Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
10K<n<100K
License:
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """TODO""" | |
| import csv | |
| import os | |
| import datasets | |
| from PIL import Image | |
| _CITATION = """\ | |
| @dataset{kasra_hosseini_2022_7147906, | |
| author = {Kasra Hosseini and | |
| Daniel C.S. Wilson and | |
| Kaspar Beelen and | |
| Katherine McDonough}, | |
| title = {MapReader_Data_SIGSPATIAL_2022}, | |
| month = oct, | |
| year = 2022, | |
| publisher = {Zenodo}, | |
| version = {v0.3.3}, | |
| doi = {10.5281/zenodo.7147906}, | |
| url = {https://doi.org/10.5281/zenodo.7147906} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| TODO""" | |
| _HOMEPAGE = "https://doi.org/10.5281/zenodo.3366686" | |
| _LICENSE = "Creative Commons Attribution Non Commercial Share Alike 4.0 International" | |
| _URL = "https://zenodo.org/record/7147906/files/MapReader_Data_SIGSPATIAL_2022.zip?download=1" | |
| class RailspaceData(datasets.GeneratorBasedBuilder): | |
| """National Library of Scotland Railspace dataset.""" | |
| VERSION = datasets.Version("1.1.0") | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "image": datasets.Image(), | |
| "label": datasets.ClassLabel( | |
| names=[ | |
| "no building or railspace", | |
| "railspace", | |
| "building", | |
| "railspace and non railspace building", | |
| ] | |
| ), # Labels: 0: no [building or railspace]; 1: railspace; 2: building; and 3: railspace and [non railspace] building. | |
| "map_sheet": datasets.Value("string"), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| data = dl_manager.download_and_extract(_URL) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"data": data, "split": "train"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"data": data, "split": "valid"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"data": data, "split": "test"}, | |
| ), | |
| ] | |
| def _generate_examples(self, data, split): | |
| with open( | |
| os.path.join( | |
| data, f"MapReader_Data_SIGSPATIAL_2022/annotations/{split}.csv" | |
| ), | |
| "r", | |
| ) as f: | |
| reader = csv.DictReader(f) | |
| for id_, row in enumerate(reader): | |
| label = row["label"] | |
| map_sheet = row["image_id"].split("#")[1] | |
| image_file = os.path.join( | |
| data, | |
| f"MapReader_Data_SIGSPATIAL_2022/annotations/{row['image_id']}", | |
| ) | |
| image = Image.open(image_file) | |
| yield id_, {"image": image, "label": label, "map_sheet": map_sheet} | |