Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -508,3 +508,106 @@ configs:
|
|
508 |
- split: test
|
509 |
path: zh/test-*
|
510 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
508 |
- split: test
|
509 |
path: zh/test-*
|
510 |
---
|
511 |
+
|
512 |
+
|
513 |
+
## Dataset Card for m-ArenaHard-v2.0
|
514 |
+
|
515 |
+
### Dataset Details
|
516 |
+
|
517 |
+
The m-ArenaHard-v2.0 dataset is a multilingual LLM evaluation set. This is built on the LMarena (formerly LMSYS) [arena-hard-auto-v2.0](https://github.com/lmarena/arena-hard-auto/tree/main/data/arena-hard-v2.0) test dataset.
|
518 |
+
This dataset(containing 750 prompts) was filtered to "english" only prompts using the *papluca/xlm-roberta-base-language-detection* model resulting in 498 prompts.
|
519 |
+
These filtered prompts were then translated into 22 languages by using an in-house state-of-the-art translation model resulting in a total test set of 11,454 multilingual prompts.
|
520 |
+
|
521 |
+
The 23 languages included in this dataset are :
|
522 |
+
|
523 |
+
- Arabic (ar)
|
524 |
+
- Chinese (zh)
|
525 |
+
- Czech (cs)
|
526 |
+
- Dutch (nl)
|
527 |
+
- English (en)
|
528 |
+
- French (fr)
|
529 |
+
- German (de)
|
530 |
+
- Greek (el)
|
531 |
+
- Hebrew (he)
|
532 |
+
- Hindi (hi)
|
533 |
+
- Indonesian (id)
|
534 |
+
- Italian (it)
|
535 |
+
- Japanese (ja)
|
536 |
+
- Korean (ko)
|
537 |
+
- Persian (fa)
|
538 |
+
- Polish (pl)
|
539 |
+
- Portuguese (pt)
|
540 |
+
- Romanian (ro)
|
541 |
+
- Russian (ru)
|
542 |
+
- Spanish (es)
|
543 |
+
- Turkish (tr)
|
544 |
+
- Ukrainian (uk)
|
545 |
+
- Vietnamese (vi)
|
546 |
+
|
547 |
+
## Load with Datasets
|
548 |
+
To load this dataset with Datasets, you'll need to install Datasets as
|
549 |
+
`pip install datasets --upgrade`
|
550 |
+
|
551 |
+
and then use the following code:
|
552 |
+
|
553 |
+
```python
|
554 |
+
from datasets import load_dataset
|
555 |
+
|
556 |
+
dataset = load_dataset("CohereLabs/m-ArenaHard-v2.0", "en")
|
557 |
+
```
|
558 |
+
|
559 |
+
If you instead would like to load the entire dataset, you can concatenate them using the following code:
|
560 |
+
```python
|
561 |
+
from datasets import load_dataset, concatenate_datasets, get_dataset_config_names
|
562 |
+
|
563 |
+
moniker = 'CohereLabs/m-ArenaHard-v2.0'
|
564 |
+
dataset = concatenate_datasets([load_dataset(moniker,subset)['test'] for subset in get_dataset_config_names(moniker)])
|
565 |
+
|
566 |
+
```
|
567 |
+
|
568 |
+
## Dataset Structure
|
569 |
+
An instance of the data from the Korean subset looks as follows:
|
570 |
+
```python
|
571 |
+
{
|
572 |
+
'question_id': 'efe7a57ed35d476b',
|
573 |
+
'category': 'hard_prompt',
|
574 |
+
'subcategory': 'coding',
|
575 |
+
'prompt': '깊게 숨을 들이쉬고 단계별로 생각해 보세요. 사용자의 데이터 기밀성을 보장하기 위해 사용자가 전체 하드 드라이브를 암호화할 수 있도록 돕는 프로그램을 설계하고 작성하세요.',
|
576 |
+
'language': 'ko'
|
577 |
+
}
|
578 |
+
```
|
579 |
+
|
580 |
+
## Dataset Fields
|
581 |
+
The following are the fields in the dataset:
|
582 |
+
|
583 |
+
- question_id: a unique ID for the example (this will be the same across languages)
|
584 |
+
- category: prompt category from original dataset
|
585 |
+
- subcategory: finer-grained prompt category from original dataset
|
586 |
+
- prompt: text of the prompt (question or instruction)
|
587 |
+
- language: language of the prompt
|
588 |
+
|
589 |
+
All language subsets of the dataset share the same fields as above.
|
590 |
+
|
591 |
+
## Authorship
|
592 |
+
- Publishing Organization: Cohere Labs
|
593 |
+
- Industry Type: Not-for-profit - Tech
|
594 |
+
- Contact Details: https://cohere.com/research
|
595 |
+
|
596 |
+
## Licensing Information
|
597 |
+
This dataset can be used for any purpose, whether academic or commercial, under the terms of the Apache 2.0 License.
|
598 |
+
|
599 |
+
## Citation
|
600 |
+
```
|
601 |
+
@misc{khairi2025lifegivessamplesbenefits,
|
602 |
+
title={When Life Gives You Samples: The Benefits of Scaling up Inference Compute for Multilingual LLMs},
|
603 |
+
author={Ammar Khairi and Daniel D'souza and Ye Shen and Julia Kreutzer and Sara Hooker},
|
604 |
+
year={2025},
|
605 |
+
eprint={2506.20544},
|
606 |
+
archivePrefix={arXiv},
|
607 |
+
primaryClass={cs.CL},
|
608 |
+
url={https://arxiv.org/abs/2506.20544},
|
609 |
+
}
|
610 |
+
```
|
611 |
+
|
612 |
+
## Disclaimer
|
613 |
+
The translation into 22 languages is performed with an in-house state-of-the-art translation model.
|