Datasets:

ArXiv:
File size: 17,818 Bytes
f26fa93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
#!/usr/bin/env python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Assess the performance of video decoding in various configurations.



This script will benchmark different video encoding and decoding parameters.

See the provided README.md or run `python benchmark/video/run_video_benchmark.py --help` for usage info.

"""

import argparse
import datetime as dt
import random
import shutil
from collections import OrderedDict
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path

import einops
import numpy as np
import pandas as pd
import PIL
import torch
from skimage.metrics import mean_squared_error, peak_signal_noise_ratio, structural_similarity
from tqdm import tqdm

from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.video_utils import (
    decode_video_frames_torchvision,
    encode_video_frames,
)
from lerobot.common.utils.benchmark import TimeBenchmark

BASE_ENCODING = OrderedDict(
    [
        ("vcodec", "libx264"),
        ("pix_fmt", "yuv444p"),
        ("g", 2),
        ("crf", None),
        # TODO(aliberts): Add fastdecode
        # ("fastdecode", 0),
    ]
)


# TODO(rcadene, aliberts): move to `utils.py` folder when we want to refactor
def parse_int_or_none(value) -> int | None:
    if value.lower() == "none":
        return None
    try:
        return int(value)
    except ValueError as e:
        raise argparse.ArgumentTypeError(f"Invalid int or None: {value}") from e


def check_datasets_formats(repo_ids: list) -> None:
    for repo_id in repo_ids:
        dataset = LeRobotDataset(repo_id)
        if len(dataset.meta.video_keys) > 0:
            raise ValueError(
                f"Use only image dataset for running this benchmark. Video dataset provided: {repo_id}"
            )


def get_directory_size(directory: Path) -> int:
    total_size = 0
    for item in directory.rglob("*"):
        if item.is_file():
            total_size += item.stat().st_size
    return total_size


def load_original_frames(imgs_dir: Path, timestamps: list[float], fps: int) -> torch.Tensor:
    frames = []
    for ts in timestamps:
        idx = int(ts * fps)
        frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
        frame = torch.from_numpy(np.array(frame))
        frame = frame.type(torch.float32) / 255
        frame = einops.rearrange(frame, "h w c -> c h w")
        frames.append(frame)
    return torch.stack(frames)


def save_decoded_frames(

    imgs_dir: Path, save_dir: Path, frames: torch.Tensor, timestamps: list[float], fps: int

) -> None:
    if save_dir.exists() and len(list(save_dir.glob("frame_*.png"))) == len(timestamps):
        return

    save_dir.mkdir(parents=True, exist_ok=True)
    for i, ts in enumerate(timestamps):
        idx = int(ts * fps)
        frame_hwc = (frames[i].permute((1, 2, 0)) * 255).type(torch.uint8).cpu().numpy()
        PIL.Image.fromarray(frame_hwc).save(save_dir / f"frame_{idx:06d}_decoded.png")
        shutil.copyfile(imgs_dir / f"frame_{idx:06d}.png", save_dir / f"frame_{idx:06d}_original.png")


def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None:
    ep_num_images = dataset.episode_data_index["to"][0].item()
    if imgs_dir.exists() and len(list(imgs_dir.glob("frame_*.png"))) == ep_num_images:
        return

    imgs_dir.mkdir(parents=True, exist_ok=True)
    hf_dataset = dataset.hf_dataset.with_format(None)

    # We only save images from the first camera
    img_keys = [key for key in hf_dataset.features if key.startswith("observation.image")]
    imgs_dataset = hf_dataset.select_columns(img_keys[0])

    for i, item in enumerate(
        tqdm(imgs_dataset, desc=f"saving {dataset.repo_id} first episode images", leave=False)
    ):
        img = item[img_keys[0]]
        img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100)

