Commit
20d4fc3
·
verified ·
1 Parent(s): 4fb4df3

add_2025_09_release (#12)

Browse files

- initial commit (224d4f423e74f706654d213972fd89c222b5e89f)
- Initial (51fb9a995c51ac6f6324f74fbdc42a978d69b2e5)
- Add input form (7b84eb312154d8c4928616425934bc56fe2cfc63)
- Update README.md (edf0abf2e7346c98a1b566db389c8dd0683d8d35)
- Update README.md (4e2a6180d4ed81727c1525c71f270b28b40a4b4b)
- Update README.md (ef113c655091b73b3191af668ff73f33c4814208)
- Update README.md (853733840b608b94ebb3635625f1a069ebe83cb8)
- Update README.md (8307fb2366b2d104a13f027773129721287269a1)
- Add 2025-03-27 report files (1de953254efe37784dc68d915b5fa4981d766c71)
- upload cluster level dataset (71736ca939dccd17d699850042def2577ec872a8)
- updated data release readme to include cluster level data description (124ebb7ae83d03c1a39e714fb6844d5e880321e2)
- move cluster level data up (ad8570912849c2758f89b45a72b51051a63039db)
- re-upload initial release (a510f6293979bccfa4622ef56228366774bd75db)
- Clean up repo (355a7f23a5ad7837ebdec77a13d61667535acb0d)
- add Readme (6aafd934b295f1fec496218ef93bc2aa5894e318)
- updated links (780d72708df84795d1111dad85d6d02b948741e4)
- update yaml (b3980d41243240deee12941eac0e4d1e2fff52b9)
- add license, test readme change (359da41f78f3bf8a098a64a4b5184ae65955173d)
- update readme (357435fd8d14e50bf50c18e3d4f4ec7a0f30645f)
- Update README.md (03691a743a2136a2b51c544eabafba3c4d1820db)
- Update README.md (d5fde0fec45b85922913afa547b28d1e65333f5d)
- Update README.md (7e0d553749111ce3e7904dc30b125d0c6b880d36)
- Update README.md (948d8f3c90ae3bffa105c1d750682d43e26ea1f7)
- Add September 2025 report replication files (4baa2dff76a8cdf0194419e87825647a45e18f1f)
- Update LFS patterns to include subdirectories (06970d96c1d2d2ac82d3240b6d16e7517efd6402)
- Merge remote-tracking branch 'origin/main' into pr/12 (fe6a1e6ba0953c9829380d66db7b2e831e4d2a2e)


Co-authored-by: Alex Tamkin <[email protected]>
Co-authored-by: kunalhanda <[email protected]>
Co-authored-by: Miles McCain <[email protected]>
Co-authored-by: Michael Stern <[email protected]>

Files changed (41) hide show
  1. .gitattributes +3 -0
  2. .gitignore +1 -0
  3. README.md +28 -6
  4. release_2025_09_15/README.md +72 -0
  5. release_2025_09_15/code/aei_analysis_functions_1p_api.py +2339 -0
  6. release_2025_09_15/code/aei_analysis_functions_claude_ai.py +2926 -0
  7. release_2025_09_15/code/aei_report_v3_analysis_1p_api.ipynb +315 -0
  8. release_2025_09_15/code/aei_report_v3_analysis_claude_ai.ipynb +868 -0
  9. release_2025_09_15/code/aei_report_v3_change_over_time_claude_ai.py +564 -0
  10. release_2025_09_15/code/aei_report_v3_preprocessing_claude_ai.ipynb +1840 -0
  11. release_2025_09_15/code/preprocess_gdp.py +364 -0
  12. release_2025_09_15/code/preprocess_iso_codes.py +111 -0
  13. release_2025_09_15/code/preprocess_onet.py +179 -0
  14. release_2025_09_15/code/preprocess_population.py +407 -0
  15. release_2025_09_15/data/input/BTOS_National.xlsx +3 -0
  16. release_2025_09_15/data/input/Population by single age _20250903072924.csv +3 -0
  17. release_2025_09_15/data/input/automation_vs_augmentation_v1.csv +3 -0
  18. release_2025_09_15/data/input/automation_vs_augmentation_v2.csv +3 -0
  19. release_2025_09_15/data/input/bea_us_state_gdp_2024.csv +3 -0
  20. release_2025_09_15/data/input/census_state_codes.txt +58 -0
  21. release_2025_09_15/data/input/geonames_countryInfo.txt +302 -0
  22. release_2025_09_15/data/input/imf_gdp_raw_2024.json +3 -0
  23. release_2025_09_15/data/input/onet_task_statements_raw.xlsx +3 -0
  24. release_2025_09_15/data/input/sc-est2024-agesex-civ.csv +3 -0
  25. release_2025_09_15/data/input/soc_structure_raw.csv +3 -0
  26. release_2025_09_15/data/input/task_pct_v1.csv +3 -0
  27. release_2025_09_15/data/input/task_pct_v2.csv +3 -0
  28. release_2025_09_15/data/input/working_age_pop_2024_country_raw.csv +3 -0
  29. release_2025_09_15/data/intermediate/aei_raw_1p_api_2025-08-04_to_2025-08-11.csv +3 -0
  30. release_2025_09_15/data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv +3 -0
  31. release_2025_09_15/data/intermediate/gdp_2024_country.csv +3 -0
  32. release_2025_09_15/data/intermediate/gdp_2024_us_state.csv +3 -0
  33. release_2025_09_15/data/intermediate/iso_country_codes.csv +3 -0
  34. release_2025_09_15/data/intermediate/onet_task_statements.csv +3 -0
  35. release_2025_09_15/data/intermediate/soc_structure.csv +3 -0
  36. release_2025_09_15/data/intermediate/working_age_pop_2024_country.csv +3 -0
  37. release_2025_09_15/data/intermediate/working_age_pop_2024_us_state.csv +3 -0
  38. release_2025_09_15/data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv +3 -0
  39. release_2025_09_15/data/output/request_hierarchy_tree_1p_api.json +3 -0
  40. release_2025_09_15/data/output/request_hierarchy_tree_claude_ai.json +3 -0
  41. release_2025_09_15/data_documentation.md +373 -0
.gitattributes CHANGED
@@ -57,3 +57,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ release_2025_09_15/**/*.csv filter=lfs diff=lfs merge=lfs -text
61
+ release_2025_09_15/**/*.xlsx filter=lfs diff=lfs merge=lfs -text
62
+ release_2025_09_15/**/*.json filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .DS_Store
README.md CHANGED
@@ -9,10 +9,14 @@ tags:
9
  viewer: true
10
  license: mit
11
  configs:
12
- - config_name: default
13
  data_files:
14
- - split: train
15
- path: "release_2025_03_27/automation_vs_augmentation_by_task.csv"
 
 
 
 
16
  ---
17
 
18
  # The Anthropic Economic Index
@@ -25,13 +29,17 @@ The Anthropic Economic Index provides insights into how AI is being incorporated
25
 
26
  This repository contains multiple data releases, each with its own documentation:
27
 
28
- - **[2025-02-10 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_02_10)**: Initial release with O*NET task mappings, automation vs. augmentation data, and more
29
  - **[2025-03-27 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_03_27)**: Updated analysis with Claude 3.7 Sonnet data and cluster-level insights
 
 
30
 
31
  ## Resources
32
 
33
  - [Index Home Page](https://www.anthropic.com/economic-index)
34
- - [Research Paper](https://assets.anthropic.com/m/2e23255f1e84ca97/original/Economic_Tasks_AI_Paper.pdf)
 
 
35
 
36
 
37
  ## License
@@ -40,10 +48,24 @@ Data released under CC-BY, code released under MIT License
40
 
41
  ## Contact
42
 
43
- For inquiries, contact [email protected] or [email protected]. We invite researchers to provide input on potential future data releases using [this form](https://docs.google.com/forms/d/e/1FAIpQLSfDEdY-mT5lcXPaDSv-0Ci1rSXGlbIJierxkUbNB7_07-kddw/viewform?usp=dialog).
44
 
45
  ## Citation
46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  ```
48
  @misc{handa2025economictasksperformedai,
49
  title={Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations},
 
9
  viewer: true
10
  license: mit
11
  configs:
12
+ - config_name: release_2025_09_15
13
  data_files:
14
+ - split: raw_claude_ai
15
+ path: "release_2025_09_15/data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv"
16
+ - split: raw_1p_api
17
+ path: "release_2025_09_15/data/intermediate/aei_raw_1p_api_2025-08-04_to_2025-08-11.csv"
18
+ - split: enriched_claude_ai
19
+ path: "release_2025_09_15/data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv"
20
  ---
21
 
