|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ Common Voice Dataset""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import csv | 
					
						
						|  | import os | 
					
						
						|  | import json | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  | from datasets.utils.py_utils import size_str | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  |  | 
					
						
						|  | from .languages import LANGUAGES | 
					
						
						|  | from .release_stats import STATS | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @inproceedings{commonvoice:2020, | 
					
						
						|  | author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.}, | 
					
						
						|  | title = {Common Voice: A Massively-Multilingual Speech Corpus}, | 
					
						
						|  | booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)}, | 
					
						
						|  | pages = {4211--4215}, | 
					
						
						|  | year = 2020 | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets" | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _BASE_URL = "https://huggingface.co/datasets/KoddaDuck/Cylonix_ASR_dataset/blob/update/" | 
					
						
						|  |  | 
					
						
						|  | _AUDIO_URL = _BASE_URL + "audio/{lang}/{split}/{lang}_{split}_{shard_idx}.tar" | 
					
						
						|  |  | 
					
						
						|  | _TRANSCRIPT_URL = _BASE_URL + "transcript/{lang}/{split}.tsv" | 
					
						
						|  |  | 
					
						
						|  | _N_SHARDS_URL = _BASE_URL + "n_shards.json" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CommonVoiceConfig(datasets.BuilderConfig): | 
					
						
						|  | """BuilderConfig for CommonVoice.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, name, version, **kwargs): | 
					
						
						|  | self.language = kwargs.pop("language", None) | 
					
						
						|  | self.release_date = kwargs.pop("release_date", None) | 
					
						
						|  | self.num_clips = kwargs.pop("num_clips", None) | 
					
						
						|  | self.num_speakers = kwargs.pop("num_speakers", None) | 
					
						
						|  | self.validated_hr = kwargs.pop("validated_hr", None) | 
					
						
						|  | self.total_hr = kwargs.pop("total_hr", None) | 
					
						
						|  | self.size_bytes = kwargs.pop("size_bytes", None) | 
					
						
						|  | self.size_human = size_str(self.size_bytes) | 
					
						
						|  | description = ( | 
					
						
						|  | f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. " | 
					
						
						|  | f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data " | 
					
						
						|  | f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. " | 
					
						
						|  | f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}." | 
					
						
						|  | ) | 
					
						
						|  | super(CommonVoiceConfig, self).__init__( | 
					
						
						|  | name=name, | 
					
						
						|  | version=datasets.Version(version), | 
					
						
						|  | description=description, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CommonVoice(datasets.GeneratorBasedBuilder): | 
					
						
						|  | DEFAULT_WRITER_BATCH_SIZE = 1000 | 
					
						
						|  |  | 
					
						
						|  | BUILDER_CONFIGS = [ | 
					
						
						|  | CommonVoiceConfig( | 
					
						
						|  | name=lang, | 
					
						
						|  | version=STATS["version"], | 
					
						
						|  | language=LANGUAGES[lang], | 
					
						
						|  | release_date=STATS["date"], | 
					
						
						|  | num_clips=lang_stats["clips"], | 
					
						
						|  | num_speakers=lang_stats["users"], | 
					
						
						|  | validated_hr=float(lang_stats["validHrs"]) if lang_stats["validHrs"] else None, | 
					
						
						|  | total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None, | 
					
						
						|  | size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None, | 
					
						
						|  | ) | 
					
						
						|  | for lang, lang_stats in STATS["locales"].items() | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | total_languages = len(STATS["locales"]) | 
					
						
						|  | total_valid_hours = STATS["totalValidHrs"] | 
					
						
						|  | description = ( | 
					
						
						|  | "Common Voice is Mozilla's initiative to help teach machines how real people speak. " | 
					
						
						|  | f"The dataset currently consists of {total_valid_hours} validated hours of speech " | 
					
						
						|  | f" in {total_languages} languages, but more voices and languages are always added." | 
					
						
						|  | ) | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "client_id": datasets.Value("string"), | 
					
