Upload scripts/sample_atomic_commites.py with huggingface_hub
Browse files
scripts/sample_atomic_commites.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Script to sample atomic commits from CCS dataset for concern extraction.
|
4 |
+
Applies atomic sampling strategy with token filtering and SHA deduplication.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import tiktoken
|
9 |
+
from typing import Dict, List, Set
|
10 |
+
|
11 |
+
# Processing configuration
|
12 |
+
CONVENTIONAL_COMMIT_TYPES: List[str] = ["cicd", "refactor", "fix", "test"]
|
13 |
+
SAMPLES_PER_TYPE: int = 2
|
14 |
+
TARGET_TOKEN_LIMIT: int = 12288 # 16384 - 4096
|
15 |
+
ENCODING_MODEL: str = "cl100k_base" # GPT-4 encoding
|
16 |
+
|
17 |
+
# Column name constants
|
18 |
+
COLUMN_SHA: str = "sha"
|
19 |
+
COLUMN_ANNOTATED_TYPE: str = "annotated_type"
|
20 |
+
COLUMN_GIT_DIFF: str = "git_diff"
|
21 |
+
COLUMN_MASKED_COMMIT_MESSAGE: str = "masked_commit_message"
|
22 |
+
OUTPUT_COLUMNS: List[str] = [
|
23 |
+
COLUMN_ANNOTATED_TYPE,
|
24 |
+
COLUMN_MASKED_COMMIT_MESSAGE,
|
25 |
+
COLUMN_GIT_DIFF,
|
26 |
+
COLUMN_SHA,
|
27 |
+
]
|
28 |
+
|
29 |
+
# Data transformation constants
|
30 |
+
CI_TO_CICD_REPLACEMENT: str = "cicd"
|
31 |
+
|
32 |
+
# File paths
|
33 |
+
CCS_SOURCE_PATH: str = "data/CCS Dataset Training Data.csv"
|
34 |
+
SAMPLED_CSV_PATH: str = "data/sampled_ccs_dataset.csv"
|
35 |
+
DIFF_OUTPUT_DIR: str = "data/types"
|
36 |
+
|
37 |
+
|
38 |
+
def normalize_dataset(df: pd.DataFrame) -> pd.DataFrame:
|
39 |
+
"""Apply CI to CICD label normalization using pandas vectorized operations."""
|
40 |
+
# Use pandas replace for vectorized string replacement
|
41 |
+
df[COLUMN_ANNOTATED_TYPE] = (
|
42 |
+
df[COLUMN_ANNOTATED_TYPE]
|
43 |
+
.str.lower()
|
44 |
+
.str.strip()
|
45 |
+
.replace("ci", CI_TO_CICD_REPLACEMENT)
|
46 |
+
)
|
47 |
+
print("Applied CI -> CICD normalization using pandas replace()")
|
48 |
+
return df
|
49 |
+
|
50 |
+
|
51 |
+
def apply_token_filtering(df: pd.DataFrame) -> pd.DataFrame:
|
52 |
+
"""Apply token-based filtering using GPT-4 tokenizer with pandas operations."""
|
53 |
+
encoding = tiktoken.get_encoding(ENCODING_MODEL)
|
54 |
+
|
55 |
+
# Create combined text column for token counting using pandas string operations
|
56 |
+
combined_text = (
|
57 |
+
df[COLUMN_GIT_DIFF].astype(str)
|
58 |
+
+ " "
|
59 |
+
+ df[COLUMN_MASKED_COMMIT_MESSAGE].astype(str)
|
60 |
+
)
|
61 |
+
|
62 |
+
# Apply token counting function and create boolean mask using pandas apply()
|
63 |
+
token_counts = combined_text.apply(lambda x: len(encoding.encode(x)))
|
64 |
+
token_mask = token_counts <= TARGET_TOKEN_LIMIT
|
65 |
+
|
66 |
+
# Filter using pandas boolean indexing
|
67 |
+
filtered_df = df[token_mask].copy()
|
68 |
+
|
69 |
+
removed_count = len(df) - len(filtered_df)
|
70 |
+
if removed_count > 0:
|
71 |
+
print(
|
72 |
+
f"Token filtering: removed {removed_count} commits exceeding {TARGET_TOKEN_LIMIT} tokens using pandas boolean indexing"
|
73 |
+
)
|
74 |
+
|
75 |
+
print(f"Token filtering: kept {len(filtered_df)} commits")
|
76 |
+
return filtered_df
|
77 |
+
|
78 |
+
|
79 |
+
def apply_sha_deduplication(df: pd.DataFrame, excluded_shas: Set[str]) -> pd.DataFrame:
|
80 |
+
"""Apply SHA deduplication using pandas isin() for efficient filtering."""