22
  # The Anthropic Economic Index
 
29
 
30
  This repository contains multiple data releases, each with its own documentation:
31
 
32
+ - **[2025-09-15 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_09_15)**: Updated analysis with geographic and first-party API data using Sonnet 4
33
  - **[2025-03-27 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_03_27)**: Updated analysis with Claude 3.7 Sonnet data and cluster-level insights
34
+ - **[2025-02-10 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_02_10)**: Initial release with O*NET task mappings, automation vs. augmentation data, and more
35
+
36
 
37
  ## Resources
38
 
39
  - [Index Home Page](https://www.anthropic.com/economic-index)
40
+ - [3rd report](https://www.anthropic.com/research/anthropic-economic-index-september-2025-report)
41
+ - [2nd report](https://www.anthropic.com/news/anthropic-economic-index-insights-from-claude-sonnet-3-7)
42
+ - [1st report](https://www.anthropic.com/news/the-anthropic-economic-index)
43
 
44
 
45
  ## License
 
48
 
49
  ## Contact
50
 
51
+ For inquiries, contact [email protected]. We invite researchers to provide input on potential future data releases using [this form](https://docs.google.com/forms/d/e/1FAIpQLSfDEdY-mT5lcXPaDSv-0Ci1rSXGlbIJierxkUbNB7_07-kddw/viewform?usp=dialog).
52
 
