File size: 5,436 Bytes
f5f3712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b97bedb
35b5ef3
f5f3712
a1e1233
 
 
b97bedb
a1e1233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a38a853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
dataset_info:
  features:
  - name: video
    dtype: string
  - name: question
    dtype: string
  - name: options
    list: string
  - name: answer
    dtype: string
  - name: answer_text
    dtype: string
  - name: meta
    dtype: string
  - name: source
    dtype: string
  - name: qa_subtype
    dtype: string
  - name: qa_type
    dtype: string
  splits:
  - name: test
    num_bytes: 515277
    num_examples: 1289
  download_size: 174366
  dataset_size: 515277
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
task_categories:
- video-text-to-text
---

# VideoEval-Pro

VideoEval-Pro is a robust and realistic long video understanding benchmark containing open-ended, short-answer QA problems. The dataset is constructed by reformatting questions from four existing long video understanding MCQ benchmarks: Video-MME, MLVU, LVBench, and LongVideoBench into free-form questions. The paper can be found [here](https://huggingface.co/papers/2505.14640).

The evaluation code and scripts are available at: [TIGER-AI-Lab/VideoEval-Pro](https://github.com/TIGER-AI-Lab/VideoEval-Pro)


## Dataset Structure
Each example in the dataset contains:
- `video`: Name (path) of the video file
- `question`: The question about the video content
- `options`: Original options from the source benchmark
- `answer`: The correct MCQ answer
- `answer_text`: The correct free-form answer
- `meta`: Additional metadata from the source benchmark
- `source`: Source benchmark
- `qa_subtype`: Question task subtype
- `qa_type`: Question task type

## Evaluation Steps

1. **Download and Prepare Videos**
   ```bash
   # Navigate to videos directory
   cd videos
   
   # Merge all split tar.gz files into a single archive
   cat videos_part_*.tar.gz > videos_merged.tar.gz
   
   # Extract the merged archive
   tar -xzf videos_merged.tar.gz
   
   # [Optional] Clean up the split files and merged archive
   rm videos_part_*.tar.gz videos_merged.tar.gz
   
   # After extraction, you will get a directory containing all videos
   # The path to this directory will be used as --video_root in evaluation
   # For example: 'VideoEval-Pro/videos'
   ```

2. **[Optional] Pre-extract Frames**
   To improve efficiency, you can pre-extract frames from videos. The extracted frames should be organized as follows:
   ```
   frames_root/
   ├── video_name_1/              # Directory name is thevideo name
   │   ├── 000001.jpg             # Frame images
   │   ├── 000002.jpg
   │   └── ...
   ├── video_name_2/
   │   ├── 000001.jpg
   │   ├── 000002.jpg
   │   └── ...
   └── ...
   ```

   After frame extraction, the path to the frames will be used as `--frames_root`. Set `--using_frames True` when running the evaluation script.

3. **Setup Evaluation Environment**
   ```bash
   # Clone the repository from the GitHub repository
   git clone https://github.com/TIGER-AI-Lab/VideoEval-Pro
   cd VideoEval-Pro
   
   # Create conda environment from requirements.txt (there are different requirements files for different models)
   conda create -n videoevalpro --file requirements.txt
   conda activate videoevalpro
   ```

4. **Run Evaluation**
   ```bash
   cd VideoEval-Pro
   
   # Set PYTHONPATH
   export PYTHONPATH=.
   
   # Run evaluation script with the following parameters:
   # --video_root: Path to video files folder
   # --frames_root: Path to video frames folder [For using_frames]
   # --output_path: Path to save output results
   # --using_frames: Whether to use pre-extracted frames
   # --model_path: Path to model
   # --device: Device to run inference on
   # --num_frames: Number of frames to sample from video
   # --max_retries: Maximum number of retries for failed inference
   # --num_threads: Number of threads for parallel processing
   
   python tools/*_chat.py \
       --video_root <path_to_videos> \
       --frames_root <path_to_frames> \
       --output_path <path_to_save_results> \
       --using_frames <True/False> \
       --model_path <model_name_or_path> \
       --device <device> \
       --num_frames <number_of_frames> \
       --max_retries <max_retries> \
       --num_threads <num_threads>

   E.g.:
   python tools/qwen_chat.py \
       --video_root ./videos \
       --frames_root ./frames \
       --output_path ./results/qwen_results.jsonl \
       --using_frames False \
       --model_path Qwen/Qwen2-VL-7B-Instruct \
       --device cuda \
       --num_frames 32 \
       --max_retries 10 \
       --num_threads 1
   ```

5. **Judge the results**
   ```bash
   cd VideoEval-Pro
   
   # Set PYTHONPATH
   export PYTHONPATH=.
   
   # Run judge script *gpt4o_judge.py* with the following parameters:
   # --input_path: Path to save output results
   # --output_path: Path to judged results
   # --model_name: Version of the judge model
   # --num_threads: Number of threads for parallel processing
   
   python tools/gpt4o_judge.py \
       --input_path <path_to_saved_results> \
       --output_path <path_to_judged_results> \
       --model_name <model_version> \
       --num_threads <num_threads>

   E.g.:
   python tools/gpt4o_judge.py \
       --input_path ./results/qwen_results.jsonl \
       --output_path ./results/qwen_results_judged.jsonl \
       --model_name gpt-4o-2024-08-06 \
       --num_threads 1
   ```
   **Note: the released results are judged by  *gpt-4o-2024-08-06***