VideoEval-Pro / README.md
wren93's picture
Update README.md
a1e1233 verified
|
raw
history blame
4.63 kB
---
dataset_info:
features:
- name: video
dtype: string
- name: question
dtype: string
- name: options
list: string
- name: answer
dtype: string
- name: answer_text
dtype: string
- name: meta
dtype: string
- name: source
dtype: string
- name: qa_subtype
dtype: string
- name: qa_type
dtype: string
splits:
- name: test
num_bytes: 515277
num_examples: 1289
download_size: 174366
dataset_size: 515277
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
---
# VideoEval-Pro
VideoEval-Pro is a robust and realistic long video understanding benchmark containing open-ended, short-answer QA problems. The dataset is constructed by reformatting questions from four existing long video understanding MCQ benchmarks: Video-MME, MLVU, LVBench, and LongVideoBench into free-form questions.
The evaluation code and scripts are available at: [TIGER-AI-Lab/VideoEval-Pro](https://github.com/TIGER-AI-Lab/VideoEval-Pro)
## Task Types
VideoEval-Pro contains various types of video understanding tasks. The distribution of task types is shown below:
![Task Type Distribution](assets/task_types.png)
## Dataset Structure
Each example in the dataset contains:
- `video`: Name (path) of the video file
- `question`: The question about the video content
- `options`: Original options from the source benchmark
- `answer`: The correct MCQ answer
- `answer_text`: The correct free-form answer
- `meta`: Additional metadata from the source benchmark
- `source`: Source benchmark
- `qa_subtype`: Question task subtype
- `qa_type`: Question task type
## Evaluation Steps
1. **Download and Prepare Videos**
```bash
# Navigate to videos directory
cd videos
# Merge all split tar.gz files into a single archive
cat videos_part_*.tar.gz > videos_merged.tar.gz
# Extract the merged archive
tar -xzf videos_merged.tar.gz
# [Optional] Clean up the split files and merged archive
rm videos_part_*.tar.gz videos_merged.tar.gz
# After extraction, you will get a directory containing all videos
# The path to this directory will be used as --video_root in evaluation
# For example: 'VideoEval-Pro/videos'
```
2. **[Optional] Pre-extract Frames**
To improve efficiency, you can pre-extract frames from videos. The extracted frames should be organized as follows:
```
frames_root/
├── video_name_1/ # Directory name is thevideo name
│ ├── 000001.jpg # Frame images
│ ├── 000002.jpg
│ └── ...
├── video_name_2/
│ ├── 000001.jpg
│ ├── 000002.jpg
│ └── ...
└── ...
```
After frame extraction, the path to the frames will be used as `--frames_root`. Set `--using_frames True` when running the evaluation script.
3. **Setup Evaluation Environment**
```bash
# Clone the repository from the GitHub repository
git clone https://github.com/TIGER-AI-Lab/VideoEval-Pro
cd VideoEval-Pro
# Create conda environment from requirements.txt (there are different requirements files for different models)
conda create -n videoevalpro --file requirements.txt
conda activate videoevalpro
```
4. **Run Evaluation**
```bash
cd VideoEval-Pro
# Set PYTHONPATH
export PYTHONPATH=.
# Run evaluation script with the following parameters:
# --video_root: Path to video files folder
# --frames_root: Path to video frames folder [For using_frames]
# --output_path: Path to save output results
# --using_frames: Whether to use pre-extracted frames
# --model_path: Path to model
# --device: Device to run inference on
# --num_frames: Number of frames to sample from video
# --max_retries: Maximum number of retries for failed inference
# --num_threads: Number of threads for parallel processing
python tools/*_chat.py \
--video_root <path_to_videos> \
--frames_root <path_to_frames> \
--output_path <path_to_save_results> \
--using_frames <True/False> \
--model_path <model_name_or_path> \
--device <device> \
--num_frames <number_of_frames> \
--max_retries <max_retries> \
--num_threads <num_threads>
E.g.:
python tools/qwen_chat.py \
--video_root ./videos \
--frames_root ./frames \
--output_path ./results/qwen_results.jsonl \
--using_frames False \
--model_path Qwen/Qwen2-VL-7B-Instruct \
--device cuda \
--num_frames 32 \
--max_retries 10 \
--num_threads 1
```