctors and accompanied by corresponding annotations in JSON format. The annotations provide detailed information about the **organ structures** present in the chest X-ray images. 

![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F8093c5b2d412d4991c0f8f82f5c2736b%2FFrame%2068.png?generation=1703657914061639&alt=media)

# The dataset is created on the basis of [Chest X-Ray Dataset](https://unidata.pro/datasets/chest-x-ray-image-dicom/?utm_source=huggingface-td&utm_medium=referral&utm_campaign=chest-x-rays-dataset)

### Types of diseases and conditions in the dataset:
- **Petrifications**
- **Nodule/mass** 
- **Infiltration/Consolidation** 
- **Fibrosis**
- **Dissemination** 
- **Pleural effusion**
- **Hilar enlargement** 
- **Annular shadows** 
- **Healed rib fracture** 
- **Enlarged medinastium** 
- **Rib fractures** 
- **Pneumothorax**
- **Atelectasis**

## Statistics for the dataset:

![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F5e8aa88e8f8d275f68cb6459428aec32%2FFrame%2069.png?generation=1703660085247344&alt=media)

The dataset aims to aid in the development and evaluation of algorithms for **automated detection and classification** of thoracic organ **abnormalities and diseases**. 

The dataset is valuable for research in **neurology, radiology, and oncology**. It allows the development and evaluation of computer-based algorithms, machine learning models, and deep learning techniques for **automated detection, diagnosis, and classification** of these conditions.

# 💴 For Commercial Usage: Full version of the dataset includes 400+ chest x-rays of people with different conditions, leave a request on **[our website](https://unidata.pro/datasets/chest-x-ray-image-dicom/?utm_source=huggingface-td&utm_medium=referral&utm_campaign=chest-x-rays-dataset)** to buy the dataset

# Content

### The dataset includes:
- **files**: includes x-ray scans in .dcm format,
- **annotations**: includes annotations in JSON format made for files in the previous folder,
- **visualizations**: includes visualizations of the annotations,
- **.csv file**: includes links to the fies and metadata

### File with the extension .csv includes the following information for each media file:

- **dcm_path**: link to access the .dcm file,
- **annotation_path**: link to access the file with annotation in JSON-format,
- **age**: age of the person in the x-ray scan,
- **sex**: gender of the person in the x-ray scan,
- **StudyInstanceUID**: id of the study,
- **Nodule/mass**: wheter nodule/mass is observed,
- **Dissemination**: wheter dissemination is observed,
- **Annular shadows**: wheter annular shadows are observed,
- **Petrifications**: wheter petrifications are observed,
- **Pleural effusion**: wheter pleural effusion is observed

# Medical data might be collected in accordance with your requirements.

**🚀 You can learn more about our high-quality unique datasets [here](https://unidata.pro/datasets/chest-x-ray-image-dicom/?utm_source=huggingface-td&utm_medium=referral&utm_campaign=chest-x-rays-dataset)**