Upload scripts/sample_atomic_commites.py with huggingface_hub
Browse files
scripts/sample_atomic_commites.py
CHANGED
@@ -1,16 +1,17 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
-
|
4 |
-
|
5 |
"""
|
6 |
|
7 |
import pandas as pd
|
|
|
8 |
import tiktoken
|
9 |
from typing import Dict, List, Set
|
10 |
|
11 |
# Processing configuration
|
12 |
-
CONVENTIONAL_COMMIT_TYPES: List[str] = ["
|
13 |
-
SAMPLES_PER_TYPE: int =
|
14 |
TARGET_TOKEN_LIMIT: int = 12288 # 16384 - 4096
|
15 |
ENCODING_MODEL: str = "cl100k_base" # GPT-4 encoding
|
16 |
|
@@ -30,68 +31,58 @@ OUTPUT_COLUMNS: List[str] = [
|
|
30 |
CI_TO_CICD_REPLACEMENT: str = "cicd"
|
31 |
|
32 |
# File paths
|
33 |
-
CCS_SOURCE_PATH: str = "data/CCS Dataset
|
34 |
SAMPLED_CSV_PATH: str = "data/sampled_ccs_dataset.csv"
|
|
|
35 |
DIFF_OUTPUT_DIR: str = "data/types"
|
36 |
|
37 |
|
38 |
def normalize_dataset(df: pd.DataFrame) -> pd.DataFrame:
|
39 |
-
"""
|
40 |
-
# Use pandas replace for vectorized string replacement
|
41 |
df[COLUMN_ANNOTATED_TYPE] = (
|
42 |
df[COLUMN_ANNOTATED_TYPE]
|
43 |
.str.lower()
|
44 |
.str.strip()
|
45 |
.replace("ci", CI_TO_CICD_REPLACEMENT)
|
46 |
)
|
47 |
-
print("Applied CI -> CICD normalization
|
48 |
return df
|
49 |
|
50 |
|
51 |
def apply_token_filtering(df: pd.DataFrame) -> pd.DataFrame:
|
52 |
-
"""
|
53 |
encoding = tiktoken.get_encoding(ENCODING_MODEL)
|
54 |
|
55 |
-
# Create combined text column for token counting using pandas string operations
|
56 |
combined_text = (
|
57 |
df[COLUMN_GIT_DIFF].astype(str)
|
58 |
+ " "
|
59 |
+ df[COLUMN_MASKED_COMMIT_MESSAGE].astype(str)
|
60 |
)
|
61 |
|
62 |
-
# Apply token counting function and create boolean mask using pandas apply()
|
63 |
token_counts = combined_text.apply(lambda x: len(encoding.encode(x)))
|
64 |
-
|
65 |
-
|
66 |
-
# Filter using pandas boolean indexing
|
67 |
-
filtered_df = df[token_mask].copy()
|
68 |
|
69 |
removed_count = len(df) - len(filtered_df)
|
70 |
if removed_count > 0:
|
71 |
-
print(
|
72 |
-
f"Token filtering: removed {removed_count} commits exceeding {TARGET_TOKEN_LIMIT} tokens using pandas boolean indexing"
|
73 |
-
)
|
74 |
|
75 |
print(f"Token filtering: kept {len(filtered_df)} commits")
|
76 |
return filtered_df
|
77 |
|
78 |
|
79 |
def apply_sha_deduplication(df: pd.DataFrame, excluded_shas: Set[str]) -> pd.DataFrame:
|
80 |
-
"""
|
81 |
original_count = len(df)
|
82 |
-
|
83 |
-
# Use pandas isin() for vectorized membership testing
|
84 |
sha_mask = ~df[COLUMN_SHA].astype(str).isin(excluded_shas)
|
85 |
filtered_df = df[sha_mask].copy()
|
86 |
|
87 |
removed_count = original_count - len(filtered_df)
|
88 |
-
print(
|
89 |
-
f"SHA deduplication: removed {removed_count} duplicate commits using pandas isin()"
|
90 |
-
)
|
91 |
return filtered_df
|
92 |
|
93 |
|
94 |
-
def
|
95 |
"""Load existing SHAs from sampled dataset to exclude duplicates."""
