Update multi_omics_transcript_expression.py
Browse files
multi_omics_transcript_expression.py
CHANGED
|
@@ -125,6 +125,17 @@ LABELS_V2 = [
|
|
| 125 |
"Whole Blood",
|
| 126 |
]
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
class GenomicLRATaskHandler(ABC):
|
| 130 |
"""
|
|
@@ -226,37 +237,41 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
| 226 |
|
| 227 |
DEFAULT_LENGTH = 200_000
|
| 228 |
DEFAULT_FILTER_OUT_LENGTH = 196_608
|
|
|
|
|
|
|
| 229 |
|
| 230 |
def __init__(
|
| 231 |
self,
|
| 232 |
sequence_length: int = DEFAULT_LENGTH,
|
| 233 |
filter_out_sequence_length: int = DEFAULT_FILTER_OUT_LENGTH,
|
| 234 |
expression_method: str = "read_counts_old",
|
|
|
|
| 235 |
**kwargs,
|
| 236 |
):
|
| 237 |
"""
|
| 238 |
-
Creates a new handler for the
|
| 239 |
Args:
|
| 240 |
sequence_length: Length of the sequence around the TSS_CAGE start site
|
| 241 |
-
|
| 242 |
-
reference_genome: The Fasta extracted reference genome.
|
| 243 |
-
coordinate_csv_file: The csv file that stores the coordinates and filename of the target
|
| 244 |
-
labels_csv_file: The csv file that stores the labels with one sample per row.
|
| 245 |
-
sequence_length: Sequence length for this handler.
|
| 246 |
-
counts.
|
| 247 |
"""
|
| 248 |
self.reference_genome = None
|
| 249 |
self.coordinate_csv_file = None
|
| 250 |
self.labels_csv_file = None
|
| 251 |
-
self.
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
assert (
|
| 257 |
-
sequence_length <= filter_out_sequence_length
|
| 258 |
-
), f"{sequence_length=} > {filter_out_sequence_length=}"
|
| 259 |
-
assert isinstance(sequence_length, int)
|
| 260 |
|
| 261 |
def get_info(self, description: str) -> DatasetInfo:
|
| 262 |
"""
|
|
@@ -286,9 +301,7 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
| 286 |
}
|
| 287 |
)
|
| 288 |
return datasets.DatasetInfo(
|
| 289 |
-
# This is the description that will appear on the datasets page.
|
| 290 |
description=description,
|
| 291 |
-
# This defines the different columns of the dataset and their types
|
| 292 |
features=features,
|
| 293 |
)
|
| 294 |
|
|
@@ -321,31 +334,30 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
| 321 |
"""
|
| 322 |
df = pd.read_csv(self.df_csv_file)
|
| 323 |
df = df.loc[df["chr"] != "chrMT"]
|
| 324 |
-
|
|
|
|
|
|
|
| 325 |
|
| 326 |
split_df = df.loc[df["split"] == split]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
norm_values_df = pd.read_csv(self.normalization_values_csv_file)
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
.reshape(-1)
|
| 343 |
-
)
|
| 344 |
-
sigma_g = (
|
| 345 |
-
norm_values_df[[f"sigma_g_{tissue}" for tissue in LABELS_V1]]
|
| 346 |
-
.to_numpy()
|
| 347 |
-
.reshape(-1)
|
| 348 |
-
)
|
| 349 |
|
| 350 |
key = 0
|
| 351 |
for idx, coordinates_row in split_df.iterrows():
|
|
@@ -357,7 +369,7 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
| 357 |
start = coordinates_row["start"] - 1 # -1 since vcf coords are 1-based
|
| 358 |
|
| 359 |
chromosome = coordinates_row["chr"]
|
| 360 |
-
labels_row = coordinates_row[
|
| 361 |
padded_sequence = pad_sequence(
|
| 362 |
chromosome=self.reference_genome[chromosome],
|
| 363 |
start=start,
|
|
@@ -503,4 +515,4 @@ def pad_sequence(
|
|
| 503 |
|
| 504 |
if negative_strand:
|
| 505 |
return chromosome[start:end].reverse.complement.seq
|
| 506 |
-
return chromosome[start:end].seq
|
|
|
|
| 125 |
"Whole Blood",
|
| 126 |
]
|
| 127 |
|
| 128 |
+
# Add after LABELS_V2 definition
|
| 129 |
+
LABELS_LIGHT = [
|
| 130 |
+
"Adipose Tissue",
|
| 131 |
+
"Brain",
|
| 132 |
+
"Heart",
|
| 133 |
+
"Liver",
|
| 134 |
+
"Lung",
|
| 135 |
+
"Muscle",
|
| 136 |
+
"Pancreas",
|
| 137 |
+
"Skin",
|
| 138 |
+
]
|
| 139 |
|
| 140 |
class GenomicLRATaskHandler(ABC):
|
| 141 |
"""
|
|
|
|
| 237 |
|
| 238 |
DEFAULT_LENGTH = 200_000
|
| 239 |
DEFAULT_FILTER_OUT_LENGTH = 196_608
|
| 240 |
+
LIGHT_LENGTH = 50_000
|
| 241 |
+
LIGHT_FILTER_OUT_LENGTH = 49_152
|
| 242 |
|
| 243 |
def __init__(
|
| 244 |
self,
|
| 245 |
sequence_length: int = DEFAULT_LENGTH,
|
| 246 |
filter_out_sequence_length: int = DEFAULT_FILTER_OUT_LENGTH,
|
| 247 |
expression_method: str = "read_counts_old",
|
| 248 |
+
light_version: bool = False,
|
| 249 |
**kwargs,
|
| 250 |
):
|
| 251 |
"""
|
| 252 |
+
Creates a new handler for the Transcript Expression Prediction Task.