        if i >= ep_num_images - 1:
            break


def sample_timestamps(timestamps_mode: str, ep_num_images: int, fps: int) -> list[float]:
    # Start at 5 to allow for 2_frames_4_space and 6_frames
    idx = random.randint(5, ep_num_images - 1)
    match timestamps_mode:
        case "1_frame":
            frame_indexes = [idx]
        case "2_frames":
            frame_indexes = [idx - 1, idx]
        case "2_frames_4_space":
            frame_indexes = [idx - 5, idx]
        case "6_frames":
            frame_indexes = [idx - i for i in range(6)][::-1]
        case _:
            raise ValueError(timestamps_mode)

    return [idx / fps for idx in frame_indexes]


def decode_video_frames(

    video_path: str,

    timestamps: list[float],

    tolerance_s: float,

    backend: str,

) -> torch.Tensor:
    if backend in ["pyav", "video_reader"]:
        return decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
    else:
        raise NotImplementedError(backend)


def benchmark_decoding(

    imgs_dir: Path,

    video_path: Path,

    timestamps_mode: str,

    backend: str,

    ep_num_images: int,

    fps: int,

    num_samples: int = 50,

    num_workers: int = 4,

    save_frames: bool = False,

) -> dict:
    def process_sample(sample: int):
        time_benchmark = TimeBenchmark()
        timestamps = sample_timestamps(timestamps_mode, ep_num_images, fps)
        num_frames = len(timestamps)
        result = {
            "psnr_values": [],
            "ssim_values": [],
            "mse_values": [],
        }

        with time_benchmark:
            frames = decode_video_frames(video_path, timestamps=timestamps, tolerance_s=5e-1, backend=backend)
        result["load_time_video_ms"] = time_benchmark.result_ms / num_frames

        with time_benchmark:
            original_frames = load_original_frames(imgs_dir, timestamps, fps)
        result["load_time_images_ms"] = time_benchmark.result_ms / num_frames

        frames_np, original_frames_np = frames.numpy(), original_frames.numpy()
        for i in range(num_frames):
            result["mse_values"].append(mean_squared_error(original_frames_np[i], frames_np[i]))
            result["psnr_values"].append(
                peak_signal_noise_ratio(original_frames_np[i], frames_np[i], data_range=1.0)
            )
            result["ssim_values"].append(
                structural_similarity(original_frames_np[i], frames_np[i], data_range=1.0, channel_axis=0)
            )

        if save_frames and sample == 0:
            save_dir = video_path.with_suffix("") / f"{timestamps_mode}_{backend}"
            save_decoded_frames(imgs_dir, save_dir, frames, timestamps, fps)

        return result

    load_times_video_ms = []
    load_times_images_ms = []
    mse_values = []
    psnr_values = []
    ssim_values = []

    # A sample is a single set of decoded frames specified by timestamps_mode (e.g. a single frame, 2 frames, etc.).
    # For each sample, we record metrics (loading time and quality metrics) which are then averaged over all samples.
    # As these samples are independent, we run them in parallel threads to speed up the benchmark.
    with ThreadPoolExecutor(max_workers=num_workers) as executor:
        futures = [executor.submit(process_sample, i) for i in range(num_samples)]
        for future in tqdm(as_completed(futures), total=num_samples, desc="samples", leave=False):
            result = future.result()
            load_times_video_ms.append(result["load_time_video_ms"])
            load_times_images_ms.append(result["load_time_images_ms"])
            psnr_values.extend(result["psnr_values"])
            ssim_values.extend(result["ssim_values"])
            mse_values.extend(result["mse_values"])

    avg_load_time_video_ms = float(np.array(load_times_video_ms).mean())
    avg_load_time_images_ms = float(np.array(load_times_images_ms).mean())
    video_images_load_time_ratio = avg_load_time_video_ms / avg_load_time_images_ms

    return {
        "avg_load_time_video_ms": avg_load_time_video_ms,
        "avg_load_time_images_ms": avg_load_time_images_ms,
        "video_images_load_time_ratio": video_images_load_time_ratio,
        "avg_mse": float(np.mean(mse_values)),
        "avg_psnr": float(np.mean(psnr_values)),
        "avg_ssim": float(np.mean(ssim_values)),
    }