|
96 |
try:
|
97 |
df = pd.read_csv(file_path)
|
@@ -107,22 +98,17 @@ def load_existing_shas(file_path: str) -> Set[str]:
|
|
107 |
|
108 |
|
109 |
def load_ccs_dataset(file_path: str) -> pd.DataFrame:
|
110 |
-
"""Load CCS dataset
|
111 |
try:
|
112 |
df = pd.read_csv(file_path)
|
113 |
if df.empty:
|
114 |
raise ValueError("Dataset is empty")
|
115 |
|
116 |
-
|
117 |
-
available_columns = set(df.columns)
|
118 |
-
|
119 |
-
missing_columns = required_columns - available_columns
|
120 |
if missing_columns:
|
121 |
raise ValueError(f"Missing required columns: {missing_columns}")
|
122 |
|
123 |
-
print(f"
|
124 |
-
|
125 |
-
print(f"Loaded {len(df)} records from CCS dataset as DataFrame")
|
126 |
return df
|
127 |
except Exception as e:
|
128 |
print(f"Error loading dataset: {e}")
|
@@ -132,7 +118,7 @@ def load_ccs_dataset(file_path: str) -> pd.DataFrame:
|
|
132 |
def save_to_csv(
|
133 |
data: List[Dict[str, str]], output_path: str, columns: List[str]
|
134 |
) -> None:
|
135 |
-
"""
|
136 |
import os
|
137 |
|
138 |
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
@@ -154,17 +140,13 @@ def save_to_csv(
|
|
154 |
def group_commits_by_type(
|
155 |
df: pd.DataFrame, valid_types: List[str]
|
156 |
) -> Dict[str, pd.DataFrame]:
|
157 |
-
"""Group commits by
|
158 |
-
# Filter valid types using pandas isin() for vectorized filtering
|
159 |
type_mask = df[COLUMN_ANNOTATED_TYPE].isin(valid_types)
|
160 |
valid_df = df[type_mask].copy()
|
161 |
|
162 |
excluded_count = len(df) - len(valid_df)
|
163 |
-
print(
|
164 |
-
f"Type filtering: excluded {excluded_count} records (invalid types) using pandas isin()"
|
165 |
-
)
|
166 |
|
167 |
-
# Use pandas groupby for efficient grouping
|
168 |
commits_by_type = {}
|
169 |
for commit_type, group_df in valid_df.groupby(COLUMN_ANNOTATED_TYPE):
|
170 |
commits_by_type[commit_type] = group_df
|
@@ -176,13 +158,9 @@ def group_commits_by_type(
|
|
176 |
def sample_commits_for_type(
|
177 |
df: pd.DataFrame, count: int, output_columns: List[str]
|
178 |
) -> List[Dict[str, str]]:
|
179 |
-
"""
|
180 |
-
# Use pandas sample() for efficient random sampling
|
181 |
sampled_df = df.sample(n=count, random_state=None)
|
182 |
-
|
183 |
-
# Convert only the final result to dict list for compatibility
|
184 |
-
sampled_data = sampled_df[output_columns].to_dict("records")
|
185 |
-
return sampled_data
|
186 |
|
187 |
|
188 |
def extract_diffs(sampled_data: List[Dict[str, str]], output_dir: str) -> None:
|
@@ -223,6 +201,19 @@ def extract_diffs(sampled_data: List[Dict[str, str]], output_dir: str) -> None:
|
|
223 |
|
224 |
print(f"Extracted {len(sampled_data)} diff files to {output_dir}")
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
def main() -> None:
|
228 |
"""
|
@@ -239,23 +230,28 @@ def main() -> None:
|
|
239 |
|
240 |
# Step 1: Load dataset and backup SHAs
|
241 |
print("Step 1: Loading dataset and backup SHAs")
|
242 |
-
|
|
|
243 |
ccs_df = load_ccs_dataset(CCS_SOURCE_PATH)
|
244 |
|
245 |
-
# Step 2:
|
246 |
-
print("\nStep 2:
|
|
|
|
|
|
|
|
|
247 |
ccs_df = normalize_dataset(ccs_df)
|
248 |
|
249 |
-
# Step
|
250 |
-
print("\nStep
|
251 |
ccs_df = apply_token_filtering(ccs_df)
|
252 |
|
253 |
-
# Step
|
254 |
-
print("\nStep
|
255 |
-
ccs_df = apply_sha_deduplication(ccs_df,
|
256 |
|
257 |
-
# Step
|
258 |
-
print("\nStep
|
259 |
commits_by_type = group_commits_by_type(ccs_df, CONVENTIONAL_COMMIT_TYPES)
|
260 |
|
261 |
all_sampled_data = []
|
@@ -267,8 +263,8 @@ def main() -> None:
|
|
267 |
|
268 |
print(f"Random sampling: generated {len(all_sampled_data)} samples total")
|
269 |
|
270 |
-
# Step
|
271 |
-
print("\nStep
|
272 |
save_to_csv(all_sampled_data, SAMPLED_CSV_PATH, OUTPUT_COLUMNS)
|
273 |
extract_diffs(all_sampled_data, DIFF_OUTPUT_DIR)
|
274 |
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
+
Sample atomic commits from CCS dataset for concern extraction.
|
4 |
+
Implements atomic sampling with token limits and SHA deduplication.
