Datasets:
Tasks:
Question Answering
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """MC-TACO Dataset.""" | |
| import csv | |
| import datasets | |
| _CITATION = """\ | |
| @inproceedings{ZKNR19, | |
| author = {Ben Zhou, Daniel Khashabi, Qiang Ning and Dan Roth}, | |
| title = {“Going on a vacation” takes longer than “Going for a walk”: A Study of Temporal Commonsense Understanding }, | |
| booktitle = {EMNLP}, | |
| year = {2019}, | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| MC-TACO (Multiple Choice TemporAl COmmonsense) is a dataset of 13k question-answer | |
| pairs that require temporal commonsense comprehension. A system receives a sentence | |
| providing context information, a question designed to require temporal commonsense | |
| knowledge, and multiple candidate answers. More than one candidate answer can be plausible. | |
| The task is framed as binary classification: givent he context, the question, | |
| and the candidate answer, the task is to determine whether the candidate | |
| answer is plausible ("yes") or not ("no").""" | |
| _LICENSE = "Unknown" | |
| _URLs = { | |
| "dev": "https://raw.githubusercontent.com/CogComp/MCTACO/master/dataset/dev_3783.tsv", | |
| "test": "https://raw.githubusercontent.com/CogComp/MCTACO/master/dataset/test_9442.tsv", | |
| } | |
| class McTaco(datasets.GeneratorBasedBuilder): | |
| """MC-TACO Dataset: temporal commonsense knowledge.""" | |
| VERSION = datasets.Version("1.1.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig( | |
| name="plain_text", | |
| description="Plain text", | |
| version=VERSION, | |
| ), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "sentence": datasets.Value("string"), | |
| "question": datasets.Value("string"), | |
| "answer": datasets.Value("string"), | |
| "label": datasets.ClassLabel(names=["no", "yes"]), | |
| "category": datasets.ClassLabel( | |
| names=["Event Duration", "Event Ordering", "Frequency", "Typical Time", "Stationarity"] | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage="https://cogcomp.seas.upenn.edu/page/resource_view/125", | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| data_dir = dl_manager.download_and_extract(_URLs) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": data_dir["test"], | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "filepath": data_dir["dev"], | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| """Yields examples.""" | |
| with open(filepath, encoding="utf-8") as csv_file: | |
| csv_reader = csv.reader( | |
| csv_file, | |
| delimiter="\t", | |
| ) | |
| for id_, row in enumerate(csv_reader): | |
| yield id_, { | |
| "sentence": row[0], | |
| "question": row[1], | |
| "answer": row[2], | |
| "label": row[3], | |
| "category": row[4], | |
| } | |