Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
dsouzadaniel commited on
Commit
6c3ac44
·
verified ·
1 Parent(s): ea668fc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md CHANGED
@@ -508,3 +508,106 @@ configs:
508
  - split: test
509
  path: zh/test-*
510
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508
  - split: test
509
  path: zh/test-*
510
  ---
511
+
512
+
513
+ ## Dataset Card for m-ArenaHard-v2.0
514
+
515
+ ### Dataset Details
516
+
517
+ The m-ArenaHard-v2.0 dataset is a multilingual LLM evaluation set. This is built on the LMarena (formerly LMSYS) [arena-hard-auto-v2.0](https://github.com/lmarena/arena-hard-auto/tree/main/data/arena-hard-v2.0) test dataset.
518
+ This dataset(containing 750 prompts) was filtered to "english" only prompts using the *papluca/xlm-roberta-base-language-detection* model resulting in 498 prompts.
519
+ These filtered prompts were then translated into 22 languages by using an in-house state-of-the-art translation model resulting in a total test set of 11,454 multilingual prompts.
520
+
521
+ The 23 languages included in this dataset are :
522
+
523
+ - Arabic (ar)
524
+ - Chinese (zh)
525
+ - Czech (cs)
526
+ - Dutch (nl)
527
+ - English (en)
528
+ - French (fr)
529
+ - German (de)
530
+ - Greek (el)
531
+ - Hebrew (he)
532
+ - Hindi (hi)
533
+ - Indonesian (id)
534
+ - Italian (it)
535
+ - Japanese (ja)
536
+ - Korean (ko)
537
+ - Persian (fa)
538
+ - Polish (pl)
539
+ - Portuguese (pt)
540
+ - Romanian (ro)
541
+ - Russian (ru)
542
+ - Spanish (es)
543
+ - Turkish (tr)
544
+ - Ukrainian (uk)
545
+ - Vietnamese (vi)
546
+
547
+ ## Load with Datasets
548
+ To load this dataset with Datasets, you'll need to install Datasets as
549
+ `pip install datasets --upgrade`
550
+
551
+ and then use the following code:
552
+
553
+ ```python
554
+ from datasets import load_dataset
555
+
556
+ dataset = load_dataset("CohereLabs/m-ArenaHard-v2.0", "en")
557
+ ```
558
+
559
+ If you instead would like to load the entire dataset, you can concatenate them using the following code:
560
+ ```python
561
+ from datasets import load_dataset, concatenate_datasets, get_dataset_config_names
562
+
563
+ moniker = 'CohereLabs/m-ArenaHard-v2.0'
564
+ dataset = concatenate_datasets([load_dataset(moniker,subset)['test'] for subset in get_dataset_config_names(moniker)])
565
+
566
+ ```
567
+
568
+ ## Dataset Structure
569
+ An instance of the data from the Korean subset looks as follows:
570
+ ```python
571
+ {
572
+ 'question_id': 'efe7a57ed35d476b',
573
+ 'category': 'hard_prompt',
574
+ 'subcategory': 'coding',
575
+ 'prompt': '깊게 숨을 들이쉬고 단계별로 생각해 보세요. 사용자의 데이터 기밀성을 보장하기 위해 사용자가 전체 하드 드라이브를 암호화할 수 있도록 돕는 프로그램을 설계하고 작성하세요.',
576
+ 'language': 'ko'
577
+ }
578
+ ```
579
+
580
+ ## Dataset Fields
581
+ The following are the fields in the dataset:
582
+
583
+ - question_id: a unique ID for the example (this will be the same across languages)
584
+ - category: prompt category from original dataset
585
+ - subcategory: finer-grained prompt category from original dataset
586
+ - prompt: text of the prompt (question or instruction)
587
+ - language: language of the prompt
588
+
589
+ All language subsets of the dataset share the same fields as above.
590
+
591
+ ## Authorship
592
+ - Publishing Organization: Cohere Labs
593
+ - Industry Type: Not-for-profit - Tech
594
+ - Contact Details: https://cohere.com/research
595
+
596
+ ## Licensing Information
597
+ This dataset can be used for any purpose, whether academic or commercial, under the terms of the Apache 2.0 License.
598
+
599
+ ## Citation
600
+ ```
601
+ @misc{khairi2025lifegivessamplesbenefits,
602
+ title={When Life Gives You Samples: The Benefits of Scaling up Inference Compute for Multilingual LLMs},
603
+ author={Ammar Khairi and Daniel D'souza and Ye Shen and Julia Kreutzer and Sara Hooker},
604
+ year={2025},
605
+ eprint={2506.20544},
606
+ archivePrefix={arXiv},
607
+ primaryClass={cs.CL},
608
+ url={https://arxiv.org/abs/2506.20544},
609
+ }
610
+ ```
611
+
612
+ ## Disclaimer
613
+ The translation into 22 languages is performed with an in-house state-of-the-art translation model.