def benchmark_encoding_decoding(

    dataset: LeRobotDataset,

    video_path: Path,

    imgs_dir: Path,

    encoding_cfg: dict,

    decoding_cfg: dict,

    num_samples: int,

    num_workers: int,

    save_frames: bool,

    overwrite: bool = False,

    seed: int = 1337,

) -> list[dict]:
    fps = dataset.fps

    if overwrite or not video_path.is_file():
        tqdm.write(f"encoding {video_path}")
        encode_video_frames(
            imgs_dir=imgs_dir,
            video_path=video_path,
            fps=fps,
            vcodec=encoding_cfg["vcodec"],
            pix_fmt=encoding_cfg["pix_fmt"],
            g=encoding_cfg.get("g"),
            crf=encoding_cfg.get("crf"),
            # fast_decode=encoding_cfg.get("fastdecode"),
            overwrite=True,
        )

    ep_num_images = dataset.episode_data_index["to"][0].item()
    width, height = tuple(dataset[0][dataset.meta.camera_keys[0]].shape[-2:])
    num_pixels = width * height
    video_size_bytes = video_path.stat().st_size
    images_size_bytes = get_directory_size(imgs_dir)
    video_images_size_ratio = video_size_bytes / images_size_bytes

    random.seed(seed)
    benchmark_table = []
    for timestamps_mode in tqdm(
        decoding_cfg["timestamps_modes"], desc="decodings (timestamps_modes)", leave=False
    ):
        for backend in tqdm(decoding_cfg["backends"], desc="decodings (backends)", leave=False):
            benchmark_row = benchmark_decoding(
                imgs_dir,
                video_path,
                timestamps_mode,
                backend,
                ep_num_images,
                fps,
                num_samples,
                num_workers,
                save_frames,
            )
            benchmark_row.update(
                **{
                    "repo_id": dataset.repo_id,
                    "resolution": f"{width} x {height}",
                    "num_pixels": num_pixels,
                    "video_size_bytes": video_size_bytes,
                    "images_size_bytes": images_size_bytes,
                    "video_images_size_ratio": video_images_size_ratio,
                    "timestamps_mode": timestamps_mode,
                    "backend": backend,
                },
                **encoding_cfg,
            )
            benchmark_table.append(benchmark_row)

    return benchmark_table


def main(

    output_dir: Path,

    repo_ids: list[str],

    vcodec: list[str],

    pix_fmt: list[str],

    g: list[int],

    crf: list[int],

    # fastdecode: list[int],

    timestamps_modes: list[str],

    backends: list[str],

    num_samples: int,

    num_workers: int,

    save_frames: bool,

):
    check_datasets_formats(repo_ids)
    encoding_benchmarks = {
        "g": g,
        "crf": crf,
        # "fastdecode": fastdecode,
    }
    decoding_benchmarks = {
        "timestamps_modes": timestamps_modes,
        "backends": backends,
    }
    headers = ["repo_id", "resolution", "num_pixels"]
    headers += list(BASE_ENCODING.keys())
    headers += [
        "timestamps_mode",
        "backend",
        "video_size_bytes",
        "images_size_bytes",
        "video_images_size_ratio",
        "avg_load_time_video_ms",
        "avg_load_time_images_ms",
        "video_images_load_time_ratio",
        "avg_mse",
        "avg_psnr",
        "avg_ssim",
    ]
    file_paths = []
    for video_codec in tqdm(vcodec, desc="encodings (vcodec)"):
        for pixel_format in tqdm(pix_fmt, desc="encodings (pix_fmt)", leave=False):
            benchmark_table = []
            for repo_id in tqdm(repo_ids, desc="encodings (datasets)", leave=False):
                dataset = LeRobotDataset(repo_id)
                imgs_dir = output_dir / "images" / dataset.repo_id.replace("/", "_")
                # We only use the first episode
                save_first_episode(imgs_dir, dataset)
                for key, values in tqdm(encoding_benchmarks.items(), desc="encodings (g, crf)", leave=False):
                    for value in tqdm(values, desc=f"encodings ({key})", leave=False):
                        encoding_cfg = BASE_ENCODING.copy()
                        encoding_cfg["vcodec"] = video_codec
                        encoding_cfg["pix_fmt"] = pixel_format
                        encoding_cfg[key] = value
                        args_path = Path("_".join(str(value) for value in encoding_cfg.values()))
                        video_path = output_dir / "videos" / args_path / f"{repo_id.replace('/', '_')}.mp4"
                        benchmark_table += benchmark_encoding_decoding(
                            dataset,
                            video_path,
                            imgs_dir,
                            encoding_cfg,
                            decoding_benchmarks,
                            num_samples,
                            num_workers,
                            save_frames,
                        )

