File size: 4,431 Bytes
6d1459e
1a5d9cc
6d1459e
 
1a5d9cc
6d1459e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f655e42
6d1459e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bccfe74
b1a3065
6d1459e
 
 
 
 
 
 
 
 
 
 
16912f5
6d1459e
bdef099
16912f5
 
 
 
 
 
6d1459e
 
 
1a5d9cc
6d1459e
ca3eae5
6d1459e
 
 
 
 
ca3eae5
6d1459e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cc963a
6d1459e
 
 
 
c5c5ebf
b1a3065
16912f5
1c1732a
6d1459e
 
 
 
 
6c40c0c
6d1459e
 
 
 
 
16912f5
6d1459e
 
 
3d1728f
6d1459e
 
 
16912f5
6d1459e
d41e455
16912f5
6d1459e
6909f07
6d1459e
 
 
3ba1a1b
 
 
6d1459e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# coding=utf-8


# Lint as: python3
"""IndicXNLI: The Cross-Lingual NLI Corpus for Indic Languages."""


import os
import json

import datasets


_CITATION = """\
@misc{https://doi.org/10.48550/arxiv.2204.08776,
  doi = {10.48550/ARXIV.2204.08776},
  
  url = {https://arxiv.org/abs/2204.08776},
  
  author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
  
  keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages}, 
  
  publisher = {arXiv},
  
  year = {2022},
  
  copyright = {Creative Commons Attribution 4.0 International}
}
}"""

_DESCRIPTION = """\
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
to predict textual entailment (does sentence A imply/contradict/neither sentence
B) and is a classification task (given two sentences, predict one of three
labels).
"""

_LANGUAGES = (
    'hi',
    'bn',
    'mr',
    'as',
    'ta',
    'te',
    'or',
    'ml',
    'pa',
    'gu',
    'kn'
)


_URL = "https://huggingface.co/datasets/Divyanshu/indicxnli/resolve/main/forward"

class IndicxnliConfig(datasets.BuilderConfig):
    """BuilderConfig for XNLI."""

    def __init__(self, language: str, **kwargs):
        """BuilderConfig for XNLI.

        Args:
        language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
          **kwargs: keyword arguments forwarded to super.
        """
        super(IndicxnliConfig, self).__init__(**kwargs)
        
        self.language = language
        self.languages = _LANGUAGES
        
        self._URLS = {
            "train": os.path.join(_URL, "train", f"xnli_{self.language}.json"),
            "test": os.path.join(_URL, "test", f"xnli_{self.language}.json"),
            "dev": os.path.join(_URL, "dev", f"xnli_{self.language}.json")
        }


class Indicxnli(datasets.GeneratorBasedBuilder):
    """IndicXNLI: The Cross-Lingual NLI Corpus for Indic Languages. Version 1.0."""

    VERSION = datasets.Version("1.0.0", "")
    BUILDER_CONFIG_CLASS = IndicxnliConfig
    BUILDER_CONFIGS = [
        IndicxnliConfig(
            name=lang,
            language=lang,
            version=datasets.Version("1.0.0", ""),
            description=f"Plain text import of IndicXNLI for the {lang} language",
        )
        for lang in _LANGUAGES
    ]

    def _info(self):
        features = datasets.Features(
            {
                "premise": datasets.Value("string"),
                "hypothesis": datasets.Value("string"),
                "label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            # No default supervised_keys (as we have to pass both premise
            # and hypothesis as input).
            supervised_keys=None,
            homepage="https://github.com/divyanshuaggarwal/IndicXNLI",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls_to_download = self.config._URLS
        
        
        downloaded_files = dl_manager.download(urls_to_download)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": downloaded_files["train"],
                    "data_format": "IndicXNLI",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": downloaded_files["test"], "data_format": "IndicXNLI"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": downloaded_files["dev"], "data_format": "IndicXNLI"},
            ),
        ]

    def _generate_examples(self, data_format, filepath):
        """This function returns the examples in the raw (text) form."""

        with open(filepath, "r") as f:
            data = json.load(f)
            data = data[list(data.keys())[0]]

        for idx, row in enumerate(data):
            yield idx, {
                "premise": row["premise"],
                "hypothesis": row["hypothesis"],
                "label": row["label"],
            }