53
  ## Citation
54
 
55
+ ### Third release
56
+
57
+ ```
58
+ @online{appelmccrorytamkin2025geoapi,
59
+ author = {Ruth Appel and Peter McCrory and Alex Tamkin and Michael Stern and Miles McCain and Tyler Neylon],
60
+ title = {Anthropic Economic Index Report: Uneven Geographic and Enterprise AI Adoption},
61
+ date = {2025-09-15},
62
+   year = {2025},
63
+ url = {www.anthropic.com/research/anthropic-economic-index-september-2025-report},
64
+ }
65
+ ```
66
+
67
+ ### Second release
68
+
69
  ```
70
  @misc{handa2025economictasksperformedai,
71
  title={Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations},
release_2025_09_15/README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Anthropic Economic Index September 2025 Report Replication
2
+
3
+ ## Folder Structure
4
+
5
+ ```
6
+ .
7
+ ├── code/ # Analysis scripts
8
+ ├── data/
9
+ │ ├── input/ # Raw data files (from external sources or prior releases)
10
+ │ ├── intermediate/ # Processed data files
11
+ │ └── output/ # Final outputs (plots, tables, etc.)
12
+ ├── data_documentation.md # Documentation of all data sources and datasets
13
+ └── README.md
14
+ ```
15
+
16
+ ## Data Processing Pipeline
17
+
18
+ **Note:** Since all preprocessed data files are provided, you can skip directly to the Analysis section (Section 2) if you want to replicate the results without re-running the preprocessing steps. Please refer to `data_documentation.md` for details on the different data used.
19
+
20
+ Run the following scripts in order from the `code/` directory:
21
+
22
+ ### 1. Data Preprocessing
23
+
24
+ 1. **`preprocess_iso_codes.py`**
25
+ - Processes ISO country codes
26
+ - Creates standardized country code mappings
27
+
28
+ 2. **`preprocess_population.py`**
29
+ - Processes country-level population data
30
+ - Processes US state-level population data
31
+ - Outputs working age population statistics
32
+
33
+ 3. **`preprocess_gdp.py`**
34
+ - Downloads and processes IMF country GDP data
35
+ - Processes BEA US state GDP data
36
+ - Creates standardized GDP datasets
37
+
38
+ 4. **`preprocess_onet.py`**
39
+ - Processes O*NET occupation and task data
40
+ - Creates SOC occupation mappings
41
+
42
+ 5. **`aei_report_v3_preprocessing_1p_api.ipynb`**
43
+ - Jupyter notebook for preprocessing API and Claude.ai usage data
44
+ - Prepares data for analysis
45
+
46
+ ### 2. Analysis
47
+
48
+ #### Analysis Scripts
49
+
50
+ 1. **`aei_report_v3_change_over_time_claude_ai.py`**
51
+ - Analyzes automation trends across report versions (V1, V2, V3)
52
+ - Generates comparison figures showing evolution of automation estimates
53
+
54
+ 2. **`aei_report_v3_analysis_claude_ai.ipynb`**
55
+ - Analysis notebook for Claude.ai usage patterns
56
+ - Generates figures specific to Claude.ai usage
57
+ - Uses functions from `aei_analysis_functions_claude_ai.py`
58
+
59
+ 3. **`aei_report_v3_analysis_1p_api.ipynb`**
60
+ - Main analysis notebook for API usage patterns
61
+ - Generates figures for occupational usage, collaboration patterns, and regression analyses
62
+ - Uses functions from `aei_analysis_functions_1p_api.py`
63
+
64
+ #### Supporting Function Files
65
+
66
+ - **`aei_analysis_functions_claude_ai.py`**
67
+ - Core analysis functions for Claude.ai data
68
+ - Platform-specific analysis and visualization functions
69
+
70
+ - **`aei_analysis_functions_1p_api.py`**
71
+ - Core analysis functions for API data
72
+ - Includes regression models, plotting functions, and data transformations
release_2025_09_15/code/aei_analysis_functions_1p_api.py ADDED
@@ -0,0 +1,2339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AEI 1P API Analysis Functions
2
+ # This module contains the core analysis functions for the AEI report API chapter
3
+
4
+ from pathlib import Path
5
+ from textwrap import wrap
6
+
7
+ import matplotlib.pyplot as plt
8
+ import numpy as np
9
+ import pandas as pd
10
+ import plotly.graph_objects as go
11
+ import statsmodels.api as sm
12
+ from plotly.subplots import make_subplots
13
+
14
+ # Define the tier colors
15
+ CUSTOM_COLORS_LIST = ["#E6DBD0", "#E5C5AB", "#E4AF86", "#E39961", "#D97757"]
16
+
17
+ # Define the color cycle for charts
18
+ COLOR_CYCLE = [
19
+ "#D97757",
20
+ "#656565",
21
+ "#40668C",
22
+ "#E39961",
23
+ "#E4AF86",
24
+ "#C65A3F",
25
+ "#8778AB",
26
+ "#E5C5AB",
27
+ "#B04F35",
28
+ ]
29
+
30
+
31
+ def setup_plot_style():
32
+ """Configure matplotlib for publication-quality figures."""
33
+ plt.style.use("default")
34
+ plt.rcParams.update(
35
+ {
36
+ "figure.dpi": 100,
37
+ "savefig.dpi": 300,
38
+ "font.size": 10,
39
+ "axes.labelsize": 11,
40
+ "axes.titlesize": 12,
41
+ "xtick.labelsize": 9,
42
+ "ytick.labelsize": 9,
43
+ "legend.fontsize": 9,
44
+ "figure.facecolor": "white",
45
+ "axes.facecolor": "white",
46
+ "savefig.facecolor": "white",
47
+ "axes.edgecolor": "#333333",
48
+ "axes.linewidth": 0.8,
49
+ "axes.grid": True,
50
+ "grid.alpha": 0.3,
51
+ "grid.linestyle": "-",
52
+ "grid.linewidth": 0.5,
53
+ "axes.axisbelow": True,
54
+ "text.usetex": False,
55
+ "mathtext.default": "regular",
56
+ "axes.titlecolor": "#B86046",
57
+ "figure.titlesize": 16,
58
+ }
59
+ )
60
+
61
+
62
+ # Initialize style
63
+ setup_plot_style()
64
+
65
+
66
+ def load_preprocessed_data(input_file):
67
+ """
68
+ Load preprocessed API data from CSV or Parquet file.
69
+
70
+ Args:
71
+ input_file: Path to preprocessed data file
72
+
73
+ Returns:
74
+ DataFrame with preprocessed API data
75
+ """
76
+ input_path = Path(input_file)
77
+
78
+ if not input_path.exists():
79
+ raise FileNotFoundError(f"Input file not found: {input_path}")
80
+
81
+ df = pd.read_csv(input_path)
82
+ return df
83
+
84
+
85
+ def create_top_requests_bar_chart(df, output_dir):
86
+ """
87
+ Create bar chart showing top 15 request categories (level 2) by count share.
88
+
89
+ Args:
90
+ df: Preprocessed data DataFrame
91
+ output_dir: Directory to save the figure
92
+ """
93
+ # Get request data at level 2 (global only) using percentages
94
+ request_data = df[
95
+ (df["facet"] == "request")
96
+ & (df["geo_id"] == "GLOBAL")
97
+ & (df["level"] == 2)
98
+ & (df["variable"] == "request_pct")
99
+ ].copy()
100
+
101
+ # Filter out not_classified (but don't renormalize)
102
+ request_data = request_data[request_data["cluster_name"] != "not_classified"]
103
+
104
+ # Use the percentage values directly (already calculated in preprocessing)
105
+ request_data["request_pct"] = request_data["value"]
106
+
107
+ # Get top 15 requests by percentage share
108
+ top_requests = request_data.nlargest(15, "request_pct").sort_values(
109
+ "request_pct", ascending=True
110
+ )
111
+
112
+ # Create figure
113
+ fig, ax = plt.subplots(figsize=(14, 10))
114
+
115
+ # Create horizontal bar chart with tier color gradient
116
+ y_pos = np.arange(len(top_requests))
117
+
118
+ # Use tier colors based on ranking (top categories get darker colors)
119
+ colors = []
120
+ for i in range(len(top_requests)):
121
+ # Map position to tier color (top bars = darker, bottom bars = lighter)
122
+ # Since bars are sorted ascending, higher index = higher value = darker color
123
+ rank_position = i / (len(top_requests) - 1)
124
+ tier_index = int(rank_position * (len(CUSTOM_COLORS_LIST) - 1))
125
+ colors.append(CUSTOM_COLORS_LIST[tier_index])
126
+
127
+ ax.barh(
128
+ y_pos,
129
+ top_requests["request_pct"],
130
+ color=colors,
131
+ alpha=0.9,
132
+ edgecolor="#333333",
133
+ linewidth=0.5,
134
+ )
135
+
136
+ # Add value labels on bars
137
+ for i, (idx, row) in enumerate(top_requests.iterrows()):
138
+ ax.text(
139
+ row["request_pct"] + 0.1,
140
+ i,
141
+ f"{row['request_pct']:.1f}%",
142
+ va="center",
143
+ fontsize=11,
144
+ fontweight="bold",
145
+ )
146
