Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
DOI:
Daniel Campos
commited on
Commit
·
81768e5
1
Parent(s):
be2b266
README
Browse files
README.md
CHANGED
|
@@ -42,9 +42,69 @@ Or you can also stream it without downloading it before:
|
|
| 42 |
from datasets import load_dataset
|
| 43 |
docs = load_dataset("Snowflake/msmarco-v2.1-snowflake-arctic-embed-l", split="train", streaming=True)
|
| 44 |
for doc in docs:
|
| 45 |
-
doc_id =
|
| 46 |
-
|
| 47 |
-
header = doc['header']
|
| 48 |
text = doc['text']
|
| 49 |
-
emb = doc['
|
| 50 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
from datasets import load_dataset
|
| 43 |
docs = load_dataset("Snowflake/msmarco-v2.1-snowflake-arctic-embed-l", split="train", streaming=True)
|
| 44 |
for doc in docs:
|
| 45 |
+
doc_id = j['docid']
|
| 46 |
+
url = doc['url']
|
|
|
|
| 47 |
text = doc['text']
|
| 48 |
+
emb = doc['embedding']
|
| 49 |
```
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
Note, The full dataset corpus is ~ 620GB so it will take a while to download and may not fit on some devices/
|
| 53 |
+
|
| 54 |
+
## Search
|
| 55 |
+
A full search example (on the first 1,000 paragraphs):
|
| 56 |
+
```python
|
| 57 |
+
from datasets import load_dataset
|
| 58 |
+
import torch
|
| 59 |
+
from transformers import AutoModel, AutoTokenizer
|
| 60 |
+
import numpy as np
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
top_k = 100
|
| 64 |
+
docs_stream = load_dataset("Snowflake/msmarco-v2.1-snowflake-arctic-embed-l",split="train", streaming=True)
|
| 65 |
+
|
| 66 |
+
docs = []
|
| 67 |
+
doc_embeddings = []
|
| 68 |
+
|
| 69 |
+
for doc in docs_stream:
|
| 70 |
+
docs.append(doc)
|
| 71 |
+
doc_embeddings.append(doc['embedding'])
|
| 72 |
+
if len(docs) >= top_k:
|
| 73 |
+
break
|
| 74 |
+
|
| 75 |
+
doc_embeddings = np.asarray(doc_embeddings)
|
| 76 |
+
|
| 77 |
+
tokenizer = AutoTokenizer.from_pretrained('Snowflake/snowflake-arctic-embed-l')
|
| 78 |
+
model = AutoModel.from_pretrained('Snowflake/snowflake-arctic-embed-l', add_pooling_layer=False)
|
| 79 |
+
model.eval()
|
| 80 |
+
|
| 81 |
+
query_prefix = 'Represent this sentence for searching relevant passages: '
|
| 82 |
+
queries = ['how do you clean smoke off walls']
|
| 83 |
+
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
|
| 84 |
+
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
| 85 |
+
|
| 86 |
+
# Compute token embeddings
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
query_embeddings = model(**query_tokens)[0][:, 0]
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# normalize embeddings
|
| 92 |
+
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
|
| 93 |
+
doc_embeddings = torch.nn.functional.normalize(doc_embeddings, p=2, dim=1)
|
| 94 |
+
|
| 95 |
+
# Compute dot score between query embedding and document embeddings
|
| 96 |
+
dot_scores = np.matmul(query_embeddings, doc_embeddings.transpose())[0]
|
| 97 |
+
top_k_hits = np.argpartition(dot_scores, -top_k)[-top_k:].tolist()
|
| 98 |
+
|
| 99 |
+
# Sort top_k_hits by dot score
|
| 100 |
+
top_k_hits.sort(key=lambda x: dot_scores[x], reverse=True)
|
| 101 |
+
|
| 102 |
+
# Print results
|
| 103 |
+
print("Query:", queries[0])
|
| 104 |
+
for doc_id in top_k_hits:
|
| 105 |
+
print(docs[doc_id]['doc_id'])
|
| 106 |
+
print(docs[doc_id]['text'])
|
| 107 |
+
print(docs[doc_id]['url'], "\n")
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
|