Datasets:
File size: 18,030 Bytes
882e08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
#!/usr/bin/env python3
"""
Convert NLS Scottish School Exams dataset to Hugging Face format with proper page numbering.
This script processes directories containing:
- image/ folder with JPG files
- alto/ folder with ALTO XML files
- METS XML files with page ordering information
- Creates one row per page with image, text, raw XML, and correct page numbers
"""
import argparse
import csv
import logging
import os
import re
import sys
import xml.etree.ElementTree as ET
from collections import defaultdict
from pathlib import Path
from typing import Optional, Dict, Tuple
from datasets import Dataset, Features, Value
from datasets import Image as HFImage
from tqdm import tqdm
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def extract_base_number(filename: str) -> str:
"""Extract the base number from a filename (before first dot)."""
return filename.split('.')[0]
def parse_mets_page_order(mets_path: Path) -> Dict[str, int]:
"""
Parse METS XML file to extract page ordering information.
Returns:
Dictionary mapping file base numbers to page order numbers
"""
page_order_map = {}
try:
tree = ET.parse(mets_path)
root = tree.getroot()
# Define namespaces
ns = {
'mets': 'http://www.loc.gov/METS/',
'xlink': 'http://www.w3.org/1999/xlink'
}
# Find all div elements with ORDER attribute
for div in root.findall('.//mets:div[@ORDER]', ns):
order = div.get('ORDER')
if order:
# Find all file pointers in this div
for fptr in div.findall('.//mets:fptr', ns):
file_id = fptr.get('FILEID')
if file_id and '.3' in file_id: # Look for image files (.3.jpg)
# Extract base number from file ID
base_num = file_id.split('.')[0].replace('file_', '')
page_order_map[base_num] = int(order)
logger.debug(f"Extracted page order for {len(page_order_map)} pages from METS")
except Exception as e:
logger.warning(f"Error parsing METS file {mets_path}: {e}")
return page_order_map
def extract_exam_info_from_metadata(metadata: str) -> Dict[str, str]:
"""
Extract exam information from metadata string.
Example: "Leaving Certificate - 1888 - P.P.1888 XLI"
Returns: {"exam_type": "Leaving Certificate", "year": "1888", "reference": "P.P.1888 XLI"}
"""
info = {
"exam_type": "",
"year": "",
"reference": ""
}
if not metadata:
return info
# Try to extract year (4 digits)
year_match = re.search(r'\b(18\d{2}|19\d{2}|20\d{2})\b', metadata)
if year_match:
info["year"] = year_match.group(1)
# Extract exam type (everything before the first dash)
parts = metadata.split(' - ')
if parts:
info["exam_type"] = parts[0].strip()
# Extract reference (usually after the last dash)
if len(parts) >= 3:
info["reference"] = parts[2].strip()
return info
def parse_inventory_csv(root_dir: Path) -> dict[str, str]:
"""
Parse inventory CSV file if it exists in the dataset directory.
Returns:
Dictionary mapping document_id to metadata description
"""
inventory_pattern = "*-inventory.csv"
inventory_files = list(root_dir.glob(inventory_pattern))
if not inventory_files:
logger.info("No inventory CSV file found")
return {}
if len(inventory_files) > 1:
logger.warning(f"Multiple inventory files found: {inventory_files}. Using first one.")
inventory_file = inventory_files[0]
logger.info(f"Reading inventory from: {inventory_file}")
metadata_map = {}
try:
# Use utf-8-sig to handle BOM if present
with open(inventory_file, encoding='utf-8-sig') as f:
reader = csv.reader(f)
for row_num, row in enumerate(reader, 1):
if len(row) >= 2:
doc_id = row[0].strip()
description = row[1].strip()
metadata_map[doc_id] = description
else:
logger.warning(f"Skipping malformed row {row_num} in {inventory_file}: {row}")
except Exception as e:
logger.error(f"Error reading inventory CSV: {e}")
return {}
logger.info(f"Loaded metadata for {len(metadata_map)} documents from inventory")
return metadata_map
def extract_text_from_alto(alto_path: Path) -> tuple[str, str]:
"""
Extract text content from an ALTO XML file.