+
147
+ # Clean up request names for y-axis labels
148
+ labels = []
149
+ for name in top_requests["cluster_name"]:
150
+ # Truncate long names and add line breaks
151
+ if len(name) > 60:
152
+ # Find good break point around middle
153
+ mid = len(name) // 2
154
+ break_point = name.find(" ", mid)
155
+ if break_point == -1: # No space found, just break at middle
156
+ break_point = mid
157
+ clean_name = name[:break_point] + "\n" + name[break_point:].strip()
158
+ else:
159
+ clean_name = name
160
+ labels.append(clean_name)
161
+
162
+ ax.set_yticks(y_pos)
163
+ ax.set_yticklabels(labels, fontsize=10)
164
+
165
+ # Formatting
166
+ ax.set_xlabel("Percentage of total request count", fontsize=14)
167
+ ax.set_title(
168
+ "Top use cases among 1P API transcripts by usage share \n (broad grouping, bottom-up classification)",
169
+ fontsize=14,
170
+ fontweight="bold",
171
+ pad=20,
172
+ )
173
+
174
+ # Add grid
175
+ ax.grid(True, alpha=0.3, axis="x")
176
+ ax.set_axisbelow(True)
177
+
178
+ # Remove top and right spines
179
+ ax.spines["top"].set_visible(False)
180
+ ax.spines["right"].set_visible(False)
181
+
182
+ # Increase tick label font size
183
+ ax.tick_params(axis="x", which="major", labelsize=12)
184
+
185
+ plt.tight_layout()
186
+
187
+ # Save plot
188
+ output_path = Path(output_dir) / "top_requests_level2_bar_chart.png"
189
+ plt.savefig(output_path, dpi=300, bbox_inches="tight")
190
+ plt.show()
191
+ return str(output_path)
192
+
193
+
194
+ def load_onet_mappings():
195
+ """
196
+ Load ONET task statements and SOC structure for occupational category mapping.
197
+
198
+ Returns:
199
+ Tuple of (task_statements_df, soc_structure_df)
200
+ """
201
+ # Load from local files
202
+ task_path = Path("../data/intermediate/onet_task_statements.csv")
203
+ soc_path = Path("../data/intermediate/soc_structure.csv")
204
+
205
+ # Load CSV files directly
206
+ task_statements = pd.read_csv(task_path)
207
+ soc_structure = pd.read_csv(soc_path)
208
+
209
+ return task_statements, soc_structure
210
+
211
+
212
+ def map_to_occupational_categories(df, task_statements, soc_structure):
213
+ """
214
+ Map ONET task data to major occupational categories.
215
+
216
+ Args:
217
+ df: Preprocessed data DataFrame
218
+ task_statements: ONET task statements DataFrame
219
+ soc_structure: SOC structure DataFrame
220
+
221
+ Returns:
222
+ DataFrame with occupational category mappings
223
+ """
224
+ # Filter for ONET task data
225
+ onet_data = df[df["facet"] == "onet_task"].copy()
226
+
227
+ # Handle not_classified and none tasks first
228
+ not_classified_mask = onet_data["cluster_name"].isin(["not_classified", "none"])
229
+ not_classified_data = onet_data[not_classified_mask].copy()
230
+ not_classified_data["soc_major"] = "99"
231
+ not_classified_data["occupational_category"] = "Not Classified"
232
+
233
+ # Process regular tasks
234
+ regular_data = onet_data[~not_classified_mask].copy()
235
+
236
+ # Standardize task descriptions for matching
237
+ # Create standardized task mapping from ONET statements
238
+ task_statements["task_standardized"] = (
239
+ task_statements["Task"].str.strip().str.lower()
240
+ )
241
+ regular_data["cluster_name_standardized"] = (
242
+ regular_data["cluster_name"].str.strip().str.lower()
243
+ )
244
+
245
+ # Create mapping from standardized task to major groups (allowing multiple)
246
+ task_to_major_groups = {}
247
+ for _, row in task_statements.iterrows():
248
+ if pd.notna(row["Task"]) and pd.notna(row["soc_major_group"]):
249
+ std_task = row["task_standardized"]
250
+ major_group = str(int(row["soc_major_group"]))
251
+ if std_task not in task_to_major_groups:
252
+ task_to_major_groups[std_task] = []
253
+ if major_group not in task_to_major_groups[std_task]:
254
+ task_to_major_groups[std_task].append(major_group)
255
+
256
+ # Expand rows for tasks that belong to multiple groups
257
+ expanded_rows = []
258
+ for _, row in regular_data.iterrows():
259
+ std_task = row["cluster_name_standardized"]
260
+ if std_task in task_to_major_groups:
261
+ groups = task_to_major_groups[std_task]
262
+ # Assign full value to each group (creates duplicates)
263
+ for group in groups:
264
+ new_row = row.copy()
265
+ new_row["soc_major"] = group
266
+ new_row["value"] = row["value"] # Keep full value for each group
267
+ expanded_rows.append(new_row)
268
+
269
+ # Create new dataframe from expanded rows
270
+ if expanded_rows:
271
+ regular_data = pd.DataFrame(expanded_rows)
272
+ else:
273
+ regular_data["soc_major"] = None
274
+
275
+ # Get major occupational groups from SOC structure
276
+ # Filter for rows where 'Major Group' is not null (these are the major groups)
277
+ major_groups = soc_structure[soc_structure["Major Group"].notna()].copy()
278
+
279
+ # Extract major group code and title
280
+ major_groups["soc_major"] = major_groups["Major Group"].astype(str).str[:2]
281
+ major_groups["title"] = major_groups["SOC or O*NET-SOC 2019 Title"]
282
+
283
+ # Create a clean mapping from major group code to title
284
+ major_group_mapping = (
285
+ major_groups[["soc_major", "title"]]
286
+ .drop_duplicates()
287
+ .set_index("soc_major")["title"]
288
+ .to_dict()
289
+ )
290
+
291
+ # Map major group codes to titles for regular data
292
+ regular_data["occupational_category"] = regular_data["soc_major"].map(
293
+ major_group_mapping
294
+ )
295
+
296
+ # Keep only successfully mapped regular data
297
+ regular_mapped = regular_data[regular_data["occupational_category"].notna()].copy()
298
+
299
+ # Combine regular mapped data with not_classified data
300
+ onet_mapped = pd.concat([regular_mapped, not_classified_data], ignore_index=True)
301
+
302
+ # Renormalize percentages to sum to 100 since we may have created duplicates
303
+ total = onet_mapped["value"].sum()
304
+
305
+ onet_mapped["value"] = (onet_mapped["value"] / total) * 100
306
+
307
+ return onet_mapped
308
+
309
+
310
+ def create_platform_occupational_comparison(api_df, cai_df, output_dir):
311
+ """
312
+ Create horizontal bar chart comparing occupational categories between Claude.ai and 1P API.
313
+
314
+ Args:
315
+ api_df: API preprocessed data DataFrame
316
+ cai_df: Claude.ai preprocessed data DataFrame
317
+ output_dir: Directory to save the figure
318
+ """
319
+ # Load ONET mappings for occupational categories
320
+ task_statements, soc_structure = load_onet_mappings()
321
+
322
+ # Process both datasets to get occupational categories
323
+ def get_occupational_data(df, platform_name):
324
+ # Get ONET task percentage data (global level only)
325
+ onet_data = df[
326
+ (df["facet"] == "onet_task")
327
+ & (df["geo_id"] == "GLOBAL")
328
+ & (df["variable"] == "onet_task_pct")
329
+ ].copy()
330
+
331
+ # Map to occupational categories using existing function
332
+ onet_mapped = map_to_occupational_categories(
333
+ onet_data, task_statements, soc_structure
334
+ )
335
+
336
+ # Sum percentages by occupational category
337
+ category_percentages = (
338
+ onet_mapped.groupby("occupational_category")["value"].sum().reset_index()
339
+ )
340
+
341
+ # Exclude "Not Classified" category from visualization
342
+ category_percentages = category_percentages[
343
+ category_percentages["occupational_category"] != "Not Classified"
344
+ ]
345
+
346
+ category_percentages.columns = ["category", f"{platform_name.lower()}_pct"]
347
+
348
+ return category_percentages
349
+
350
+ # Get data for both platforms
351
+ api_categories = get_occupational_data(api_df, "API")
352
+ claude_categories = get_occupational_data(cai_df, "Claude")
353
+
354
+ # Merge the datasets
355
+ category_comparison = pd.merge(
356
+ claude_categories, api_categories, on="category", how="outer"
357
+ ).fillna(0)
358