						
						|  | "path": datasets.Value("string"), | 
					
						
						|  | "audio": datasets.features.Audio(sampling_rate=48_000), | 
					
						
						|  | "sentence": datasets.Value("string"), | 
					
						
						|  | "up_votes": datasets.Value("int64"), | 
					
						
						|  | "down_votes": datasets.Value("int64"), | 
					
						
						|  | "age": datasets.Value("string"), | 
					
						
						|  | "gender": datasets.Value("string"), | 
					
						
						|  | "accent": datasets.Value("string"), | 
					
						
						|  | "locale": datasets.Value("string"), | 
					
						
						|  | "segment": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=description, | 
					
						
						|  | features=features, | 
					
						
						|  | supervised_keys=None, | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  | license=_LICENSE, | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | version=self.config.version, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | lang = self.config.name | 
					
						
						|  | n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL) | 
					
						
						|  | with open(n_shards_path, encoding="utf-8") as f: | 
					
						
						|  | n_shards = json.load(f) | 
					
						
						|  |  | 
					
						
						|  | audio_urls = {} | 
					
						
						|  | splits = ("train", "test") | 
					
						
						|  | for split in splits: | 
					
						
						|  | audio_urls[split] = [ | 
					
						
						|  | _AUDIO_URL.format(lang=lang, split=split, shard_idx=i) for i in range(n_shards[lang][split]) | 
					
						
						|  | ] | 
					
						
						|  | archive_paths = dl_manager.download(audio_urls) | 
					
						
						|  | local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} | 
					
						
						|  |  | 
					
						
						|  | meta_urls = {split: _TRANSCRIPT_URL.format(lang=lang, split=split) for split in splits} | 
					
						
						|  | meta_paths = dl_manager.download_and_extract(meta_urls) | 
					
						
						|  |  | 
					
						
						|  | split_generators = [] | 
					
						
						|  | split_names = { | 
					
						
						|  | "train": datasets.Split.TRAIN, | 
					
						
						|  | "test": datasets.Split.TEST, | 
					
						
						|  | } | 
					
						
						|  | for split in splits: | 
					
						
						|  | split_generators.append( | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=split_names.get(split, split), | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "local_extracted_archive_paths": local_extracted_archive_paths.get(split), | 
					
						
						|  | "archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)], | 
					
						
						|  | "meta_path": meta_paths[split], | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return split_generators | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): | 
					
						
						|  | data_fields = list(self._info().features.keys()) | 
					
						
						|  | metadata = {} | 
					
						
						|  | with open(meta_path, encoding="utf-8") as f: | 
					
						
						|  | reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | 
					
						
						|  | for row in tqdm(reader, desc="Reading metadata..."): | 
					
						
						|  | if not row["path"].endswith(".wav"): | 
					
						
						|  | row["path"] += ".wav" | 
					
						
						|  |  | 
					
						
						|  | if "accents" in row: | 
					
						
						|  | row["accent"] = row["accents"] | 
					
						
						|  | del row["accents"] | 
					
						
						|  |  | 
					
						
						|  | for field in data_fields: | 
					
						
						|  | if field not in row: | 
					
						
						|  | row[field] = "" | 
					
						
						|  | metadata[row["path"]] = row | 
					
						
						|  |  | 
					
						
						|  | for i, audio_archive in enumerate(archives): | 
					
						
						|  | for filename, file in audio_archive: | 
					
						
						|  | _, filename = os.path.split(filename) | 
					
						
						|  | if filename in metadata: | 
					
						
						|  | result = dict(metadata[filename]) | 
					
						
						|  |  | 
					
						
						|  | path = os.path.join(local_extracted_archive_paths[i], filename) if local_extracted_archive_paths else filename | 
					
						
						|  | result["audio"] = {"path": path, "bytes": file.read()} | 
					
						
						|  |  | 
					
						
						|  | result["path"] = path if local_extracted_archive_paths else filename | 
					
						
						|  |  | 
					
						
						|  | yield path, result | 
					
						
						|  |  | 
					
						
						|  |  |