Returns:
Tuple of (extracted_text, raw_xml)
"""
try:
with open(alto_path, encoding='utf-8') as f:
raw_xml = f.read()
# Parse XML
root = ET.fromstring(raw_xml)
# Find all String elements (they contain the actual text)
# ALTO namespace
ns = {'alto': 'http://www.loc.gov/standards/alto/v3/alto.xsd'}
# Extract text from all String elements
text_parts = []
# Find all TextLine elements
for textline in root.findall('.//alto:TextLine', ns):
line_parts = []
# Get all String elements in this line
for string_elem in textline.findall('./alto:String', ns):
content = string_elem.get('CONTENT', '')
if content:
line_parts.append(content)
# Join words in the line with spaces
if line_parts:
text_parts.append(' '.join(line_parts))
# Join lines with newlines
extracted_text = '\n'.join(text_parts)
return extracted_text, raw_xml
except Exception as e:
logger.warning(f"Error processing ALTO file {alto_path}: {e}")
return "", ""
def process_document_folder(doc_path: Path, metadata_map: dict[str, str] = None) -> list[dict]:
"""
Process a single document folder and return list of page records.
Args:
doc_path: Path to document folder
metadata_map: Optional dictionary mapping document_id to metadata
"""
records = []
doc_id = doc_path.name
doc_metadata = metadata_map.get(doc_id, None) if metadata_map else None
# Extract exam information from metadata
exam_info = extract_exam_info_from_metadata(doc_metadata)
image_dir = doc_path / "image"
alto_dir = doc_path / "alto"
mets_file = doc_path / f"{doc_id}-mets.xml"
if not image_dir.exists() or not alto_dir.exists():
logger.warning(f"Skipping {doc_path}: missing image or alto directory")
return records
# Parse METS file to get page ordering
page_order_map = {}
if mets_file.exists():
page_order_map = parse_mets_page_order(mets_file)
else:
logger.warning(f"No METS file found for {doc_id}, using filename sorting for page order")
# Get all image files
image_files = {f for f in os.listdir(image_dir)
if f.lower().endswith(('.jpg', '.jpeg', '.png', '.tiff', '.tif'))}
# Get all ALTO files
alto_files = {f for f in os.listdir(alto_dir) if f.endswith('.xml')}
# Create mapping from base number to files
image_map = {extract_base_number(f): f for f in image_files}
alto_map = {extract_base_number(f): f for f in alto_files}
# Get all unique page numbers
all_pages = set(image_map.keys()) | set(alto_map.keys())
# If no METS page order, create sequential numbering
if not page_order_map:
sorted_pages = sorted(all_pages)
page_order_map = {page: idx + 1 for idx, page in enumerate(sorted_pages)}
# Process each page
for page_base in sorted(all_pages, key=lambda x: page_order_map.get(x, 999999)):
actual_page_number = page_order_map.get(page_base, 0)
record = {
'document_id': doc_path.name,
'page_number': actual_page_number,
'file_identifier': page_base,
'image_path': None,
'alto_xml': None,
'text': None,
'has_image': False,
'has_alto': False,
'document_metadata': doc_metadata,
'has_metadata': doc_metadata is not None,
'exam_type': exam_info['exam_type'],
'exam_year': exam_info['year'],
'exam_reference': exam_info['reference']
}
# Check for image
if page_base in image_map:
image_path = image_dir / image_map[page_base]
if image_path.exists():
record['image_path'] = str(image_path)
record['has_image'] = True
# Check for ALTO
if page_base in alto_map:
alto_path = alto_dir / alto_map[page_base]
if alto_path.exists():
text, xml = extract_text_from_alto(alto_path)
record['alto_xml'] = xml
record['text'] = text
record['has_alto'] = True
records.append(record)
return records
def process_dataset(root_dir: Path, max_docs: Optional[int] = None,
include_metadata: bool = True) -> list[dict]:
"""
Process entire dataset directory.