+
359
+ # Filter to substantial categories (>0.5% in either platform)
360
+ category_comparison = category_comparison[
361
+ (category_comparison["claude_pct"] > 0.5)
362
+ | (category_comparison["api_pct"] > 0.5)
363
+ ].copy()
364
+
365
+ # Calculate difference and total
366
+ category_comparison["difference"] = (
367
+ category_comparison["api_pct"] - category_comparison["claude_pct"]
368
+ )
369
+ category_comparison["total_pct"] = (
370
+ category_comparison["claude_pct"] + category_comparison["api_pct"]
371
+ )
372
+
373
+ # Get top 8 categories by total usage
374
+ top_categories = category_comparison.nlargest(8, "total_pct").sort_values(
375
+ "total_pct", ascending=True
376
+ )
377
+
378
+ # Create figure
379
+ fig, ax = plt.subplots(figsize=(12, 8))
380
+
381
+ y_pos = np.arange(len(top_categories))
382
+ bar_height = 0.35
383
+
384
+ # Create side-by-side bars
385
+ ax.barh(
386
+ y_pos - bar_height / 2,
387
+ top_categories["claude_pct"],
388
+ bar_height,
389
+ label="Claude.ai",
390
+ color=COLOR_CYCLE[2],
391
+ alpha=0.8,
392
+ )
393
+ ax.barh(
394
+ y_pos + bar_height / 2,
395
+ top_categories["api_pct"],
396
+ bar_height,
397
+ label="1P API",
398
+ color=COLOR_CYCLE[0],
399
+ alpha=0.8,
400
+ )
401
+
402
+ # Add value labels with difference percentages
403
+ for i, (idx, row) in enumerate(top_categories.iterrows()):
404
+ # Claude.ai label
405
+ if row["claude_pct"] > 0.1:
406
+ ax.text(
407
+ row["claude_pct"] + 0.2,
408
+ i - bar_height / 2,
409
+ f"{row['claude_pct']:.0f}%",
410
+ va="center",
411
+ fontsize=9,
412
+ )
413
+
414
+ # 1P API label with difference
415
+ if row["api_pct"] > 0.1:
416
+ ax.text(
417
+ row["api_pct"] + 0.2,
418
+ i + bar_height / 2,
419
+ f"{row['api_pct']:.0f}%",
420
+ va="center",
421
+ fontsize=9,
422
+ color=COLOR_CYCLE[0] if row["difference"] > 0 else COLOR_CYCLE[2],
423
+ )
424
+
425
+ # Clean up category labels
426
+ labels = []
427
+ for cat in top_categories["category"]:
428
+ # Remove "Occupations" suffix and wrap long names
429
+ clean_cat = cat.replace(" Occupations", "").replace(", and ", " & ")
430
+ wrapped = "\n".join(wrap(clean_cat, 40))
431
+ labels.append(wrapped)
432
+
433
+ ax.set_yticks(y_pos)
434
+ ax.set_yticklabels(labels, fontsize=10)
435
+
436
+ ax.set_xlabel("Percentage of usage", fontsize=12)
437
+ ax.set_title(
438
+ "Usage shares across top occupational categories: Claude.ai vs 1P API",
439
+ fontsize=14,
440
+ fontweight="bold",
441
+ pad=20,
442
+ )
443
+ ax.legend(loc="lower right", fontsize=11)
444
+ ax.grid(True, alpha=0.3, axis="x")
445
+ ax.set_axisbelow(True)
446
+
447
+ # Remove top and right spines
448
+ ax.spines["top"].set_visible(False)
449
+ ax.spines["right"].set_visible(False)
450
+
451
+ plt.tight_layout()
452
+
453
+ # Save plot
454
+ output_path = Path(output_dir) / "platform_occupational_comparison.png"
455
+ plt.savefig(output_path, dpi=300, bbox_inches="tight")
456
+ plt.show()
457
+ return str(output_path)
458
+
459
+
460
+ def create_platform_lorenz_curves(api_df, cai_df, output_dir):
461
+ """
462
+ Create Lorenz curves showing task usage concentration by platform.
463
+
464
+ Args:
465
+ api_df: API preprocessed data DataFrame
466
+ cai_df: Claude.ai preprocessed data DataFrame
467
+ output_dir: Directory to save the figure
468
+ """
469
+
470
+ def gini_coefficient(values):
471
+ """Calculate Gini coefficient for a series of values."""
472
+ sorted_values = np.sort(values)
473
+ n = len(sorted_values)
474
+ cumulative = np.cumsum(sorted_values)
475
+ gini = (2 * np.sum(np.arange(1, n + 1) * sorted_values)) / (
476
+ n * cumulative[-1]
477
+ ) - (n + 1) / n
478
+ return gini
479
+
480
+ def get_task_usage_data(df, platform_name):
481
+ # Get ONET task percentage data (global level only)
482
+ onet_data = df[
483
+ (df["facet"] == "onet_task")
484
+ & (df["geo_id"] == "GLOBAL")
485
+ & (df["variable"] == "onet_task_pct")
486
+ ].copy()
487
+
488
+ # Filter out none and not_classified
489
+ onet_data = onet_data[
490
+ ~onet_data["cluster_name"].isin(["none", "not_classified"])
491
+ ]
492
+
493
+ # Use the percentage values directly
494
+ onet_data["percentage"] = onet_data["value"]
495
+
496
+ return onet_data[["cluster_name", "percentage"]].copy()
497
+
498
+ api_tasks = get_task_usage_data(api_df, "1P API")
499
+ claude_tasks = get_task_usage_data(cai_df, "Claude.ai")
500
+
501
+ # Sort by percentage for each platform
502
+ api_tasks = api_tasks.sort_values("percentage")
503
+ claude_tasks = claude_tasks.sort_values("percentage")
504
+
505
+ # Calculate cumulative percentages of usage
506
+ api_cumulative = np.cumsum(api_tasks["percentage"])
507
+ claude_cumulative = np.cumsum(claude_tasks["percentage"])
508
+
509
+ # Calculate cumulative percentage of tasks
510
+ api_task_cumulative = np.arange(1, len(api_tasks) + 1) / len(api_tasks) * 100
511
+ claude_task_cumulative = (
512
+ np.arange(1, len(claude_tasks) + 1) / len(claude_tasks) * 100
513
+ )
514
+
515
+ # Interpolate to ensure curves reach 100%
516
+ # Add final points to reach (100, 100)
517
+ api_cumulative = np.append(api_cumulative, 100)
518
+ claude_cumulative = np.append(claude_cumulative, 100)
519
+ api_task_cumulative = np.append(api_task_cumulative, 100)
520
+ claude_task_cumulative = np.append(claude_task_cumulative, 100)
521
+
522
+ # Calculate Gini coefficients
523
+ api_gini = gini_coefficient(api_tasks["percentage"].values)
524
+ claude_gini = gini_coefficient(claude_tasks["percentage"].values)
525
+
526
+ # Create panel figure
527
+ fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8))
528
+
529
+ # LEFT PANEL: Lorenz Curves
530
+ # Plot Lorenz curves
531
+ ax1.plot(
532
+ api_task_cumulative,
533
+ api_cumulative,
534
+ color=COLOR_CYCLE[1],
535
+ linewidth=2.5,
536
+ label=f"1P API (Gini = {api_gini:.3f})",
537
+ )
538
+
539
+ ax1.plot(
540
+ claude_task_cumulative,
541
+ claude_cumulative,
542
+ color=COLOR_CYCLE[0],
543
+ linewidth=2.5,
544
+ label=f"Claude.ai (Gini = {claude_gini:.3f})",
545
+ )
546
+
547
+ # Add perfect equality line (diagonal)
548
+ ax1.plot(
549
+ [0, 100],
550
+ [0, 100],
551
+ "k--",
552
+ linewidth=1.5,
553
+ alpha=0.7,
554
+ label="Perfect Equality",
555
+ )
556
+
557
+ # Calculate 80th percentile values
558
+ api_80th_usage = np.interp(80, api_task_cumulative, api_cumulative)
559
+ claude_80th_usage = np.interp(80, claude_task_cumulative, claude_cumulative)
560
+
561
+ # Add markers at 80th percentile
562
+ ax1.scatter(
563
+ 80,
564
+ api_80th_usage,
565
+ alpha=0.5,
566
+ s=100,
567
+ color=COLOR_CYCLE[1],
568
+ edgecolors="white",
569
+ linewidth=1,
570
+ zorder=5,
571
+ )
572
+ ax1.scatter(
573
+ 80,
574
+ claude_80th_usage,
575
+ alpha=0.5,
576
+ s=100,
577
+ color=COLOR_CYCLE[0],
578
+ edgecolors="white",
579
+ linewidth=1,
580
+ zorder=5,
581
+ )
582
+
583
+ # Add annotations
584
+ ax1.text(
585
+ 82,
586
+ api_80th_usage - 2,
587
+ f"{api_80th_usage:.1f}% of usage",
588
+ ha="left",
589
+ va="center",
590
+ fontsize=10,
591
+ color=COLOR_CYCLE[1],
592
+ )
593
+
594
+ ax1.text(
595
+ 78.5,
596
+ claude_80th_usage + 1,
597
+ f"{claude_80th_usage:.1f}% of usage",
598
+ ha="right",
599
+ va="center",
600
+ fontsize=10,
601
+ color=COLOR_CYCLE[0],
602
+ )
603
+
604
+ # Add text box
605
+ ax1.text(
606
+ 0.05,
607
+ 0.95,
608
+ f"The bottom 80% of tasks account for:\n• 1P API: {api_80th_usage:.1f}% of usage\n• Claude.ai: {claude_80th_usage:.1f}% of usage",
609
+ transform=ax1.transAxes,
610
+ va="top",
611
+ ha="left",
612
+ bbox=dict(
613
+ boxstyle="round,pad=0.3",
614
+ facecolor="white",
615
+ alpha=0.8,
616
+ edgecolor="black",
617
+ linewidth=1,
618
+ ),
619
+ fontsize=10,
620
+ )
621
+
622
+ # Styling for Lorenz curves
623
+ ax1.set_xlabel("Cumulative percentage of tasks", fontsize=12)
