Upload create_dataset.py
Browse files- create_dataset.py +34 -0
create_dataset.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from huggingface_hub import create_repo, Repository, upload_file
|
| 3 |
+
import os
|
| 4 |
+
import typer
|
| 5 |
+
|
| 6 |
+
def main(language_label):
|
| 7 |
+
raw_data = load_dataset("AmazonScience/massive", language_label)
|
| 8 |
+
raw_data = raw_data.rename_column("utt", "text")
|
| 9 |
+
raw_data = raw_data.rename_column("intent", "label")
|
| 10 |
+
raw_data = raw_data.remove_columns(["locale", "partition", "scenario", "annot_utt",
|
| 11 |
+
"slot_method", "worker_id", "judgments"])
|
| 12 |
+
|
| 13 |
+
#to get labels
|
| 14 |
+
labels = raw_data["train"].features["label"]
|
| 15 |
+
|
| 16 |
+
#for uploading to hub
|
| 17 |
+
repo_name = "amazon_massive_intent_" + language_label
|
| 18 |
+
create_repo(repo_name, organization="SetFit", repo_type="dataset")
|
| 19 |
+
|
| 20 |
+
for split, dataset in raw_data.items():
|
| 21 |
+
dataset = dataset.map(lambda x: {"label_text": labels.int2str(x["label"])}, num_proc=4)
|
| 22 |
+
dataset.to_json(f"{split}.jsonl")
|
| 23 |
+
upload_file(f"{split}.jsonl", path_in_repo=f"{split}.jsonl", repo_id="SetFit/" + repo_name, repo_type="dataset")
|
| 24 |
+
os.system(f"rm {split}.jsonl")
|
| 25 |
+
|
| 26 |
+
upload_file("create_dataset.py", path_in_repo="create_dataset.py", repo_id="SetFit/" + repo_name, repo_type="dataset")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
if __name__ == "__main__":
|
| 32 |
+
typer.run(main)
|
| 33 |
+
|
| 34 |
+
|