|
|
""" |
|
|
pip install gradio # proxy_on first |
|
|
python vis_geochat_data.py |
|
|
# browse data in http://127.0.0.1:10064 |
|
|
""" |
|
|
|
|
|
import os |
|
|
import io |
|
|
import json |
|
|
import copy |
|
|
import time |
|
|
import gradio as gr |
|
|
import base64 |
|
|
from PIL import Image |
|
|
from io import BytesIO |
|
|
from argparse import Namespace |
|
|
|
|
|
from typing import Sequence |
|
|
from vlmeval import * |
|
|
from vlmeval.dataset import SUPPORTED_DATASETS, build_dataset |
|
|
|
|
|
SYS = "You are a helpful assistant. Your job is to faithfully translate all provided text into Chinese faithfully. " |
|
|
|
|
|
|
|
|
Translator = OpenAIWrapper(model='gpt-4o-mini', system_prompt=SYS) |
|
|
|
|
|
|
|
|
def image_to_mdstring(image): |
|
|
return f"" |
|
|
|
|
|
|
|
|
def images_to_md(images): |
|
|
return '\n\n'.join([image_to_mdstring(image) for image in images]) |
|
|
|
|
|
|
|
|
def mmqa_display(question, target_size=2048): |
|
|
question = {k.lower() if len(k) > 1 else k: v for k, v in question.items()} |
|
|
keys = list(question.keys()) |
|
|
keys = [k for k in keys if k not in ['index', 'image']] |
|
|
|
|
|
idx = question.pop('index', 'XXX') |
|
|
text = f'\n- INDEX: {idx}\n' |
|
|
|
|
|
if 'image' in question: |
|
|
images = question.pop('image') |
|
|
if images[0] == '[' and images[-1] == ']': |
|
|
images = eval(images) |
|
|
else: |
|
|
images = [images] |
|
|
else: |
|
|
images = question.pop('image_path') |
|
|
if images[0] == '[' and images[-1] == ']': |
|
|
images = eval(images) |
|
|
else: |
|
|
images = [images] |
|
|
images = [encode_image_file_to_base64(x) for x in images] |
|
|
|
|
|
qtext = question.pop('question', None) |
|
|
if qtext is not None: |
|
|
text += f'- QUESTION: {qtext}\n' |
|
|
|
|
|
if 'A' in question: |
|
|
text += f'- Choices: \n' |
|
|
for k in string.ascii_uppercase: |
|
|
if k in question: |
|
|
text += f'\t-{k}: {question.pop(k)}\n' |
|
|
answer = question.pop('answer', None) |
|
|
|
|
|
for k in question: |
|
|
if not pd.isna(question[k]): |
|
|
text += f'- {k.upper()}. {question[k]}\n' |
|
|
|
|
|
if answer is not None: |
|
|
text += f'- ANSWER: {answer}\n' |
|
|
|
|
|
image_md = images_to_md(images) |
|
|
|
|
|
return text, image_md |
|
|
|
|
|
|
|
|
def parse_args(): |
|
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument('--port', type=int, default=7860) |
|
|
args = parser.parse_args() |
|
|
return args |
|
|
|
|
|
|
|
|
def gradio_app_vis_dataset(port=7860): |
|
|
data, loaded_obj = None, {} |
|
|
|
|
|
def btn_submit_click(filename, ann_id): |
|
|
if filename not in loaded_obj: |
|
|
return filename_change(filename, ann_id) |
|
|
nonlocal data |
|
|
data_desc = gr.Markdown(f'Visualizing {filename}, {len(data)} samples in total. ') |
|
|
if ann_id < 0 or ann_id >= len(data): |
|
|
return filename, ann_id, data_desc, gr.Markdown('Invalid Index'), gr.Markdown(f'Index out of range [0, {len(data) - 1}]') |
|
|
item = data.iloc[ann_id] |
|
|
text, image_md = mmqa_display(item) |
|
|
return filename, ann_id, data_desc, image_md, text |
|
|
|
|
|
def btn_next_click(filename, ann_id): |
|
|
return btn_submit_click(filename, ann_id + 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def filename_change(filename, ann_id): |
|
|
nonlocal data, loaded_obj |
|
|
|
|
|
def legal_filename(filename): |
|
|
LMURoot = LMUDataRoot() |
|
|
if filename in SUPPORTED_DATASETS: |
|
|
return build_dataset(filename).data |
|
|
elif osp.exists(filename): |
|
|
data = load(filename) |
|
|
assert 'index' in data and 'image' in data |
|
|
image_map = {i: image for i, image in zip(data['index'], data['image'])} |
|
|
for k, v in image_map.items(): |
|
|
if (not isinstance(v, str) or len(v) < 64) and v in image_map: |
|
|
image_map[k] = image_map[v] |
|
|
data['image'] = [image_map[k] for k in data['index']] |
|
|
return data |
|
|
elif osp.exists(osp.join(LMURoot, filename)): |
|
|
filename = osp.join(LMURoot, filename) |
|
|
return legal_filename(filename) |
|
|
else: |
|
|
return None |
|
|
|
|
|
data = legal_filename(filename) |
|
|
if data is None: |
|
|
return filename, 0, gr.Markdown(''), gr.Markdown("File not found"), gr.Markdown("File not found") |
|
|
|
|
|
loaded_obj[filename] = data |
|
|
return btn_submit_click(filename, 0) |
|
|
|
|
|
with gr.Blocks() as app: |
|
|
|
|
|
filename = gr.Textbox( |
|
|
value='Dataset Name (supported by VLMEvalKit) or TSV FileName (Relative under `LMURoot` or Real Path)', |
|
|
label='Dataset', |
|
|
interactive=True, |
|
|
visible=True) |
|
|
|
|
|
with gr.Row(): |
|
|
ann_id = gr.Number(0, label='Sample Index (Press Enter)', interactive=True, visible=True) |
|
|
btn_next = gr.Button("Next") |
|
|
|
|
|
|
|
|
with gr.Row(): |
|
|
data_desc = gr.Markdown('Dataset Description', label='Dataset Description') |
|
|
|
|
|
with gr.Row(): |
|
|
image_output = gr.Markdown('Image PlaceHolder', label='Image Visualization') |
|
|
anno_en = gr.Markdown('Image Annotation', label='Image Annotation') |
|
|
|
|
|
|
|
|
input_components = [filename, ann_id] |
|
|
all_components = [filename, ann_id, data_desc, image_output, anno_en] |
|
|
|
|
|
filename.submit(filename_change, input_components, all_components) |
|
|
ann_id.submit(btn_submit_click, input_components, all_components) |
|
|
btn_next.click(btn_next_click, input_components, all_components) |
|
|
|
|
|
|
|
|
|
|
|
app.launch(server_name='0.0.0.0', debug=True, show_error=True, server_port=port) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
args = parse_args() |
|
|
gradio_app_vis_dataset(port=args.port) |
|
|
|
|
|
|