|
81 |
+
original_count = len(df)
|
82 |
+
|
83 |
+
# Use pandas isin() for vectorized membership testing
|
84 |
+
sha_mask = ~df[COLUMN_SHA].astype(str).isin(excluded_shas)
|
85 |
+
filtered_df = df[sha_mask].copy()
|
86 |
+
|
87 |
+
removed_count = original_count - len(filtered_df)
|
88 |
+
print(
|
89 |
+
f"SHA deduplication: removed {removed_count} duplicate commits using pandas isin()"
|
90 |
+
)
|
91 |
+
return filtered_df
|
92 |
+
|
93 |
+
|
94 |
+
def load_existing_shas(file_path: str) -> Set[str]:
|
95 |
+
"""Load existing SHAs from sampled dataset to exclude duplicates."""
|
96 |
+
try:
|
97 |
+
df = pd.read_csv(file_path)
|
98 |
+
sha_set = set(df[COLUMN_SHA].astype(str))
|
99 |
+
print(f"Loaded {len(sha_set)} SHAs for deduplication")
|
100 |
+
return sha_set
|
101 |
+
except FileNotFoundError:
|
102 |
+
print(f"No existing samples found at {file_path}")
|
103 |
+
return set()
|
104 |
+
except Exception as e:
|
105 |
+
print(f"Error loading existing SHAs: {e}")
|
106 |
+
return set()
|
107 |
+
|
108 |
+
|
109 |
+
def load_ccs_dataset(file_path: str) -> pd.DataFrame:
|
110 |
+
"""Load CCS dataset CSV file as pandas DataFrame."""
|
111 |
+
try:
|
112 |
+
df = pd.read_csv(file_path)
|
113 |
+
if df.empty:
|
114 |
+
raise ValueError("Dataset is empty")
|
115 |
+
|
116 |
+
required_columns = set(OUTPUT_COLUMNS)
|
117 |
+
available_columns = set(df.columns)
|
118 |
+
|
119 |
+
missing_columns = required_columns - available_columns
|
120 |
+
if missing_columns:
|
121 |
+
raise ValueError(f"Missing required columns: {missing_columns}")
|
122 |
+
|
123 |
+
print(f"Dataset validation passed: {len(df)} records with required columns")
|
124 |
+
|
125 |
+
print(f"Loaded {len(df)} records from CCS dataset as DataFrame")
|
126 |
+
return df
|
127 |
+
except Exception as e:
|
128 |
+
print(f"Error loading dataset: {e}")
|
129 |
+
raise
|
130 |
+
|
131 |
+
|
132 |
+
def save_to_csv(
|
133 |
+
data: List[Dict[str, str]], output_path: str, columns: List[str]
|
134 |
+
) -> None:
|
135 |
+
"""Save processed data to CSV file."""