624
+ ax1.set_ylabel("Cumulative percentage of usage", fontsize=12)
625
+ ax1.set_title("Lorenz curves", fontsize=14, fontweight="bold", pad=20)
626
+ ax1.set_xlim(0, 100)
627
+ ax1.set_ylim(0, 100)
628
+ ax1.grid(True, alpha=0.3, linestyle="--")
629
+ ax1.set_axisbelow(True)
630
+ ax1.legend(loc=(0.05, 0.65), fontsize=11, frameon=True, facecolor="white")
631
+ ax1.spines["top"].set_visible(False)
632
+ ax1.spines["right"].set_visible(False)
633
+
634
+ # RIGHT PANEL: Zipf's Law Analysis
635
+ min_share = 0.1
636
+
637
+ # Filter for minimum share
638
+ api_filtered = api_tasks[api_tasks["percentage"] > min_share]["percentage"].copy()
639
+ claude_filtered = claude_tasks[claude_tasks["percentage"] > min_share][
640
+ "percentage"
641
+ ].copy()
642
+
643
+ # Calculate ranks and log transforms
644
+ ln_rank_api = np.log(api_filtered.rank(ascending=False))
645
+ ln_share_api = np.log(api_filtered)
646
+
647
+ ln_rank_claude = np.log(claude_filtered.rank(ascending=False))
648
+ ln_share_claude = np.log(claude_filtered)
649
+
650
+ # Fit regressions
651
+ api_model = sm.OLS(ln_rank_api, sm.add_constant(ln_share_api)).fit()
652
+ api_slope = api_model.params.iloc[1]
653
+ api_intercept = api_model.params.iloc[0]
654
+
655
+ claude_model = sm.OLS(ln_rank_claude, sm.add_constant(ln_share_claude)).fit()
656
+ claude_slope = claude_model.params.iloc[1]
657
+ claude_intercept = claude_model.params.iloc[0]
658
+
659
+ # Plot scatter points
660
+ ax2.scatter(
661
+ ln_share_api,
662
+ ln_rank_api,
663
+ alpha=0.5,
664
+ s=100,
665
+ color=COLOR_CYCLE[1],
666
+ label=f"1P API: y = {api_slope:.2f}x + {api_intercept:.2f}",
667
+ )
668
+
669
+ ax2.scatter(
670
+ ln_share_claude,
671
+ ln_rank_claude,
672
+ alpha=0.5,
673
+ s=100,
674
+ color=COLOR_CYCLE[0],
675
+ label=f"Claude.ai: y = {claude_slope:.2f}x + {claude_intercept:.2f}",
676
+ )
677
+
678
+ # Add Zipf's law reference line (slope = -1)
679
+ x_range = np.linspace(
680
+ min(ln_share_api.min(), ln_share_claude.min()),
681
+ max(ln_share_api.max(), ln_share_claude.max()),
682
+ 100,
683
+ )
684
+ avg_intercept = (api_intercept + claude_intercept) / 2
685
+ y_line = -1 * x_range + avg_intercept
686
+
687
+ ax2.plot(
688
+ x_range,
689
+ y_line,
690
+ color="black",
691
+ linestyle="--",
692
+ linewidth=2,
693
+ label=f"Zipf's Law: y = -1.00x + {avg_intercept:.2f}",
694
+ zorder=0,
695
+ )
696
+
697
+ # Styling for Zipf's law plot
698
+ ax2.set_xlabel("ln(Share of usage)", fontsize=12)
699
+ ax2.set_ylabel("ln(Rank by usage)", fontsize=12)
700
+ ax2.set_title(
701
+ "Task rank versus usage share", fontsize=14, fontweight="bold", pad=20
702
+ )
703
+ ax2.grid(True, alpha=0.3, linestyle="--")
704
+ ax2.set_axisbelow(True)
705
+ ax2.legend(fontsize=11)
706
+ ax2.spines["top"].set_visible(False)
707
+ ax2.spines["right"].set_visible(False)
708
+
709
+ # Overall title
710
+ fig.suptitle(
711
+ "Lorenz curves and power law analysis across tasks: 1P API vs Claude.ai",
712
+ fontsize=16,
713
+ fontweight="bold",
714
+ y=0.95,
715
+ color="#B86046",
716
+ )
717
+
718
+ plt.tight_layout()
719
+ plt.subplots_adjust(top=0.85) # More room for suptitle
720
+
721
+ # Save plot
722
+ output_path = Path(output_dir) / "platform_lorenz_zipf_panel.png"
723
+ plt.savefig(output_path, dpi=300, bbox_inches="tight")
724
+ plt.show()
725
+ return str(output_path)
726
+
727
+
728
+ def create_collaboration_alluvial(api_df, cai_df, output_dir):
729
+ """
730
+ Create alluvial diagram showing collaboration pattern flows between platforms.
731
+
732
+ Args:
733
+ api_df: API preprocessed data DataFrame
734
+ cai_df: Claude.ai preprocessed data DataFrame
735
+ output_dir: Directory to save the figure
736
+ """
737
+
738
+ def get_collaboration_data(df, platform_name):
739
+ # Get collaboration facet data (global level only)
740
+ collab_data = df[
741
+ (df["facet"] == "collaboration")
742
+ & (df["geo_id"] == "GLOBAL")
743
+ & (df["variable"] == "collaboration_pct")
744
+ ].copy()
745
+
746
+ # Use cluster_name directly as the collaboration pattern
747
+ collab_data["pattern"] = collab_data["cluster_name"]
748
+
749
+ # Filter out not_classified
750
+ collab_data = collab_data[collab_data["pattern"] != "not_classified"]
751
+
752
+ # Use the percentage values directly
753
+ result = collab_data[["pattern", "value"]].copy()
754
+ result.columns = ["pattern", "percentage"]
755
+ result["platform"] = platform_name
756
+
757
+ return result
758
+
759
+ api_collab = get_collaboration_data(api_df, "1P API")
760
+ claude_collab = get_collaboration_data(cai_df, "Claude.ai")
761
+
762
+ # Combine collaboration data
763
+ collab_df = pd.concat([claude_collab, api_collab], ignore_index=True)
764
+
765
+ # Define categories
766
+ augmentation_types = ["learning", "task iteration", "validation"]
767
+ automation_types = ["directive", "feedback loop"]
768
+
769
+ # Colors matching the original
770
+ pattern_colors = {
771
+ "validation": "#2c3e67",
772
+ "task iteration": "#4f76c7",
773
+ "learning": "#79a7e0",
774
+ "feedback loop": "#614980",
775
+ "directive": "#8e6bb1",
776
+ }
777
+
778
+ # Extract flows
779
+ flows_claude = {}
780
+ flows_api = {}
781
+
782
+ for pattern in augmentation_types + automation_types:
783
+ claude_mask = (collab_df["pattern"] == pattern) & (
784
+ collab_df["platform"] == "Claude.ai"
785
+ )
786
+ if claude_mask.any():
787
+ flows_claude[pattern] = collab_df.loc[claude_mask, "percentage"].values[0]
788
+
789
+ api_mask = (collab_df["pattern"] == pattern) & (
790
+ collab_df["platform"] == "1P API"
791
+ )
792
+ if api_mask.any():
793
+ flows_api[pattern] = collab_df.loc[api_mask, "percentage"].values[0]
794
+
795
+ # Create figure with subplots
796
+ fig = make_subplots(
797
+ rows=2,
798
+ cols=1,
799
+ row_heights=[0.5, 0.5],
800
+ vertical_spacing=0.15,
801
+ subplot_titles=("<b>Augmentation Patterns</b>", "<b>Automation Patterns</b>"),
802
+ )
803
+
804
+ # Update subplot title colors and font
805
+ for annotation in fig.layout.annotations:
806
+ annotation.update(font=dict(color="#B86046", size=14, family="Styrene B LC"))
807
+
808
+ def create_alluvial_traces(patterns, row):
809
+ """Create traces for alluvial diagram"""
810
+ # Sort by size on Claude.ai side
811
+ patterns_sorted = sorted(
812
+ [p for p in patterns if p in flows_claude],
813
+ key=lambda p: flows_claude.get(p, 0),
814
+ reverse=True,
815
+ )
816
+
817
+ # Calculate total heights first to determine centering
818
+ total_claude = sum(
819
+ flows_claude.get(p, 0) for p in patterns if p in flows_claude
820
+ )
821
+ total_api = sum(flows_api.get(p, 0) for p in patterns if p in flows_api)
822
+ gap_count = max(
823
+ len([p for p in patterns if p in flows_claude and flows_claude[p] > 0]) - 1,
824
+ 0,
825
+ )
826
+ gap_count_api = max(
827
+ len([p for p in patterns if p in flows_api and flows_api[p] > 0]) - 1, 0
828
+ )
829
+
830
+ total_height_claude = total_claude + (gap_count * 2)
831
+ total_height_api = total_api + (gap_count_api * 2)
832
+
833
+ # Calculate offset to center the smaller side
834
+ offset_claude = 0
835
+ offset_api = 0
836
+ if total_height_claude < total_height_api:
837
+ offset_claude = (total_height_api - total_height_claude) / 2
838
+ else:
839
+ offset_api = (total_height_claude - total_height_api) / 2
840
+
841
+ # Calculate positions for Claude.ai (left side)
842
+ y_pos_claude = offset_claude
843
+ claude_positions = {}
844
+ for pattern in patterns_sorted:
845
+ if pattern in flows_claude and flows_claude[pattern] > 0:
846
+ height = flows_claude[pattern]
847
+ claude_positions[pattern] = {
848
+ "bottom": y_pos_claude,
849
+ "top": y_pos_claude + height,
850
+ "center": y_pos_claude + height / 2,
851
+ }
852
+ y_pos_claude += height + 2 # Add gap
