Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
Dask
License:
mahmud0x commited on
Commit
2d2b761
·
1 Parent(s): 32e42c2

updated dataset card

Browse files
Files changed (1) hide show
  1. README.md +131 -1
README.md CHANGED
@@ -2,4 +2,134 @@
2
  license: mit
3
  size_categories:
4
  - 1M<n<10M
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: mit
3
  size_categories:
4
  - 1M<n<10M
5
+ ---
6
+
7
+ # Dataset Card for LAMDA: Longitudinal Android Malware Dataset for Drift Analysis
8
+
9
+ This dataset contains a longitudinal benchmark for Android malware detection designed to analyze and evaluate concept drift in machine learning models. It includes labeled and feature-engineered Android APK data from 2013 to 2025 (excluding 2015), with over 1 million samples collected from real-world sources.
10
+
11
+ ## Dataset Details
12
+
13
+ ### Dataset Description
14
+
15
+ - **Curated by:** IQSeC Lab, The University of Texas at El Paso
16
+ - **Funded by:** [More Information Needed]
17
+ - **Shared by:** IQSeC Lab
18
+ - **Language(s):** Not applicable
19
+ - **License:** MIT
20
+
21
+ LAMDA is the largest and most temporally diverse Android malware dataset to date. It enables studies in concept drift, temporal generalization, family classification, and robust malware detection over time. Each sample includes static features (from `.data` files), metadata (VirusTotal detections, family name, timestamp), and binary labels.
22
+
23
+ The dataset was created using ~1M APKs from [AndroZoo](https://androzoo.uni.lu/), with additional metadata and labels derived via VirusTotal and AVClass2. Labels are assigned using a 4+ AV detection threshold to reduce noise.
24
+
25
+ ### Dataset Sources
26
+
27
+ - **Repository:** https://huggingface.co/datasets/IQSeC-Lab/LAMDA
28
+ - **Project Website:** https://iqsec-lab.github.io/LAMDA/
29
+ - **Paper (NeurIPS 2025 Submission):** [Pending release]
30
+
31
+ ## Uses
32
+
33
+ ### Direct Use
34
+
35
+ - Malware classification
36
+ - Family prediction
37
+ - Concept drift analysis
38
+ - Temporal generalization benchmarks
39
+ - SHAP-based feature attribution drift analysis
40
+ - Continual learning evaluation (e.g., class-IL, replay)
41
+
42
+ ### Out-of-Scope Use
43
+
44
+ - Dynamic behavior analysis (no runtime traces)
45
+ - On-device malware detection (model integration not provided)
46
+
47
+ ## Dataset Structure
48
+
49
+ Each year is stored in a subdirectory:
50
+
51
+ ```
52
+ 2013/
53
+ ├── 2013_train.parquet
54
+ ├── 2013_test.parquet
55
+ ...
56
+ 2025/
57
+ ├── 2025_train.parquet
58
+ ├── 2025_test.parquet
59
+ ```
60
+
61
+
62
+ Each `.parquet` contains:
63
+
64
+ | Column | Description |
65
+ |---------------|-----------------------------------------------------|
66
+ | `label` | 0 = benign, 1 = malware |
67
+ | `family` | Malware family name (via AVClass2) |
68
+ | `vt_count` | VirusTotal vendor detection count |
69
+ | `year_month` | Timestamp in YYYY-MM format |
70
+ | `feat_0 ... feat_4560` | Static bag-of-words features (int8) |
71
+ | `hash` | Sample SHA256 hash (used as index) |
72
+
73
+ A `feature_mapping.csv` maps each `feat_i` to its original static token.
74
+
75
+ ## Dataset Creation
76
+
77
+ ### Curation Rationale
78
+
79
+ To enable longitudinal and realistic evaluation of ML-based malware detection systems that must remain effective in the face of temporal and adversarial drift.
80
+
81
+ ### Source Data
82
+
83
+ APK samples were downloaded from AndroZoo and processed using static analysis to extract `.data` files. Metadata was merged from a curated CSV containing VirusTotal counts and family assignments via AVClass2.
84
+
85
+ #### Data Collection and Processing
86
+
87
+ - Extracted feature vectors from `.data` files (comma-separated tokens)
88
+ - Labeled malware if `vt_detection ≥ 4`
89
+ - Assigned families via AVClass2
90
+ - Feature vectors vectorized using bag-of-words (sparse)
91
+ - Feature selection via `VarianceThreshold=0.001` → 4,561 features
92
+ - Train/test split (80/20) stratified by label, year-wise
93
+
94
+ #### Who are the source data producers?
95
+
96
+ Original APKs are from AndroZoo. Annotations and processing were conducted by IQSeC Lab at the University of Texas at El Paso.
97
+
98
+ ### Annotations
99
+
100
+ #### Annotation Process
101
+
102
+ - Malware/benign labels based on AV vendor threshold (≥4)
103
+ - Family labels from AVClass2
104
+ - All annotations generated using automated pipelines
105
+
106
+ #### Who are the annotators?
107
+
108
+ Researchers at IQSeC Lab via static tooling and AVClass2
109
+
110
+ #### Personal and Sensitive Information
111
+
112
+ No PII or private user data is included. APKs are anonymized binaries.
113
+
114
+ ## Bias, Risks, and Limitations
115
+
116
+ - Biased toward highly detected malware (AV-centric labeling)
117
+ - No dynamic/runtime behavior
118
+ - Concept drift is dataset-driven, not simulation-based
119
+
120
+ ### Recommendations
121
+
122
+ - Normalize class balance before training
123
+ - Use continual or time-aware validation schemes
124
+ - SHAP explanations should be anchored year-wise
125
+
126
+ ## Citation
127
+
128
+ **BibTeX:**
129
+ ```bibtex
130
+ @misc{lamda2025,
131
+ title = {LAMDA: Longitudinal Android Malware Benchmark for Concept Drift Analysis},
132
+ author = {Kamol, Mahmuduzzaman and others},
133
+ year = {2025},
134
+ url = {https://huggingface.co/datasets/IQSeC-Lab/LAMDA}
135
+ }