|
5 |
"""
|
6 |
|
7 |
import pandas as pd
|
8 |
+
|
9 |
import tiktoken
|
10 |
from typing import Dict, List, Set
|
11 |
|
12 |
# Processing configuration
|
13 |
+
CONVENTIONAL_COMMIT_TYPES: List[str] = ["feat", "fix", "refactor", "test", "docs", "build", "cicd"]
|
14 |
+
SAMPLES_PER_TYPE: int = 50
|
15 |
TARGET_TOKEN_LIMIT: int = 12288 # 16384 - 4096
|
16 |
ENCODING_MODEL: str = "cl100k_base" # GPT-4 encoding
|
17 |
|
|
|
31 |
CI_TO_CICD_REPLACEMENT: str = "cicd"
|
32 |
|
33 |
# File paths
|
34 |
+
CCS_SOURCE_PATH: str = "data/CCS Dataset.csv"
|
35 |
SAMPLED_CSV_PATH: str = "data/sampled_ccs_dataset.csv"
|
36 |
+
EXCLUDED_COMMITS_PATH: str = "data/excluded_commits.csv"
|
37 |
DIFF_OUTPUT_DIR: str = "data/types"
|
38 |
|
39 |
|
40 |
def normalize_dataset(df: pd.DataFrame) -> pd.DataFrame:
|
41 |
+
"""Normalize CI labels to CICD for consistent categorization."""
|
|
|
42 |
df[COLUMN_ANNOTATED_TYPE] = (
|
43 |
df[COLUMN_ANNOTATED_TYPE]
|
44 |
.str.lower()
|
45 |
.str.strip()
|
46 |
.replace("ci", CI_TO_CICD_REPLACEMENT)
|
47 |
)
|
48 |
+
print("Applied CI -> CICD normalization")
|
49 |
return df
|
50 |
|
51 |
|
52 |
def apply_token_filtering(df: pd.DataFrame) -> pd.DataFrame:
|
53 |
+
"""Filter commits exceeding token limit to prevent context overflow."""
|
54 |
encoding = tiktoken.get_encoding(ENCODING_MODEL)
|
55 |
|
|
|
56 |
combined_text = (
|
57 |
df[COLUMN_GIT_DIFF].astype(str)
|
58 |
+ " "
|
59 |
+ df[COLUMN_MASKED_COMMIT_MESSAGE].astype(str)
|
60 |
)
|
61 |
|
|
|
62 |
token_counts = combined_text.apply(lambda x: len(encoding.encode(x)))
|
63 |
+
filtered_df = df[token_counts <= TARGET_TOKEN_LIMIT].copy()
|
|
|
|
|
|
|
64 |
|
65 |
removed_count = len(df) - len(filtered_df)
|
66 |
if removed_count > 0:
|
67 |
+
print(f"Token filtering: removed {removed_count} commits exceeding {TARGET_TOKEN_LIMIT} tokens")
|
|
|
|
|
68 |
|
69 |
print(f"Token filtering: kept {len(filtered_df)} commits")
|
70 |
return filtered_df
|
71 |
|
72 |
|
73 |
def apply_sha_deduplication(df: pd.DataFrame, excluded_shas: Set[str]) -> pd.DataFrame:
|
74 |
+
"""Remove previously sampled commits to avoid training data contamination."""
|
75 |
original_count = len(df)
|
76 |
+
|
|
|
77 |
sha_mask = ~df[COLUMN_SHA].astype(str).isin(excluded_shas)
|
78 |
filtered_df = df[sha_mask].copy()
|
79 |
|
80 |
removed_count = original_count - len(filtered_df)
|
81 |
+
print(f"SHA deduplication: removed {removed_count} duplicate commits")
|
|
|
|
|
82 |
return filtered_df
|
83 |
|
84 |
|
85 |
+
def load_shas(file_path: str) -> Set[str]:
|
86 |
"""Load existing SHAs from sampled dataset to exclude duplicates."""
|
87 |
try:
|
88 |
df = pd.read_csv(file_path)
|
|
|
98 |
|
99 |
|
100 |
def load_ccs_dataset(file_path: str) -> pd.DataFrame:
|
101 |
+
"""Load and validate CCS dataset structure."""
|
102 |
try:
|
103 |
df = pd.read_csv(file_path)
|
104 |
if df.empty:
|
105 |
raise ValueError("Dataset is empty")
|
106 |
|
107 |
+
missing_columns = set(OUTPUT_COLUMNS) - set(df.columns)
|
|
|
|
|
|
|
108 |
if missing_columns:
|
109 |
raise ValueError(f"Missing required columns: {missing_columns}")
|
110 |
|
111 |
+
print(f"Loaded {len(df)} records from CCS dataset")
|
|
|
|
|
112 |
return df
|
113 |
except Exception as e:
|
114 |
print(f"Error loading dataset: {e}")
|
|
|
118 |
def save_to_csv(
|
119 |
data: List[Dict[str, str]], output_path: str, columns: List[str]
|
120 |
) -> None:
|
121 |
+
"""Append new samples to existing dataset or create new file."""
