File size: 14,385 Bytes
f26fa93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# Bring Your Own Hardware
This tutorial will explain how to integrate your own robot design into the LeRobot ecosystem and have it access all of our tools (data collection, control pipelines, policy training and inference).
To that end, we provide the [`Robot`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robots/robot.py) base class in the LeRobot which specifies a standard interface for physical robot integration. Let's see how to implement it.
## Prerequisites
- Your own robot which exposes a communication interface (e.g. serial, CAN, TCP)
- A way to read sensor data and send motor commands programmatically, e.g. manufacturer's SDK or API, or your own protocol implementation.
- LeRobot installed in your environment. Follow our [Installation Guide](./installation).
## Choose your motors
If you're using Feetech or Dynamixel motors, LeRobot provides built-in bus interfaces:
- [`FeetechMotorsBus`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/motors/feetech/feetech.py) – for controlling Feetech servos
- [`DynamixelMotorsBus`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/motors/dynamixel/dynamixel.py) – for controlling Dynamixel servos
Please refer to the [`MotorsBus`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/motors/motors_bus.py) abstract class to learn about its API.
For a good example of how it can be used, you can have a look at our own [SO101 follower implementation](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robots/so101_follower/so101_follower.py)
Use these if compatible. Otherwise, you'll need to find or write a Python interface (not covered in this tutorial):
- Find an existing SDK in Python (or use bindings to C/C++)
- Or implement a basic communication wrapper (e.g., via pyserial, socket, or CANopen)
You're not alone—many community contributions use custom boards or firmware!
For Feetech and Dynamixel, we currently support these servos:
- Feetech:
- STS & SMS series (protocol 0): `sts3215`, `sts3250`, `sm8512bl`
- SCS series (protocol 1): `scs0009`
- Dynamixel (protocol 2.0 only): `xl330-m077`, `xl330-m288`, `xl430-w250`, `xm430-w350`, `xm540-w270`, `xc430-w150`
If you are using Feetech or Dynamixel servos that are not in this list, you can add those in the [Feetech table](https://github.com/huggingface/lerobot/blob/main/lerobot/common/motors/feetech/tables.py) or [Dynamixel table](https://github.com/huggingface/lerobot/blob/main/lerobot/common/motors/dynamixel/tables.py). Depending on the model, this will require you to add model-specific information. In most cases though, there shouldn't be a lot of additions to do.
In the next sections, we'll use a `FeetechMotorsBus` as the motors interface for the examples. Replace it and adapt to your motors if necessary.
## Step 1: Subclass the `Robot` Interface
You’ll first need to specify the config class and a string identifier (`name`) for your robot. If your robot has special needs that you'd like to be able to change easily, it should go here (e.g. port/address, baudrate).
Here, we'll add the port name and one camera by default for our robot:
```python
from dataclasses import dataclass, field
from lerobot.common.cameras import CameraConfig
from lerobot.common.cameras.opencv import OpenCVCameraConfig
from lerobot.common.robots import RobotConfig
@RobotConfig.register_subclass("my_cool_robot")
@dataclass
class MyCoolRobotConfig(RobotConfig):
port: str
cameras: dict[str, CameraConfig] = field(
default_factory={
"cam_1": OpenCVCameraConfig(
index_or_path=2,
fps=30,
width=480,
height=640,
),
}
)
```
Have a look at our [Cameras tutorial](./cameras) to understand how to detect and add your camera.
Next, we'll create our actual robot class which inherits from `Robot`. This abstract class defines a contract you must follow for your robot to be usable with the rest of the LeRobot tools.
Here we'll create a simple 5-DoF robot with one camera. It could be a simple arm but notice that the `Robot` abstract class does not assume anything on your robot's form factor. You can let you imagination run wild when designing new robots!
