Update README.md
Browse files
README.md
CHANGED
|
@@ -17,6 +17,7 @@ size_categories:
|
|
| 17 |
# Epsilon-Transformers Belief Analysis Dataset
|
| 18 |
|
| 19 |
This dataset contains trained neural network models and their corresponding belief state regression analysis from the Epsilon-Transformers project. The models were trained on four different stochastic processes and analyzed for their ability to learn and represent belief states.
|
|
|
|
| 20 |
|
| 21 |
## Dataset Structure
|
| 22 |
|
|
@@ -61,92 +62,13 @@ epsilon-transformers-belief-analysis/
|
|
| 61 |
| 20250421221507 | 0 | Transformer | Moon Process | Transformer trained on Moon Process |
|
| 62 |
| 20250422023003 | 1 | Transformer | FRDN | Transformer trained on FRDN |
|
| 63 |
|
| 64 |
-
## Process Descriptions
|
| 65 |
-
|
| 66 |
-
### Mess3 (Classical Process)
|
| 67 |
-
A classical stochastic process used as a baseline for comparison with quantum processes.
|
| 68 |
-
|
| 69 |
-
### FRDN (Finite Random Dynamics Networks)
|
| 70 |
-
A quantum process representing finite random dynamics networks, modeling quantum systems with specific structural properties.
|
| 71 |
-
|
| 72 |
-
### Bloch Walk
|
| 73 |
-
A quantum random walk process on the Bloch sphere, representing quantum state evolution in a geometric framework.
|
| 74 |
-
|
| 75 |
-
### Moon Process
|
| 76 |
-
A post-quantum stochastic process that explores computational mechanics beyond standard quantum frameworks.
|
| 77 |
-
|
| 78 |
-
## Model Architectures
|
| 79 |
-
|
| 80 |
-
### RNN Models (LSTM, GRU, RNN)
|
| 81 |
-
- **Layers**: 4
|
| 82 |
-
- **Hidden Units**: 64
|
| 83 |
-
- **Direction**: Unidirectional
|
| 84 |
-
- **Configuration**: L4_H64_uni
|
| 85 |
-
|
| 86 |
-
### Transformer Models
|
| 87 |
-
- **Layers**: 4
|
| 88 |
-
- **Attention Heads**: 4
|
| 89 |
-
- **Head Dimension**: 16
|
| 90 |
-
- **Model Dimension**: 64
|
| 91 |
-
- **Configuration**: L4_H4_DH16_DM64
|
| 92 |
-
|
| 93 |
## File Formats
|
| 94 |
|
| 95 |
### Model Files (.pt)
|
| 96 |
-
|
| 97 |
|
| 98 |
### Analysis Files (.joblib)
|
| 99 |
Joblib-serialized files containing:
|
| 100 |
- **checkpoint_*.joblib**: Regression analysis results mapping activations to belief states
|
| 101 |
- **ground_truth_data.joblib**: True belief states and probabilities for the neural network data
|
| 102 |
-
- **markov3_*.joblib**: Classical Markov model comparisons and baselines
|
| 103 |
-
|
| 104 |
-
## Usage
|
| 105 |
-
|
| 106 |
-
### Loading Models
|
| 107 |
-
|
| 108 |
-
```python
|
| 109 |
-
import torch
|
| 110 |
-
from pathlib import Path
|
| 111 |
-
|
| 112 |
-
# Load a model checkpoint
|
| 113 |
-
model_path = Path("models/20241121152808_57/4075724800.pt")
|
| 114 |
-
checkpoint = torch.load(model_path, map_location='cpu')
|
| 115 |
-
```
|
| 116 |
-
|
| 117 |
-
### Loading Analysis Data
|
| 118 |
-
|
| 119 |
-
```python
|
| 120 |
-
import joblib
|
| 121 |
-
from pathlib import Path
|
| 122 |
-
|
| 123 |
-
# Load regression analysis results
|
| 124 |
-
analysis_path = Path("analysis/20241121152808_57/checkpoint_4075724800.joblib")
|
| 125 |
-
analysis_data = joblib.load(analysis_path)
|
| 126 |
-
|
| 127 |
-
# Access layer-wise regression metrics
|
| 128 |
-
for layer, metrics in analysis_data.items():
|
| 129 |
-
print(f"Layer {layer} RMSE: {metrics['rmse']}")
|
| 130 |
-
```
|
| 131 |
-
|
| 132 |
-
## Citation
|
| 133 |
-
|
| 134 |
-
If you use this dataset in your research, please cite:
|
| 135 |
-
|
| 136 |
-
```bibtex
|
| 137 |
-
@misc{epsilon-transformers-belief-analysis,
|
| 138 |
-
title={Epsilon-Transformers Belief Analysis Dataset},
|
| 139 |
-
author={[Your Name]},
|
| 140 |
-
year={2024},
|
| 141 |
-
howpublished={Hugging Face Datasets},
|
| 142 |
-
url={https://huggingface.co/datasets/[your-username]/epsilon-transformers-belief-analysis}
|
| 143 |
-
}
|
| 144 |
-
```
|
| 145 |
-
|
| 146 |
-
## License
|
| 147 |
-
|
| 148 |
-
[Specify your license here]
|
| 149 |
-
|
| 150 |
-
## Contact
|
| 151 |
-
|
| 152 |
-
[Your contact information]
|
|
|
|
| 17 |
# Epsilon-Transformers Belief Analysis Dataset
|
| 18 |
|
| 19 |
This dataset contains trained neural network models and their corresponding belief state regression analysis from the Epsilon-Transformers project. The models were trained on four different stochastic processes and analyzed for their ability to learn and represent belief states.
|
| 20 |
+
See https://github.com/adamimos/epsilon-transformers/tree/quantum-public for codebase which generated this data.
|
| 21 |
|
| 22 |
## Dataset Structure
|
| 23 |
|
|
|
|
| 62 |
| 20250421221507 | 0 | Transformer | Moon Process | Transformer trained on Moon Process |
|
| 63 |
| 20250422023003 | 1 | Transformer | FRDN | Transformer trained on FRDN |
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
## File Formats
|
| 66 |
|
| 67 |
### Model Files (.pt)
|
| 68 |
+
Transformerlens (for transformers) or Pytorch (for RNNs) model checkpoints containing trained model weights and optimizer states.
|
| 69 |
|
| 70 |
### Analysis Files (.joblib)
|
| 71 |
Joblib-serialized files containing:
|
| 72 |
- **checkpoint_*.joblib**: Regression analysis results mapping activations to belief states
|
| 73 |
- **ground_truth_data.joblib**: True belief states and probabilities for the neural network data
|
| 74 |
+
- **markov3_*.joblib**: Classical Markov model comparisons and baselines
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|