853
+
854
+ # Calculate positions for 1P API (right side)
855
+ patterns_sorted_api = sorted(
856
+ [p for p in patterns if p in flows_api],
857
+ key=lambda p: flows_api.get(p, 0),
858
+ reverse=True,
859
+ )
860
+ y_pos_api = offset_api
861
+ api_positions = {}
862
+ for pattern in patterns_sorted_api:
863
+ if pattern in flows_api and flows_api[pattern] > 0:
864
+ height = flows_api[pattern]
865
+ api_positions[pattern] = {
866
+ "bottom": y_pos_api,
867
+ "top": y_pos_api + height,
868
+ "center": y_pos_api + height / 2,
869
+ }
870
+ y_pos_api += height + 2 # Add gap
871
+
872
+ # Create shapes for flows
873
+ shapes = []
874
+ for pattern in patterns:
875
+ if pattern in claude_positions and pattern in api_positions:
876
+ # Create a quadrilateral connecting the two sides
877
+ x_left = 0.2
878
+ x_right = 0.8
879
+
880
+ claude_bottom = claude_positions[pattern]["bottom"]
881
+ claude_top = claude_positions[pattern]["top"]
882
+ api_bottom = api_positions[pattern]["bottom"]
883
+ api_top = api_positions[pattern]["top"]
884
+
885
+ # Create path for the flow
886
+ path = f"M {x_left} {claude_bottom} L {x_left} {claude_top} L {x_right} {api_top} L {x_right} {api_bottom} Z"
887
+
888
+ hex_color = pattern_colors[pattern]
889
+ r = int(hex_color[1:3], 16)
890
+ g = int(hex_color[3:5], 16)
891
+ b = int(hex_color[5:7], 16)
892
+
893
+ shapes.append(
894
+ dict(
895
+ type="path",
896
+ path=path,
897
+ fillcolor=f"rgba({r},{g},{b},0.5)",
898
+ line=dict(color=f"rgba({r},{g},{b},1)", width=1),
899
+ )
900
+ )
901
+
902
+ # Create text annotations
903
+ annotations = []
904
+
905
+ # Claude.ai labels
906
+ for pattern in patterns_sorted:
907
+ if pattern in claude_positions:
908
+ annotations.append(
909
+ dict(
910
+ x=x_left - 0.02,
911
+ y=claude_positions[pattern]["center"],
912
+ text=f"{pattern.replace('_', ' ').title()}<br>{flows_claude[pattern]:.1f}%",
913
+ showarrow=False,
914
+ xanchor="right",
915
+ yanchor="middle",
916
+ font=dict(size=10),
917
+ )
918
+ )
919
+
920
+ # 1P API labels
921
+ for pattern in patterns_sorted_api:
922
+ if pattern in api_positions:
923
+ annotations.append(
924
+ dict(
925
+ x=x_right + 0.02,
926
+ y=api_positions[pattern]["center"],
927
+ text=f"{pattern.replace('_', ' ').title()}<br>{flows_api[pattern]:.1f}%",
928
+ showarrow=False,
929
+ xanchor="left",
930
+ yanchor="middle",
931
+ font=dict(size=10),
932
+ )
933
+ )
934
+
935
+ # Platform labels
936
+ annotations.extend(
937
+ [
938
+ dict(
939
+ x=x_left,
940
+ y=max(y_pos_claude, y_pos_api) + 5,
941
+ text="Claude.ai",
942
+ showarrow=False,
943
+ xanchor="center",
944
+ font=dict(size=14, color="black"),
945
+ ),
946
+ dict(
947
+ x=x_right,
948
+ y=max(y_pos_claude, y_pos_api) + 5,
949
+ text="1P API",
950
+ showarrow=False,
951
+ xanchor="center",
952
+ font=dict(size=14, color="black"),
953
+ ),
954
+ ]
955
+ )
956
+
957
+ return shapes, annotations, max(y_pos_claude, y_pos_api)
958
+
959
+ # Create augmentation diagram
960
+ aug_shapes, aug_annotations, aug_height = create_alluvial_traces(
961
+ augmentation_types, 1
962
+ )
963
+
964
+ # Create automation diagram
965
+ auto_shapes, auto_annotations, auto_height = create_alluvial_traces(
966
+ automation_types, 2
967
+ )
968
+
969
+ # Add invisible traces to create subplots
970
+ fig.add_trace(
971
+ go.Scatter(x=[0], y=[0], mode="markers", marker=dict(size=0)), row=1, col=1
972
+ )
973
+ fig.add_trace(
974
+ go.Scatter(x=[0], y=[0], mode="markers", marker=dict(size=0)), row=2, col=1
975
+ )
976
+
977
+ # Update layout with shapes and annotations
978
+ fig.update_layout(
979
+ title=dict(
980
+ text="<b>Collaboration Modes: Claude.ai Conversations vs 1P API Transcripts</b>",
981
+ font=dict(size=16, family="Styrene B LC", color="#B86046"),
982
+ x=0.5,
983
+ xanchor="center",
984
+ ),
985
+ height=800,
986
+ width=1200,
987
+ paper_bgcolor="white",
988
+ plot_bgcolor="white",
989
+ showlegend=False,
990
+ )
991
+
992
+ # Ensure white background for both subplots
993
+ fig.update_xaxes(showgrid=False, zeroline=False, showticklabels=False, row=1, col=1)
994
+ fig.update_xaxes(showgrid=False, zeroline=False, showticklabels=False, row=2, col=1)
995
+ fig.update_yaxes(showgrid=False, zeroline=False, showticklabels=False, row=1, col=1)
996
+ fig.update_yaxes(showgrid=False, zeroline=False, showticklabels=False, row=2, col=1)
997
+
998
+ # Add shapes and annotations to each subplot
999
+ for shape in aug_shapes:
1000
+ fig.add_shape(shape, row=1, col=1)
1001
+ for shape in auto_shapes:
1002
+ fig.add_shape(shape, row=2, col=1)
1003
+
1004
+ for ann in aug_annotations:
1005
+ fig.add_annotation(ann, row=1, col=1)
1006
+ for ann in auto_annotations:
1007
+ fig.add_annotation(ann, row=2, col=1)
1008
+
1009
+ # Set axis ranges and ensure white background
1010
+ fig.update_xaxes(
1011
+ range=[0, 1],
1012
+ showgrid=False,
1013
+ zeroline=False,
1014
+ showticklabels=False,
1015
+ row=1,
1016
+ col=1,
1017
+ )
1018
+ fig.update_xaxes(
1019
+ range=[0, 1],
1020
+ showgrid=False,
1021
+ zeroline=False,
1022
+ showticklabels=False,
1023
+ row=2,
1024
+ col=1,
1025
+ )
1026
+
1027
+ fig.update_yaxes(
1028
+ range=[0, aug_height + 10],
1029
+ showgrid=False,
1030
+ zeroline=False,
1031
+ showticklabels=False,
1032
+ row=1,
1033
+ col=1,
1034
+ )
1035
+ fig.update_yaxes(
1036
+ range=[0, auto_height + 10],
1037
+ showgrid=False,
1038
+ zeroline=False,
1039
+ showticklabels=False,
1040
+ row=2,
1041
+ col=1,
1042
+ )
1043
+
1044
+ # Save plot
1045
+ output_path = Path(output_dir) / "collaboration_alluvial.png"
1046
+ fig.write_image(str(output_path), width=1200, height=800, scale=2)
1047
+ fig.show()
1048
+ return str(output_path)
1049
+
1050
+
1051
+ def get_collaboration_shares(df):
1052
+ """
1053
+ Extract collaboration mode shares for each ONET task from intersection data.
1054
+
1055
+ Args:
1056
+ df: Preprocessed data DataFrame
1057
+
1058
+ Returns:
1059
+ dict: {task_name: {mode: percentage}}
1060
+ """
1061
+ # Filter to GLOBAL data only and use pre-calculated percentages
1062
+ collab_data = df[
1063
+ (df["geo_id"] == "GLOBAL")
1064
+ & (df["facet"] == "onet_task::collaboration")
1065
+ & (df["variable"] == "onet_task_collaboration_pct")
1066
+ ].copy()
1067
+
1068
+ # Split the cluster_name into task and collaboration mode
1069
+ collab_data[["task", "mode"]] = collab_data["cluster_name"].str.rsplit(
1070
+ "::", n=1, expand=True
1071
+ )
1072
+
1073
+ # Filter out 'none' and 'not_classified' modes
1074
+ collab_data = collab_data[~collab_data["mode"].isin(["none", "not_classified"])]
1075
+
1076
+ # Use pre-calculated percentages directly
1077
+ collaboration_modes = [
1078
+ "directive",
1079
+ "feedback loop",
1080
+ "learning",
1081
+ "task iteration",
1082
+ "validation",
1083
+ ]
1084
+ result = {}
1085
+
1086
+ for _, row in collab_data.iterrows():
1087
+ task = row["task"]
1088
+ mode = row["mode"]
1089
+
1090
+ if mode in collaboration_modes:
1091
+ if task not in result:
1092
+ result[task] = {}
1093
+ result[task][mode] = float(row["value"])
1094
+
1095
+ return result
1096
+
1097
+
1098
+ def create_automation_augmentation_panel(api_df, cai_df, output_dir):
1099
+ """
1100
+ Create combined panel figure showing automation vs augmentation for both platforms.
1101
+
1102
+ Args:
1103
+ api_df: API preprocessed data DataFrame
1104
+ cai_df: Claude.ai preprocessed data DataFrame
1105
+ output_dir: Directory to save the figure
1106
+ """
1107
+ # Create figure with subplots
1108
+ fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8))
1109
+
1110
+ def create_automation_augmentation_subplot(df, ax, title, platform_name):
1111
+ """Helper function to create one automation vs augmentation subplot"""
1112