|
136 |
+
import os
|
137 |
+
|
138 |
+
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
139 |
+
|
140 |
+
if data:
|
141 |
+
df = pd.DataFrame(data, columns=columns)
|
142 |
+
file_exists = os.path.exists(output_path)
|
143 |
+
|
144 |
+
df.to_csv(
|
145 |
+
output_path,
|
146 |
+
mode="a" if file_exists else "w",
|
147 |
+
header=not file_exists,
|
148 |
+
index=False,
|
149 |
+
)
|
150 |
+
|
151 |
+
print(f"Saved {len(data)} records to {output_path}")
|
152 |
+
|
153 |
+
|
154 |
+
def group_commits_by_type(
|
155 |
+
df: pd.DataFrame, valid_types: List[str]
|
156 |
+
) -> Dict[str, pd.DataFrame]:
|
157 |
+
"""Group commits by their concern type using pandas groupby."""
|
158 |
+
# Filter valid types using pandas isin() for vectorized filtering
|
159 |
+
type_mask = df[COLUMN_ANNOTATED_TYPE].isin(valid_types)
|
160 |
+
valid_df = df[type_mask].copy()
|
161 |
+
|
162 |
+
excluded_count = len(df) - len(valid_df)
|
163 |
+
print(
|
164 |
+
f"Type filtering: excluded {excluded_count} records (invalid types) using pandas isin()"
|
165 |
+
)
|
166 |
+
|
167 |
+
# Use pandas groupby for efficient grouping
|
168 |
+
commits_by_type = {}
|
169 |
+
for commit_type, group_df in valid_df.groupby(COLUMN_ANNOTATED_TYPE):
|
170 |
+
commits_by_type[commit_type] = group_df
|
171 |
+
print(f" {commit_type}: {len(group_df)} commits")
|
172 |
+
|
173 |
+
return commits_by_type
|
174 |
+
|
175 |
+
|
176 |
+
def sample_commits_for_type(
|
177 |
+
df: pd.DataFrame, count: int, output_columns: List[str]
|
178 |
+
) -> List[Dict[str, str]]:
|
179 |
+
"""Randomly sample specified number of commits using pandas sample()."""
|
180 |
+
# Use pandas sample() for efficient random sampling
|
181 |
+
sampled_df = df.sample(n=count, random_state=None)
|
182 |
+
|
183 |
+
# Convert only the final result to dict list for compatibility
|
184 |
+
sampled_data = sampled_df[output_columns].to_dict("records")
|
185 |
+
return sampled_data
|
186 |
+
|
187 |
+
|
188 |
+
def extract_diffs(sampled_data: List[Dict[str, str]], output_dir: str) -> None:
|
189 |
+
"""Extract git diff files organized by type into separate directories."""
|
190 |
+
import os
|
191 |
+
|
192 |
+
type_counts = {}
|
193 |
+
|
194 |
+
for record in sampled_data:
|
195 |
+
commit_type = record[COLUMN_ANNOTATED_TYPE]
|
196 |
+
|
197 |
+
# Create type directory if needed
|
198 |
+
type_dir = os.path.join(output_dir, commit_type)
|
199 |
+
os.makedirs(type_dir, exist_ok=True)
|
200 |
+
|
201 |
+
# Count entries for this type
|
202 |
+
if commit_type not in type_counts:
|
203 |
+
type_counts[commit_type] = 0
|
204 |
+
type_counts[commit_type] += 1
|
205 |
+
|
206 |
+
# Generate filename
|
207 |
+
filename = f"{commit_type}_{type_counts[commit_type]}_{record[COLUMN_SHA]}.diff"
|
208 |
+
filepath = os.path.join(type_dir, filename)
|
209 |
+
|
210 |
+
# Create file content with metadata
|
211 |
+
content_lines = [
|
212 |
+
f"# Type: {commit_type}",
|
213 |
+
f"# Commit Message: {record[COLUMN_MASKED_COMMIT_MESSAGE]}",
