| import os | |
| import pickle | |
| from pathlib import Path | |
| from typing import Dict, List, Tuple | |
| import datasets | |
| from seacrowd.utils import schemas | |
| from seacrowd.utils.configs import SEACrowdConfig | |
| from seacrowd.utils.constants import Tasks | |
| _CITATION = """\ | |
| @inproceedings{ | |
| ladhak-wiki-2020, | |
| title={WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization}, | |
| author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown}, | |
| booktitle={Findings of EMNLP, 2020}, | |
| year={2020} | |
| } | |
| """ | |
| _DATASETNAME = "wikilingua" | |
| _DESCRIPTION = """\ | |
| We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of crosslingual abstractive | |
| summarization systems. We extract article and summary pairs in 18 languages from WikiHow12, a high quality, | |
| collaborative resource of how-to guides on a diverse set of topics written by human authors. We create gold-standard | |
| article summary alignments across languages by aligning the images that are used to describe each how-to step in an | |
| article. | |
| """ | |
| _HOMEPAGE = "https://github.com/esdurmus/Wikilingua" | |
| _LANGUAGES = ["ind"] | |
| _LICENSE = "CC-BY-NC-SA 3.0" | |
| _LOCAL = False | |
| _URLS = { | |
| _DATASETNAME: "https://drive.google.com/u/0/uc?id=1PGa8j1_IqxiGTc3SU6NMB38sAzxCPS34&export=download" | |
| } | |
| _SUPPORTED_TASKS = [Tasks.SUMMARIZATION] | |
| _SOURCE_VERSION = "1.0.0" | |
| _SEACROWD_VERSION = "2024.06.20" | |
| class Wikilingua(datasets.GeneratorBasedBuilder): | |
| """ | |
| The dataset includes 47,511 articles from WikiHow. Extracted gold-standard article-summary alignments across | |
| languages by aligning the images that are used to describe each how-to step in an article. | |
| """ | |
| SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | |
| SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | |
| BUILDER_CONFIGS = [ | |
| SEACrowdConfig( | |
| name="wikilingua_source", | |
| version=SOURCE_VERSION, | |
| description="wikilingua source schema", | |
| schema="source", | |
| subset_id="wikilingua", | |
| ), | |
| SEACrowdConfig( | |
| name="wikilingua_seacrowd_t2t", | |
| version=SEACROWD_VERSION, | |
| description="wikilingua Nusantara schema", | |
| schema="seacrowd_t2t", | |
| subset_id="wikilingua", | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = "wikilingua_source" | |
| def _info(self) -> datasets.DatasetInfo: | |
| features = [] | |
| if self.config.schema == "source": | |
| features = datasets.Features( | |
| { | |
| "id": datasets.Value("int64"), | |
| "link": datasets.Value("string"), | |
| "main_point": datasets.Value("string"), | |
| "summary": datasets.Value("string"), | |
| "document": datasets.Value("string"), | |
| "english_section_name": datasets.Value("string"), | |
| "english_url": datasets.Value("string"), | |
| } | |
| ) | |
| elif self.config.schema == "seacrowd_t2t": | |
| features = schemas.text2text_features | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
| """Returns SplitGenerators.""" | |
| urls = _URLS[_DATASETNAME] | |
| data_dir = dl_manager.download_and_extract(urls) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir), | |
| "split": "train", | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | |
| """Yields examples as (key, example) tuples.""" | |
| if self.config.schema == "source": | |
| with open(filepath, "rb") as file: | |
| indonesian_docs = pickle.load(file) | |
| _id = 1 | |
| for key_link, articles in indonesian_docs.items(): | |
| for main_point, items in articles.items(): | |
| example = {"id": _id, "link": key_link, "main_point": main_point, "summary": items["summary"], "document": items["document"], "english_section_name": items["english_section_name"], "english_url": items["english_url"]} | |
| yield _id, example | |
| _id += 1 | |
| elif self.config.schema == "seacrowd_t2t": | |
| with open(filepath, "rb") as file: | |
| indonesian_docs = pickle.load(file) | |
| _id = 1 | |
| for key_link, articles in indonesian_docs.items(): | |
| for main_point, items in articles.items(): | |
| example = {"id": _id, "text_1": items["document"], "text_2": items["summary"], "text_1_name": "document", "text_2_name": "summary"} | |
| yield _id, example | |
| _id += 1 | |