Args:
root_dir: Root directory of dataset
max_docs: Maximum number of documents to process
include_metadata: Whether to include metadata from inventory CSV
"""
all_records = []
# Parse inventory CSV if requested
metadata_map = {}
if include_metadata:
metadata_map = parse_inventory_csv(root_dir)
# Find all document directories
doc_dirs = [d for d in root_dir.iterdir()
if d.is_dir() and not d.name.startswith('.')
and d.name not in ['__pycache__']]
if max_docs:
doc_dirs = doc_dirs[:max_docs]
logger.info(f"Processing {len(doc_dirs)} document directories...")
# Process each document
for doc_dir in tqdm(doc_dirs, desc="Processing documents"):
records = process_document_folder(doc_dir, metadata_map)
all_records.extend(records)
return all_records
def create_huggingface_dataset(records: list[dict], include_missing: bool = True) -> Dataset:
"""
Create a Hugging Face dataset from records.
Args:
records: List of page records
include_missing: If False, only include pages with both image and ALTO
"""
# Filter records if needed
if not include_missing:
records = [r for r in records if r['has_image'] and r['has_alto']]
logger.info(f"Filtered to {len(records)} records with both image and ALTO")
# Prepare data for HF dataset
dataset_dict = defaultdict(list)
for record in records:
dataset_dict['document_id'].append(record['document_id'])
dataset_dict['page_number'].append(record['page_number'])
dataset_dict['file_identifier'].append(record['file_identifier'])
# Store image path instead of loading image
# HuggingFace datasets will handle loading when needed
if record['has_image'] and record['image_path']:
dataset_dict['image'].append(record['image_path'])
else:
dataset_dict['image'].append(None)
dataset_dict['text'].append(record['text'] or "")
dataset_dict['alto_xml'].append(record['alto_xml'] or "")
dataset_dict['has_image'].append(record['has_image'])
dataset_dict['has_alto'].append(record['has_alto'])
dataset_dict['document_metadata'].append(record.get('document_metadata') or "")
dataset_dict['has_metadata'].append(record.get('has_metadata', False))
dataset_dict['exam_type'].append(record.get('exam_type', ''))
dataset_dict['exam_year'].append(record.get('exam_year', ''))
dataset_dict['exam_reference'].append(record.get('exam_reference', ''))
# Create HF dataset
features = Features({
'document_id': Value('string'),
'page_number': Value('int32'),
'file_identifier': Value('string'),
'image': HFImage(),
'text': Value('string'),
'alto_xml': Value('string'),
'has_image': Value('bool'),
'has_alto': Value('bool'),
'document_metadata': Value('string'),
'has_metadata': Value('bool'),
'exam_type': Value('string'),
'exam_year': Value('string'),
'exam_reference': Value('string')
})
dataset = Dataset.from_dict(dict(dataset_dict), features=features)
return dataset
def print_statistics(records: list[dict]):
"""Print statistics about the processed dataset."""