|
214 |
+
f"# SHA: {record[COLUMN_SHA]}",
|
215 |
+
"",
|
216 |
+
"# === Git Diff Content ===",
|
217 |
+
"",
|
218 |
+
record[COLUMN_GIT_DIFF],
|
219 |
+
]
|
220 |
+
|
221 |
+
with open(filepath, "w") as f:
|
222 |
+
f.write("\n".join(content_lines))
|
223 |
+
|
224 |
+
print(f"Extracted {len(sampled_data)} diff files to {output_dir}")
|
225 |
+
|
226 |
+
|
227 |
+
def main() -> None:
|
228 |
+
"""
|
229 |
+
Main function implementing atomic sampling strategy:
|
230 |
+
1. Load dataset and backup SHAs
|
231 |
+
2. Apply CI->CICD normalization
|
232 |
+
3. Apply token-based filtering
|
233 |
+
4. Apply SHA deduplication
|
234 |
+
5. Group by type and randomly sample
|
235 |
+
6. Save results and extract diffs
|
236 |
+
"""
|
237 |
+
print("Starting atomic sampling strategy for CCS dataset")
|
238 |
+
print("=" * 50)
|
239 |
+
|
240 |
+
# Step 1: Load dataset and backup SHAs
|
241 |
+
print("Step 1: Loading dataset and backup SHAs")
|
242 |
+
excluded_shas = load_existing_shas(SAMPLED_CSV_PATH)
|
243 |
+
ccs_df = load_ccs_dataset(CCS_SOURCE_PATH)
|
244 |
+
|
245 |
+
# Step 2: Apply CI->CICD normalization
|
246 |
+
print("\nStep 2: Applying CI->CICD normalization")
|
247 |
+
ccs_df = normalize_dataset(ccs_df)
|
248 |
+
|
249 |
+
# Step 3: Apply token-based filtering
|
250 |
+
print("\nStep 3: Applying token-based filtering")
|
251 |
+
ccs_df = apply_token_filtering(ccs_df)
|
252 |
+
|
253 |
+
# Step 4: Apply SHA deduplication
|
254 |
+
print("\nStep 4: Applying SHA deduplication")
|
255 |
+
ccs_df = apply_sha_deduplication(ccs_df, excluded_shas)
|
256 |
+
|
257 |
+
# Step 5: Group by type and randomly sample
|
258 |
+
print("\nStep 5: Grouping by type and random sampling")
|
259 |
+
commits_by_type = group_commits_by_type(ccs_df, CONVENTIONAL_COMMIT_TYPES)
|
260 |
+
|
261 |
+
all_sampled_data = []
|
262 |
+
for commits_df in commits_by_type.values():
|
263 |
+
sampled_data = sample_commits_for_type(
|
264 |
+
commits_df, SAMPLES_PER_TYPE, OUTPUT_COLUMNS
|
265 |
+
)
|
266 |
+
all_sampled_data.extend(sampled_data)
|
267 |
+
|
268 |
+
print(f"Random sampling: generated {len(all_sampled_data)} samples total")
|
269 |
+
|
270 |
+
# Step 6: Save results and extract diffs
|
271 |
+
print("\nStep 6: Saving results and extracting diffs")
|
272 |
+
save_to_csv(all_sampled_data, SAMPLED_CSV_PATH, OUTPUT_COLUMNS)
|
273 |
+
extract_diffs(all_sampled_data, DIFF_OUTPUT_DIR)
|
274 |
+
|
275 |
+
# Final summary
|
276 |
+
print("\n" + "=" * 50)
|
277 |
+
print("Atomic sampling completed successfully!")
|
278 |
+
|
279 |
+
type_counts = {}
|
280 |
+
for record in all_sampled_data:
|
281 |
+
commit_type = record.get(COLUMN_ANNOTATED_TYPE, "")
|
282 |
+
type_counts[commit_type] = type_counts.get(commit_type, 0) + 1
|
283 |
+
|
284 |
+
print("Final sample distribution:")
|
285 |
+
for commit_type in sorted(type_counts.keys()):
|
286 |
+
print(f" {commit_type}: {type_counts[commit_type]} samples")
|
287 |
+
|
288 |
+
|
289 |
+
if __name__ == "__main__":
|
290 |
+
main()
|