nielsr HF Staff commited on
Commit
f49f3d9
·
verified ·
1 Parent(s): 7a7eea7

Improve dataset card: Add paper and code links, sample usage, and refine tags

Browse files

This PR enhances the dataset card for "ABC-Pretraining-Data" by:

- Updating the initial summary to better describe the dataset's purpose.
- Adding explicit links to the official Hugging Face paper page (`https://huggingface.co/papers/2503.00329`) and the GitHub repository (`https://github.com/TIGER-AI-Lab/ABC`).
- Including a "Sample Usage" section based on the project's GitHub README, guiding users on how to quickly get started with the model and fetch the dataset.
- Expanding the metadata tags with `multimodal`, `vision-language-model`, and `retrieval` to improve discoverability and accurately reflect the dataset's context within the ABC model.

These changes provide more comprehensive and accessible information for users interacting with the dataset.

Files changed (1) hide show
  1. README.md +36 -10
README.md CHANGED
@@ -33,31 +33,57 @@ dataset_info:
33
  dataset_size: 2289772991
34
  tags:
35
  - visual
 
 
 
36
  ---
37
 
38
  ## ABC Pretraining Data
39
 
40
- <!-- Provide a quick summary of the dataset. -->
41
- This the the pretraining data for ABC. This dataset is derived from Google's [Conceptual Captions](https://ai.google.com/research/ConceptualCaptions/) dataset.
42
- The each item in the dataset contain a URL where the corresponding image can be downloaded and mined negatives for each item. Full dataaset is ~300 GB of images. For a detailed description of how we mined the negatives please check out our ppaer ;).
43
- **Update** I have added the images to this repository, for an example of how to use and download this dataset see our [repository](https://github.com/TIGER-AI-Lab/ABC).
44
 
45
- ## Paper and Website
 
 
46
 
47
- For more information, please refer to [Website](https://tiger-ai-lab.github.io/ABC/).
48
 
49
- ## Citation
 
 
50
 
51
- If you find any of our work helpful please connsider citing:
52
 
 
 
 
 
 
 
 
 
 
 
53
  ```
 
 
 
 
 
 
 
 
 
 
 
 
54
  @misc{schneider2025abcachievingbettercontrol,
55
- title={ABC: Achieving Better Control of Multimodal Embeddings using VLMs},
56
  author={Benjamin Schneider and Florian Kerschbaum and Wenhu Chen},
57
  year={2025},
58
  eprint={2503.00329},
59
  archivePrefix={arXiv},
60
  primaryClass={cs.CV},
61
- url={https://arxiv.org/abs/2503.00329},
62
  }
63
  ```
 
33
  dataset_size: 2289772991
34
  tags:
35
  - visual
36
+ - multimodal
37
+ - vision-language-model
38
+ - retrieval
39
  ---
40
 
41
  ## ABC Pretraining Data
42
 
43
+ This dataset contains the pretraining data for ABC, an open-source multimodal embedding model that uses a vision-language model backbone to deeply integrate image features with natural language instructions, advancing the state of visual embeddings with natural language control.
 
 
 
44
 
45
+ This dataset is derived from Google's [Conceptual Captions](https://ai.google.com/research/ConceptualCaptions/) dataset.
46
+ Each item in the dataset contains a URL where the corresponding image can be downloaded and mined negatives for each item. The full dataset is ~300 GB of images. For a detailed description of how we mined the negatives, please check out our paper.
47
+ **Update**: The images have been added to this repository. For an example of how to use and download this dataset, see our [repository](https://github.com/TIGER-AI-Lab/ABC).
48
 
49
+ ## Paper, Project Page, and Code
50
 
51
+ - Paper: [ABC: Achieving Better Control of Multimodal Embeddings using VLMs](https://huggingface.co/papers/2503.00329)
52
+ - Project Page: [https://tiger-ai-lab.github.io/ABC/](https://tiger-ai-lab.github.io/ABC/)
53
+ - Code: [https://github.com/TIGER-AI-Lab/ABC](https://github.com/TIGER-AI-Lab/ABC)
54
 
55
+ ## Sample Usage
56
 
57
+ ### Quick Start
58
+ First, install the necessary dependencies by cloning the repository and installing requirements:
59
+ ```bash
60
+ git clone https://github.com/TIGER-AI-Lab/ABC
61
+ cd ABC
62
+ pip install -r requirements.txt
63
+ ```
64
+ Then, you can start making multimodal embeddings:
65
+ ```python
66
+ python -i ./quick_start.py
67
  ```
68
+
69
+ ### Fetching Datasets from 🤗 Hub
70
+ Our datasets are hosted on HuggingFace Hub. The text data and dataset metadata can be fetched using HF's `load_dataset` utility.
71
+ To fetch the images from our datasets, we provide scripts in the `fetch_datasets` directory.
72
+ These scripts will pull the pretraining/finetuning image data off the hub and unpack them in your huggingface datasets cache (under a directory called `tigerlab`).
73
+ Run `python ./fetch_datasets/pretrain.py` to get the pretraining dataset and `python ./fetch_datasets/instruct.py` to get the finetuning dataset, respectively.
74
+
75
+ ## Citation
76
+
77
+ If you find any of our work helpful, please consider citing:
78
+
79
+ ```bibtex
80
  @misc{schneider2025abcachievingbettercontrol,
81
+ title={ABC: Achieving Better Control of Multimodal Embeddings using VLMs},
82
  author={Benjamin Schneider and Florian Kerschbaum and Wenhu Chen},
83
  year={2025},
84
  eprint={2503.00329},
85
  archivePrefix={arXiv},
86
  primaryClass={cs.CV},
87
+ url={https://arxiv.org/abs/2503.00329},
88
  }
89
  ```