```python
from lerobot.common.cameras import make_cameras_from_configs
from lerobot.common.motors import Motor, MotorNormMode
from lerobot.common.motors.feetech import FeetechMotorsBus
from lerobot.common.robots import Robot
class MyCoolRobot(Robot):
config_class = MyCoolRobotConfig
name = "my_cool_robot"
def __init__(self, config: MyCoolRobotConfig):
super().__init__(config)
self.bus = FeetechMotorsBus(
port=self.config.port,
motors={
"joint_1": Motor(1, "sts3250", MotorNormMode.RANGE_M100_100),
"joint_2": Motor(2, "sts3215", MotorNormMode.RANGE_M100_100),
"joint_3": Motor(3, "sts3215", MotorNormMode.RANGE_M100_100),
"joint_4": Motor(4, "sts3215", MotorNormMode.RANGE_M100_100),
"joint_5": Motor(5, "sts3215", MotorNormMode.RANGE_M100_100),
},
calibration=self.calibration,
)
self.cameras = make_cameras_from_configs(config.cameras)
```
## Step 2: Define Observation and Action Features
These two properties define the *interface contract* between your robot and tools that consume it (such as data collection or learning pipelines).
> [!WARNING]
> Note that these properties must be callable even if the robot is not yet connected, so avoid relying on runtime hardware state to define them.
### `observation_features`
This property should return a dictionary describing the structure of sensor outputs from your robot. The keys match what `get_observation()` returns, and the values describe either the shape (for arrays/images) or the type (for simple values).
Example for our 5-DoF arm with one camera:
```python
@property
def _motors_ft(self) -> dict[str, type]:
return {
"joint_1.pos": float,
"joint_2.pos": float,
"joint_3.pos": float,
"joint_4.pos": float,
"joint_5.pos": float,
}
@property
def _cameras_ft(self) -> dict[str, tuple]:
return {
cam: (self.cameras[cam].height, self.cameras[cam].width, 3) for cam in self.cameras
}
@property
def observation_features(self) -> dict:
return {**self._motors_ft, **self._cameras_ft}
```
In this case, observations consist of a simple dict storing each motor's position and a camera image.
### `action_features`
This property describes the commands your robot expects via `send_action()`. Again, keys must match the expected input format, and values define the shape/type of each command.
Here, we simply use the same joints proprioceptive features (`self._motors_ft`) as with `observation_features`: the action sent will simply the goal position for each motor.
```python
def action_features(self) -> dict:
return self._motors_ft
```
## Step 3: Handle Connection and Disconnection
These methods should handle opening and closing communication with your hardware (e.g. serial ports, CAN interfaces, USB devices, cameras).
### `is_connected`
This property should simply reflect that communication with the robot's hardware is established. When this property is `True`, it should be possible to read and write to the hardware using `get_observation()` and `send_action()`.
```python
@property
def is_connected(self) -> bool:
return self.bus.is_connected and all(cam.is_connected for cam in self.cameras.values())
```
### `connect()`
This method should establish communication with the hardware. Moreover, if your robot needs calibration and is not calibrated, it should start a calibration procedure by default. If your robot needs some specific configuration, this should also be called here.
```python
def connect(self, calibrate: bool = True) -> None:
self.bus.connect()
if not self.is_calibrated and calibrate:
self.calibrate()
for cam in self.cameras.values():
cam.connect()
self.configure()
```
### `disconnect()`
This method should gracefully terminate communication with the hardware: free any related resources (threads or processes), close ports, etc.
Here, we already handle this in our `MotorsBus` and `Camera` classes so we just need to call their own `disconnect()` methods:
```python
def disconnect(self) -> None:
self.bus.disconnect()
for cam in self.cameras.values():
cam.disconnect()
```
## Step 4: Support Calibration and Configuration
LeRobot supports saving and loading calibration data automatically. This is useful for joint offsets, zero positions, or sensor alignment.
> Note that depending on your hardware, this may not apply. If that's the case, you can simply leave these methods as no-ops:
> ```python
> @property
> def is_calibrated(self) -> bool:
> return True
>
> def calibrate(self) -> None:
> pass
> ```
### `is_calibrated`
This should reflect whether your robot has the required calibration loaded.
```python
@property
def is_calibrated(self) -> bool:
return self.bus.is_calibrated
```
### `calibrate()`
The goal of the calibration is twofold:
- Know the physical range of motion of each motors in order to only send commands within this range.