|
| 253 |
Args:
|
| 254 |
sequence_length: Length of the sequence around the TSS_CAGE start site
|
| 255 |
+
light_version: If True, uses a smaller subset of tissues and shorter sequences
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
"""
|
| 257 |
self.reference_genome = None
|
| 258 |
self.coordinate_csv_file = None
|
| 259 |
self.labels_csv_file = None
|
| 260 |
+
self.light_version = light_version
|
| 261 |
+
|
| 262 |
+
if light_version:
|
| 263 |
+
self.sequence_length = self.LIGHT_LENGTH
|
| 264 |
+
self.filter_out_sequence_length = self.LIGHT_FILTER_OUT_LENGTH
|
| 265 |
+
else:
|
| 266 |
+
self.sequence_length = sequence_length
|
| 267 |
+
self.filter_out_sequence_length = filter_out_sequence_length
|
| 268 |
+
|
| 269 |
+
if self.filter_out_sequence_length is not None:
|
| 270 |
+
assert isinstance(self.filter_out_sequence_length, int)
|
| 271 |
assert (
|
| 272 |
+
self.sequence_length <= self.filter_out_sequence_length
|
| 273 |
+
), f"{self.sequence_length=} > {self.filter_out_sequence_length=}"
|
| 274 |
+
assert isinstance(self.sequence_length, int)
|
| 275 |
|
| 276 |
def get_info(self, description: str) -> DatasetInfo:
|
| 277 |
"""
|
|
|
|
| 301 |
}
|
| 302 |
)
|
| 303 |
return datasets.DatasetInfo(
|
|
|
|
| 304 |
description=description,
|
|
|
|
| 305 |
features=features,
|
| 306 |
)
|
| 307 |
|
|
|
|
| 334 |
"""
|
| 335 |
df = pd.read_csv(self.df_csv_file)
|
| 336 |
df = df.loc[df["chr"] != "chrMT"]
|
| 337 |
+
|
| 338 |
+
# Use light version labels if specified
|
| 339 |
+
labels_name = LABELS_LIGHT if self.light_version else LABELS_V1
|
| 340 |
|
| 341 |
split_df = df.loc[df["split"] == split]
|
| 342 |
+
|
| 343 |
+
# For light version, take only a subset of the data
|
| 344 |
+
if self.light_version:
|
| 345 |
+
split_df = split_df.sample(n=min(1000, len(split_df)), random_state=42)
|
| 346 |
|
| 347 |
norm_values_df = pd.read_csv(self.normalization_values_csv_file)
|
| 348 |
+
|
| 349 |
+
# Select appropriate columns based on version
|
| 350 |
+
label_columns = [f"m_t_{tissue}" for tissue in labels_name]
|
| 351 |
+
m_t = norm_values_df[label_columns].to_numpy().reshape(-1)
|
| 352 |
+
|
| 353 |
+
label_columns = [f"sigma_t_{tissue}" for tissue in labels_name]
|
| 354 |
+
sigma_t = norm_values_df[label_columns].to_numpy().reshape(-1)
|
| 355 |
+
|
| 356 |
+
label_columns = [f"m_g_{tissue}" for tissue in labels_name]
|
| 357 |
+
m_g = norm_values_df[label_columns].to_numpy().reshape(-1)
|
| 358 |
+
|
| 359 |
+
label_columns = [f"sigma_g_{tissue}" for tissue in labels_name]
|
| 360 |
+
sigma_g = norm_values_df[label_columns].to_numpy().reshape(-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
key = 0
|
| 363 |
for idx, coordinates_row in split_df.iterrows():
|
|
|
|
| 369 |
start = coordinates_row["start"] - 1 # -1 since vcf coords are 1-based
|
| 370 |
|
| 371 |
chromosome = coordinates_row["chr"]
|
| 372 |
+
labels_row = coordinates_row[labels_name]
|
| 373 |
padded_sequence = pad_sequence(
|
| 374 |
chromosome=self.reference_genome[chromosome],
|
| 375 |
start=start,
|
|
|
|
| 515 |
|
| 516 |
if negative_strand:
|
| 517 |
return chromosome[start:end].reverse.complement.seq
|
| 518 |
+
return chromosome[start:end].seq
|