SaylorTwift HF Staff commited on
Commit
50f2787
·
verified ·
1 Parent(s): 81a1da6

Delete loading script

Browse files
Files changed (1) hide show
  1. indicxnli.py +0 -149
indicxnli.py DELETED
@@ -1,149 +0,0 @@
1
- # coding=utf-8
2
-
3
-
4
- # Lint as: python3
5
- """IndicXNLI: The Cross-Lingual NLI Corpus for Indic Languages."""
6
-
7
-
8
- import os
9
- import json
10
-
11
- import datasets
12
-
13
-
14
- _CITATION = """\
15
- @misc{https://doi.org/10.48550/arxiv.2204.08776,
16
- doi = {10.48550/ARXIV.2204.08776},
17
-
18
- url = {https://arxiv.org/abs/2204.08776},
19
-
20
- author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
21
-
22
- keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
23
-
24
- title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
25
-
26
- publisher = {arXiv},
27
-
28
- year = {2022},
29
-
30
- copyright = {Creative Commons Attribution 4.0 International}
31
- }
32
- }"""
33
-
34
- _DESCRIPTION = """\
35
- IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
36
- to predict textual entailment (does sentence A imply/contradict/neither sentence
37
- B) and is a classification task (given two sentences, predict one of three
38
- labels).
39
- """
40
-
41
- _LANGUAGES = (
42
- 'hi',
43
- 'bn',
44
- 'mr',
45
- 'as',
46
- 'ta',
47
- 'te',
48
- 'or',
49
- 'ml',
50
- 'pa',
51
- 'gu',
52
- 'kn'
53
- )
54
-
55
-
56
- _URL = "https://huggingface.co/datasets/Divyanshu/indicxnli/resolve/main/forward"
57
-
58
- class IndicxnliConfig(datasets.BuilderConfig):
59
- """BuilderConfig for XNLI."""
60
-
61
- def __init__(self, language: str, **kwargs):
62
- """BuilderConfig for XNLI.
63
-
64
- Args:
65
- language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
66
- **kwargs: keyword arguments forwarded to super.
67
- """
68
- super(IndicxnliConfig, self).__init__(**kwargs)
69
-
70
- self.language = language
71
- self.languages = _LANGUAGES
72
-
73
- self._URLS = {
74
- "train": os.path.join(_URL, "train", f"xnli_{self.language}.json"),
75
- "test": os.path.join(_URL, "test", f"xnli_{self.language}.json"),
76
- "dev": os.path.join(_URL, "dev", f"xnli_{self.language}.json")
77
- }
78
-
79
-
80
- class Indicxnli(datasets.GeneratorBasedBuilder):
81
- """IndicXNLI: The Cross-Lingual NLI Corpus for Indic Languages. Version 1.0."""
82
-
83
- VERSION = datasets.Version("1.0.0", "")
84
- BUILDER_CONFIG_CLASS = IndicxnliConfig
85
- BUILDER_CONFIGS = [
86
- IndicxnliConfig(
87
- name=lang,
88
- language=lang,
89
- version=datasets.Version("1.0.0", ""),
90
- description=f"Plain text import of IndicXNLI for the {lang} language",
91
- )
92
- for lang in _LANGUAGES
93
- ]
94
-
95
- def _info(self):
96
- features = datasets.Features(
97
- {
98
- "premise": datasets.Value("string"),
99
- "hypothesis": datasets.Value("string"),
100
- "label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
101
- }
102
- )
103
- return datasets.DatasetInfo(
104
- description=_DESCRIPTION,
105
- features=features,
106
- # No default supervised_keys (as we have to pass both premise
107
- # and hypothesis as input).
108
- supervised_keys=None,
109
- homepage="https://github.com/divyanshuaggarwal/IndicXNLI",
110
- citation=_CITATION,
111
- )
112
-
113
- def _split_generators(self, dl_manager):
114
- urls_to_download = self.config._URLS
115
-
116
-
117
- downloaded_files = dl_manager.download(urls_to_download)
118
-
119
- return [
120
- datasets.SplitGenerator(
121
- name=datasets.Split.TRAIN,
122
- gen_kwargs={
123
- "filepath": downloaded_files["train"],
124
- "data_format": "IndicXNLI",
125
- },
126
- ),
127
- datasets.SplitGenerator(
128
- name=datasets.Split.TEST,
129
- gen_kwargs={"filepath": downloaded_files["test"], "data_format": "IndicXNLI"},
130
- ),
131
- datasets.SplitGenerator(
132
- name=datasets.Split.VALIDATION,
133
- gen_kwargs={"filepath": downloaded_files["dev"], "data_format": "IndicXNLI"},
134
- ),
135
- ]
136
-
137
- def _generate_examples(self, data_format, filepath):
138
- """This function returns the examples in the raw (text) form."""
139
-
140
- with open(filepath, "r") as f:
141
- data = json.load(f)
142
- data = data[list(data.keys())[0]]
143
-
144
- for idx, row in enumerate(data):
145
- yield idx, {
146
- "premise": row["premise"],
147
- "hypothesis": row["hypothesis"],
148
- "label": row["label"],
149
- }