feat: loading script
Browse files- filimo2024asr.py +97 -0
filimo2024asr.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tarfile
|
3 |
+
import datasets
|
4 |
+
import pandas as pd
|
5 |
+
from typing import Dict, List
|
6 |
+
import io
|
7 |
+
from tqdm import tqdm
|
8 |
+
import csv
|
9 |
+
import os
|
10 |
+
|
11 |
+
_DESCRIPTION = """
|
12 |
+
This dataset consists of about 400 hours of audio extracted from various Filimo videos in the Persian language.
|
13 |
+
Note: This dataset contains raw, unvalidated transcriptions. Users are advised to:
|
14 |
+
1. Perform their own quality assessment
|
15 |
+
2. Create their own train/validation/test splits based on their specific needs
|
16 |
+
3. Validate a subset of the data if needed for their use case
|
17 |
+
"""
|
18 |
+
|
19 |
+
_CITATION = """
|
20 |
+
Use this repo info/link for citation.
|
21 |
+
"""
|
22 |
+
|
23 |
+
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
|
24 |
+
|
25 |
+
_HOMEPAGE = "https://huggingface.co/datasets/PerSets/filimo2024asr"
|
26 |
+
|
27 |
+
_BASE_URL = "https://huggingface.co/datasets/PerSets/filimo2024asr/resolve/main/"
|
28 |
+
|
29 |
+
_AUDIO_URL = _BASE_URL + "data/unvalidated_{shard_idx:03d}.tar"
|
30 |
+
|
31 |
+
class FilimoASRDataset(datasets.GeneratorBasedBuilder):
|
32 |
+
|
33 |
+
DEFAULT_WRITER_BATCH_SIZE = 1000
|
34 |
+
|
35 |
+
VERSION = datasets.Version("1.0.0")
|
36 |
+
|
37 |
+
def _info(self):
|
38 |
+
return datasets.DatasetInfo(
|
39 |
+
features=datasets.Features({
|
40 |
+
"audio": datasets.Audio(sampling_rate=44_000), # Adjust sampling rate as needed
|
41 |
+
"text": datasets.Value("string"),
|
42 |
+
"file_name": datasets.Value("string"),
|
43 |
+
}),
|
44 |
+
supervised_keys=None,
|
45 |
+
license=_LICENSE,
|
46 |
+
citation=_CITATION,
|
47 |
+
version=self.VERSION,
|
48 |
+
description=_DESCRIPTION
|
49 |
+
)
|
50 |
+
|
51 |
+
def _split_generators(self, dl_manager):
|
52 |
+
"""Returns SplitGenerators."""
|
53 |
+
|
54 |
+
archive_paths = [_AUDIO_URL.format(shard_idx=i) for i in range(1, 34)]
|
55 |
+
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
|
56 |
+
|
57 |
+
return [
|
58 |
+
datasets.SplitGenerator(
|
59 |
+
name="unvalidated", # Or adjust splits as needed
|
60 |
+
gen_kwargs={
|
61 |
+
#"tar_dir": tar_dir,
|
62 |
+
#"metadata_path": metadata_path,
|
63 |
+
"local_extracted_archive_paths": local_extracted_archive_paths,
|
64 |
+
"archives": [dl_manager.iter_archive(path) for path in archive_paths],
|
65 |
+
"meta_path": _BASE_URL + "unvalidated.csv",
|
66 |
+
},
|
67 |
+
),
|
68 |
+
]
|
69 |
+
|
70 |
+
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
|
71 |
+
"""Yields examples."""
|
72 |
+
# Load TSV metadata
|
73 |
+
data_fields = list(self._info().features.keys())
|
74 |
+
metadata = {}
|
75 |
+
with open(meta_path, encoding="utf-8") as f:
|
76 |
+
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
77 |
+
for row in tqdm(reader, desc="Reading metadata..."):
|
78 |
+
if not row["file_name"].endswith(".mp3"):
|
79 |
+
row["file_name"] += ".mp3"
|
80 |
+
if "sentence" in row:
|
81 |
+
row['text'] = row['sentence']
|
82 |
+
del row['sentence']
|
83 |
+
for field in data_fields:
|
84 |
+
if field not in row:
|
85 |
+
row[field] = ""
|
86 |
+
metadata[row["file_name"]] = row
|
87 |
+
|
88 |
+
for i, audio_archive in enumerate(archives):
|
89 |
+
for path, file in audio_archive:
|
90 |
+
_, filename = os.path.split(path)
|
91 |
+
if filename in metadata:
|
92 |
+
result = dict(metadata[filename])
|
93 |
+
# set the audio feature and the path to the extracted file
|
94 |
+
path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path
|
95 |
+
result["audio"] = {"path": path, "bytes": file.read()}
|
96 |
+
result["file_name"] = path
|
97 |
+
yield path, result
|