- Normalize raw motors positions to sensible continuous values (e.g. percentages, degrees) instead of arbitrary discrete value dependant on the specific motor used that will not replicate elsewhere.
It should implement the logic for calibration (if relevant) and update the `self.calibration` dictionary. If you are using Feetech or Dynamixel motors, our bus interfaces already include methods to help with this.
```python
def calibrate(self) -> None:
self.bus.disable_torque()
for motor in self.bus.motors:
self.bus.write("Operating_Mode", motor, OperatingMode.POSITION.value)
input(f"Move {self} to the middle of its range of motion and press ENTER....")
homing_offsets = self.bus.set_half_turn_homings()
print(
"Move all joints sequentially through their entire ranges "
"of motion.\nRecording positions. Press ENTER to stop..."
)
range_mins, range_maxes = self.bus.record_ranges_of_motion()
self.calibration = {}
for motor, m in self.bus.motors.items():
self.calibration[motor] = MotorCalibration(
id=m.id,
drive_mode=0,
homing_offset=homing_offsets[motor],
range_min=range_mins[motor],
range_max=range_maxes[motor],
)
self.bus.write_calibration(self.calibration)
self._save_calibration()
print("Calibration saved to", self.calibration_fpath)
```
### `configure()`
Use this to set up any configuration for your hardware (servos control modes, controller gains, etc.). This should usually be run at connection time and be idempotent.
```python
def configure(self) -> None:
with self.bus.torque_disabled():
self.bus.configure_motors()
for motor in self.bus.motors:
self.bus.write("Operating_Mode", motor, OperatingMode.POSITION.value)
self.bus.write("P_Coefficient", motor, 16)
self.bus.write("I_Coefficient", motor, 0)
self.bus.write("D_Coefficient", motor, 32)
```
## Step 5: Implement Sensors Reading and Action Sending
These are the most important runtime functions: the core I/O loop.
### `get_observation()`
Returns a dictionary of sensor values from the robot. These typically include motor states, camera frames, various sensors, etc. In the LeRobot framework, these observations are what will be fed to a policy in order to predict the actions to take. The dictionary keys and structure must match `observation_features`.
```python
def get_observation(self) -> dict[str, Any]:
if not self.is_connected:
raise ConnectionError(f"{self} is not connected.")
# Read arm position
obs_dict = self.bus.sync_read("Present_Position")
obs_dict = {f"{motor}.pos": val for motor, val in obs_dict.items()}
# Capture images from cameras
for cam_key, cam in self.cameras.items():
obs_dict[cam_key] = cam.async_read()
return obs_dict
```
### `send_action()`
Takes a dictionary that matches `action_features`, and sends it to your hardware. You can add safety limits (clipping, smoothing) and return what was actually sent.
For simplicity, we won't be adding any modification of the actions in our example here.
```python
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
goal_pos = {key.removesuffix(".pos"): val for key, val in action.items()}
# Send goal position to the arm
self.bus.sync_write("Goal_Position", goal_pos)
return action
```
## Adding a Teleoperator
For implementing teleoperation devices, we also provide a [`Teleoperator`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/teleoperators/teleoperator.py) base class. This class is very similar to the `Robot` base class and also doesn't assume anything on form factor.
The main differences are in the I/O functions: a teleoperator allows you to produce action via `get_action` and can receive feedback actions via `send_feedback`. Feedback could be anything controllable on the teleoperation device that could help the person controlling it understand the consequences of the actions sent. Think motion/force feedback on a leader arm, vibrations on a gamepad controller for example. To implement a teleoperator, you can follow this same tutorial and adapt it for these two methods.
## Wrapping Up
Once your robot class is complete, you can leverage the LeRobot ecosystem:
- Control your robot with available teleoperators or integrate directly your teleoperating device
- Record training data and visualize it
- Integrate it into RL or imitation learning pipelines
Don't hesitate to reach out to the community for help on our [Discord](https://discord.gg/s3KuuzsPFb) 🤗
|