total = len(records)
with_both = sum(1 for r in records if r['has_image'] and r['has_alto'])
image_only = sum(1 for r in records if r['has_image'] and not r['has_alto'])
alto_only = sum(1 for r in records if not r['has_image'] and r['has_alto'])
with_metadata = sum(1 for r in records if r.get('has_metadata', False))
print("\n=== Dataset Statistics ===")
print(f"Total pages: {total:,}")
print(f"Pages with both image and ALTO: {with_both:,} ({with_both/total*100:.1f}%)")
print(f"Pages with image only: {image_only:,} ({image_only/total*100:.1f}%)")
print(f"Pages with ALTO only: {alto_only:,} ({alto_only/total*100:.1f}%)")
if with_metadata > 0:
print(f"Pages with metadata: {with_metadata:,} ({with_metadata/total*100:.1f}%)")
# Document statistics
docs = defaultdict(lambda: {'pages': 0, 'complete': 0, 'has_metadata': False})
for r in records:
docs[r['document_id']]['pages'] += 1
if r['has_image'] and r['has_alto']:
docs[r['document_id']]['complete'] += 1
if r.get('has_metadata', False):
docs[r['document_id']]['has_metadata'] = True
print(f"\nTotal documents: {len(docs)}")
complete_docs = sum(1 for d in docs.values() if d['pages'] == d['complete'])
print(f"Documents with all pages complete: {complete_docs} "
f"({complete_docs/len(docs)*100:.1f}%)")
docs_with_metadata = sum(1 for d in docs.values() if d['has_metadata'])
if docs_with_metadata > 0:
print(f"Documents with metadata: {docs_with_metadata} "
f"({docs_with_metadata/len(docs)*100:.1f}%)")
# Year distribution
years = defaultdict(int)
for r in records:
year = r.get('exam_year', '')
if year:
years[year] += 1
if years:
print("\n=== Exam Years Distribution ===")
for year in sorted(years.keys()):
print(f"{year}: {years[year]} pages")
def main():
parser = argparse.ArgumentParser(description='Convert NLS Scottish Exams dataset to Hugging Face format')
parser.add_argument('input_dir', type=str, help='Path to dataset directory')
parser.add_argument('output_path', type=str, help='Output path for HF dataset')
parser.add_argument('--max-docs', type=int, help='Maximum number of documents to process')
parser.add_argument('--include-missing', action='store_true',
help='Include pages with missing image or ALTO')
parser.add_argument('--format', choices=['parquet', 'json', 'csv'],
default='parquet', help='Output format')
parser.add_argument('--push-to-hub', action='store_true',
help='Push dataset to Hugging Face Hub')
parser.add_argument('--repo-id', type=str,
help='Repository ID on Hugging Face Hub (e.g., username/dataset-name)')
parser.add_argument('--private', action='store_true',
help='Make the dataset private on Hugging Face Hub')
parser.add_argument('--include-metadata', type=str, default='true',
choices=['true', 'false'],
help='Include metadata from inventory CSV if available (default: true)')
args = parser.parse_args()
# Validate arguments
if args.push_to_hub and not args.repo_id:
logger.error("--repo-id is required when using --push-to-hub")
sys.exit(1)
input_path = Path(args.input_dir)
if not input_path.exists():
logger.error(f"Input directory does not exist: {input_path}")
sys.exit(1)
# Convert string boolean to actual boolean
include_metadata = args.include_metadata.lower() == 'true'
# Process dataset
logger.info(f"Processing dataset from {input_path}")
records = process_dataset(input_path, args.max_docs, include_metadata)
if not records:
logger.error("No records found!")
sys.exit(1)
# Print statistics
print_statistics(records)
# Create HF dataset
logger.info("Creating Hugging Face dataset...")
dataset = create_huggingface_dataset(records, include_missing=args.include_missing)
# Save dataset locally
logger.info(f"Saving dataset to {args.output_path}")
if args.format == 'parquet':
dataset.to_parquet(args.output_path)
elif args.format == 'json':
dataset.to_json(args.output_path)
elif args.format == 'csv':
dataset.to_csv(args.output_path)
logger.info(f"Dataset saved successfully! Total rows: {len(dataset)}")
# Push to Hugging Face Hub if requested
if args.push_to_hub:
logger.info(f"Pushing dataset to Hugging Face Hub: {args.repo_id}")
try:
dataset.push_to_hub(
repo_id=args.repo_id,
private=args.private,
commit_message=f"Add NLS Scottish Exams dataset with {len(dataset)} pages"
)
logger.info(f"Dataset successfully pushed to https://huggingface.co/datasets/{args.repo_id}")
except Exception as e:
logger.error(f"Failed to push to Hub: {e}")
logger.info("Make sure you're logged in with 'huggingface-cli login'")
sys.exit(1)
if __name__ == "__main__":
main() |