|
122 |
import os
|
123 |
|
124 |
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
|
|
140 |
def group_commits_by_type(
|
141 |
df: pd.DataFrame, valid_types: List[str]
|
142 |
) -> Dict[str, pd.DataFrame]:
|
143 |
+
"""Group commits by concern type for balanced sampling."""
|
|
|
144 |
type_mask = df[COLUMN_ANNOTATED_TYPE].isin(valid_types)
|
145 |
valid_df = df[type_mask].copy()
|
146 |
|
147 |
excluded_count = len(df) - len(valid_df)
|
148 |
+
print(f"Type filtering: excluded {excluded_count} records (invalid types)")
|
|
|
|
|
149 |
|
|
|
150 |
commits_by_type = {}
|
151 |
for commit_type, group_df in valid_df.groupby(COLUMN_ANNOTATED_TYPE):
|
152 |
commits_by_type[commit_type] = group_df
|
|
|
158 |
def sample_commits_for_type(
|
159 |
df: pd.DataFrame, count: int, output_columns: List[str]
|
160 |
) -> List[Dict[str, str]]:
|
161 |
+
"""Sample fixed number of commits per type for balanced dataset."""
|
|
|
162 |
sampled_df = df.sample(n=count, random_state=None)
|
163 |
+
return sampled_df[output_columns].to_dict("records")
|
|
|
|
|
|
|
164 |
|
165 |
|
166 |
def extract_diffs(sampled_data: List[Dict[str, str]], output_dir: str) -> None:
|
|
|
201 |
|
202 |
print(f"Extracted {len(sampled_data)} diff files to {output_dir}")
|
203 |
|
204 |
+
def remove_excluded_commits(df: pd.DataFrame, excluded_shas: Set[str]) -> pd.DataFrame:
|
205 |
+
"""Remove manually excluded commits based on quality issues."""
|
206 |
+
before_count = len(df)
|
207 |
+
print(f"Initial commit count: {before_count}")
|
208 |
+
|
209 |
+
mask = ~df[COLUMN_SHA].astype(str).isin(excluded_shas)
|
210 |
+
excluded_count = before_count - mask.sum()
|
211 |
+
print(f"Excluded {excluded_count} commits by SHA")
|
212 |
+
|
213 |
+
filtered_df = df[mask].copy()
|
214 |
+
print(f"Remaining commit count: {len(filtered_df)}")
|
215 |
+
return filtered_df
|
216 |
+
|
217 |
|
218 |
def main() -> None:
|
219 |
"""
|
|
|
230 |
|
231 |
# Step 1: Load dataset and backup SHAs
|
232 |
print("Step 1: Loading dataset and backup SHAs")
|
233 |
+
existing_shas = load_shas(SAMPLED_CSV_PATH)
|
234 |
+
excluded_shas = load_shas(EXCLUDED_COMMITS_PATH)
|
235 |
ccs_df = load_ccs_dataset(CCS_SOURCE_PATH)
|
236 |
|
237 |
+
# Step 2: Remove excluded commits
|
238 |
+
print("\nStep 2: Removing excluded commits")
|
239 |
+
ccs_df = remove_excluded_commits(ccs_df, excluded_shas)
|
240 |
+
|
241 |
+
# Step 3: Apply CI->CICD normalization
|
242 |
+
print("\nStep 3: Applying CI->CICD normalization")
|
243 |
ccs_df = normalize_dataset(ccs_df)
|
244 |
|
245 |
+
# Step 4: Apply token-based filtering
|
246 |
+
print("\nStep 4: Applying token-based filtering")
|
247 |
ccs_df = apply_token_filtering(ccs_df)
|
248 |
|
249 |
+
# Step 5: Apply SHA deduplication
|
250 |
+
print("\nStep 5: Applying SHA deduplication")
|
251 |
+
ccs_df = apply_sha_deduplication(ccs_df, existing_shas)
|
252 |
|
253 |
+
# Step 6: Group by type and randomly sample
|
254 |
+
print("\nStep 6: Grouping by type and random sampling")
|
255 |
commits_by_type = group_commits_by_type(ccs_df, CONVENTIONAL_COMMIT_TYPES)
|
256 |
|
257 |
all_sampled_data = []
|
|
|
263 |
|
264 |
print(f"Random sampling: generated {len(all_sampled_data)} samples total")
|
265 |
|
266 |
+
# Step 7: Save results and extract diffs
|
267 |
+
print("\nStep 7: Saving results and extracting diffs")
|
268 |
save_to_csv(all_sampled_data, SAMPLED_CSV_PATH, OUTPUT_COLUMNS)
|
269 |
extract_diffs(all_sampled_data, DIFF_OUTPUT_DIR)
|
270 |
|