            # Save intermediate results
            benchmark_df = pd.DataFrame(benchmark_table, columns=headers)
            now = dt.datetime.now()
            csv_path = (
                output_dir
                / f"{now:%Y-%m-%d}_{now:%H-%M-%S}_{video_codec}_{pixel_format}_{num_samples}-samples.csv"
            )
            benchmark_df.to_csv(csv_path, header=True, index=False)
            file_paths.append(csv_path)
            del benchmark_df

    # Concatenate all results
    df_list = [pd.read_csv(csv_path) for csv_path in file_paths]
    concatenated_df = pd.concat(df_list, ignore_index=True)
    concatenated_path = output_dir / f"{now:%Y-%m-%d}_{now:%H-%M-%S}_all_{num_samples}-samples.csv"
    concatenated_df.to_csv(concatenated_path, header=True, index=False)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--output-dir",
        type=Path,
        default=Path("outputs/video_benchmark"),
        help="Directory where the video benchmark outputs are written.",
    )
    parser.add_argument(
        "--repo-ids",
        type=str,
        nargs="*",
        default=[
            "lerobot/pusht_image",
            "aliberts/aloha_mobile_shrimp_image",
            "aliberts/paris_street",
            "aliberts/kitchen",
        ],
        help="Datasets repo-ids to test against. First episodes only are used. Must be images.",
    )
    parser.add_argument(
        "--vcodec",
        type=str,
        nargs="*",
        default=["libx264", "hevc", "libsvtav1"],
        help="Video codecs to be tested",
    )
    parser.add_argument(
        "--pix-fmt",
        type=str,
        nargs="*",
        default=["yuv444p", "yuv420p"],
        help="Pixel formats (chroma subsampling) to be tested",
    )
    parser.add_argument(
        "--g",
        type=parse_int_or_none,
        nargs="*",
        default=[1, 2, 3, 4, 5, 6, 10, 15, 20, 40, 100, None],
        help="Group of pictures sizes to be tested.",
    )
    parser.add_argument(
        "--crf",
        type=parse_int_or_none,
        nargs="*",
        default=[0, 5, 10, 15, 20, 25, 30, 40, 50, None],
        help="Constant rate factors to be tested.",
    )
    # parser.add_argument(
    #     "--fastdecode",
    #     type=int,
    #     nargs="*",
    #     default=[0, 1],
    #     help="Use the fastdecode tuning option. 0 disables it. "
    #         "For libx264 and libx265/hevc, only 1 is possible. "
    #         "For libsvtav1, 1, 2 or 3 are possible values with a higher number meaning a faster decoding optimization",
    # )
    parser.add_argument(
        "--timestamps-modes",
        type=str,
        nargs="*",
        default=[
            "1_frame",
            "2_frames",
            "2_frames_4_space",
            "6_frames",
        ],
        help="Timestamps scenarios to be tested.",
    )
    parser.add_argument(
        "--backends",
        type=str,
        nargs="*",
        default=["pyav", "video_reader"],
        help="Torchvision decoding backend to be tested.",
    )
    parser.add_argument(
        "--num-samples",
        type=int,
        default=50,
        help="Number of samples for each encoding x decoding config.",
    )
    parser.add_argument(
        "--num-workers",
        type=int,
        default=10,
        help="Number of processes for parallelized sample processing.",
    )
    parser.add_argument(
        "--save-frames",
        type=int,
        default=0,
        help="Whether to save decoded frames or not. Enter a non-zero number for true.",
    )
    args = parser.parse_args()
    main(**vars(args))