+ # Get collaboration shares for each task
1113
+ collab_shares = get_collaboration_shares(df)
1114
+
1115
+ # Get task usage counts for bubble sizing
1116
+ df_global = df[df["geo_id"] == "GLOBAL"]
1117
+ task_counts = (
1118
+ df_global[
1119
+ (df_global["facet"] == "onet_task")
1120
+ & (df_global["variable"] == "onet_task_count")
1121
+ & (~df_global["cluster_name"].isin(["none", "not_classified"]))
1122
+ ]
1123
+ .set_index("cluster_name")["value"]
1124
+ .to_dict()
1125
+ )
1126
+
1127
+ # Prepare data for plotting
1128
+ tasks = []
1129
+ automation_scores = []
1130
+ augmentation_scores = []
1131
+ bubble_sizes = []
1132
+
1133
+ for task_name, shares in collab_shares.items():
1134
+ if task_name in task_counts:
1135
+ # Calculate automation score (directive + feedback loop)
1136
+ automation = shares.get("directive", 0) + shares.get("feedback loop", 0)
1137
+
1138
+ # Calculate augmentation score (learning + task iteration + validation)
1139
+ augmentation = (
1140
+ shares.get("learning", 0)
1141
+ + shares.get("task iteration", 0)
1142
+ + shares.get("validation", 0)
1143
+ )
1144
+
1145
+ # Only include tasks with some collaboration data
1146
+ if automation + augmentation > 0:
1147
+ tasks.append(task_name)
1148
+ automation_scores.append(automation)
1149
+ augmentation_scores.append(augmentation)
1150
+ bubble_sizes.append(task_counts[task_name])
1151
+
1152
+ # Convert to numpy arrays for plotting
1153
+ automation_scores = np.array(automation_scores)
1154
+ augmentation_scores = np.array(augmentation_scores)
1155
+ bubble_sizes = np.array(bubble_sizes)
1156
+
1157
+ # Scale bubble sizes
1158
+ bubble_sizes_scaled = (bubble_sizes / bubble_sizes.max()) * 800 + 40
1159
+
1160
+ # Color points based on whether automation or augmentation dominates
1161
+ colors = []
1162
+ for auto, aug in zip(automation_scores, augmentation_scores, strict=True):
1163
+ if auto > aug:
1164
+ colors.append("#8e6bb1") # Automation dominant
1165
+ else:
1166
+ colors.append("#4f76c7") # Augmentation dominant
1167
+
1168
+ # Create scatter plot
1169
+ ax.scatter(
1170
+ automation_scores,
1171
+ augmentation_scores,
1172
+ s=bubble_sizes_scaled,
1173
+ c=colors,
1174
+ alpha=0.7,
1175
+ edgecolors="black",
1176
+ linewidth=0.5,
1177
+ )
1178
+
1179
+ # Add diagonal line (automation = augmentation)
1180
+ max_val = max(automation_scores.max(), augmentation_scores.max())
1181
+ ax.plot([0, max_val], [0, max_val], "--", color="gray", alpha=0.5, linewidth=2)
1182
+
1183
+ # Labels and formatting (increased font sizes)
1184
+ ax.set_xlabel("Automation Share (%)", fontsize=14)
1185
+ ax.set_ylabel(
1186
+ "Augmentation Score (%)",
1187
+ fontsize=14,
1188
+ )
1189
+ ax.set_title(title, fontsize=14, fontweight="bold", pad=15)
1190
+
1191
+ # Calculate percentages for legend
1192
+ automation_dominant_count = sum(
1193
+ 1
1194
+ for auto, aug in zip(automation_scores, augmentation_scores, strict=True)
1195
+ if auto > aug
1196
+ )
1197
+ augmentation_dominant_count = len(automation_scores) - automation_dominant_count
1198
+ total_tasks = len(automation_scores)
1199
+
1200
+ automation_pct = (automation_dominant_count / total_tasks) * 100
1201
+ augmentation_pct = (augmentation_dominant_count / total_tasks) * 100
1202
+
1203
+ # Add legend with percentages centered at top
1204
+ automation_patch = plt.scatter(
1205
+ [],
1206
+ [],
1207
+ c="#8e6bb1",
1208
+ alpha=0.7,
1209
+ s=100,
1210
+ label=f"Automation dominant ({automation_pct:.1f}% of Tasks)",
1211
+ )
1212
+ augmentation_patch = plt.scatter(
1213
+ [],
1214
+ [],
1215
+ c="#4f76c7",
1216
+ alpha=0.7,
1217
+ s=100,
1218
+ label=f"Augmentation dominant ({augmentation_pct:.1f}% of Tasks)",
1219
+ )
1220
+ ax.legend(
1221
+ handles=[automation_patch, augmentation_patch],
1222
+ loc="upper center",
1223
+ bbox_to_anchor=(0.5, 0.95),
1224
+ fontsize=12,
1225
+ frameon=True,
1226
+ facecolor="white",
1227
+ )
1228
+
1229
+ # Grid and styling
1230
+ ax.grid(True, alpha=0.3)
1231
+ ax.set_axisbelow(True)
1232
+ ax.tick_params(axis="both", which="major", labelsize=12)
1233
+
1234
+ return len(tasks), automation_pct, augmentation_pct
1235
+
1236
+ # Create API subplot
1237
+ create_automation_augmentation_subplot(api_df, ax1, "1P API", "1P API")
1238
+
1239
+ # Create Claude.ai subplot
1240
+ create_automation_augmentation_subplot(cai_df, ax2, "Claude.ai", "Claude.ai")
1241
+
1242
+ # Add overall title
1243
+ fig.suptitle(
1244
+ "Automation and augmentation dominance across tasks: Claude.ai vs. 1P API",
1245
+ fontsize=16,
1246
+ fontweight="bold",
1247
+ y=0.95,
1248
+ color="#B86046",
1249
+ )
1250
+
1251
+ plt.tight_layout()
1252
+ plt.subplots_adjust(top=0.85) # More room for suptitle
1253
+
1254
+ # Save plot
1255
+ output_path = Path(output_dir) / "automation_vs_augmentation_panel.png"
1256
+ plt.savefig(output_path, dpi=300, bbox_inches="tight")
1257
+ plt.show()
1258
+ return str(output_path)
1259
+
1260
+
1261
+ def extract_token_metrics_from_intersections(df):
1262
+ """
1263
+ Extract token metrics from preprocessed intersection data.
1264
+
1265
+ Args:
1266
+ df: Preprocessed dataframe with intersection facets
1267
+
1268
+ Returns:
1269
+ DataFrame with token metrics for analysis
1270
+ """
1271
+ # Extract data using new variable names from mean value intersections
1272
+ cost_data = df[
1273
+ (df.facet == "onet_task::cost") & (df.variable == "cost_index")
1274
+ ].copy()
1275
+ cost_data["base_task"] = cost_data["cluster_name"].str.replace("::index", "")
1276
+ onet_cost = cost_data.set_index("base_task")["value"].copy()
1277
+
1278
+ prompt_data = df[
1279
+ (df.facet == "onet_task::prompt_tokens")
1280
+ & (df.variable == "prompt_tokens_index")
1281
+ ].copy()
1282
+ prompt_data["base_task"] = prompt_data["cluster_name"].str.replace("::index", "")
1283
+ onet_prompt = prompt_data.set_index("base_task")["value"].copy()
1284
+
1285
+ completion_data = df[
1286
+ (df.facet == "onet_task::completion_tokens")
1287
+ & (df.variable == "completion_tokens_index")
1288
+ ].copy()
1289
+ completion_data["base_task"] = completion_data["cluster_name"].str.replace(
1290
+ "::index", ""
1291
+ )
1292
+ onet_completion = completion_data.set_index("base_task")["value"].copy()
1293
+
1294
+ # Get API call counts for bubble sizing and WLS weights
1295
+ api_records_data = df[
1296
+ (df.facet == "onet_task::prompt_tokens")
1297
+ & (df.variable == "prompt_tokens_count")
1298
+ ].copy()
1299
+ api_records_data["base_task"] = api_records_data["cluster_name"].str.replace(
1300
+ "::count", ""
1301
+ )
1302
+ onet_api_records = api_records_data.set_index("base_task")["value"].copy()
1303
+
1304
+ # Create metrics DataFrame - values are already re-indexed during preprocessing
1305
+ metrics = pd.DataFrame(
1306
+ {
1307
+ "cluster_name": onet_cost.index,
1308
+ "cost_per_record": onet_cost, # Already indexed (1.0 = average)
1309
+ "avg_prompt_tokens": onet_prompt.reindex(
1310
+ onet_cost.index
1311
+ ), # Already indexed
1312
+ "avg_completion_tokens": onet_completion.reindex(
1313
+ onet_cost.index
1314
+ ), # Already indexed
1315
+ }
1316
+ )
1317
+
1318
+ # Get task usage percentages
1319
+ usage_pct_data = df[
1320
+ (df.facet == "onet_task") & (df.variable == "onet_task_pct")
1321
+ ].copy()
1322
+ usage_pct_data["base_task"] = usage_pct_data["cluster_name"]
1323
+ onet_usage_pct = usage_pct_data.set_index("base_task")["value"].copy()
1324
+
1325
+ # Add API records and usage percentages
1326
+ metrics["api_records"] = onet_api_records.reindex(onet_cost.index)
1327
+ metrics["usage_pct"] = onet_usage_pct.reindex(onet_cost.index)
1328
+
1329
+ # Calculate derived metrics
1330
+ metrics["output_input_ratio"] = (
1331
+ metrics["avg_completion_tokens"] / metrics["avg_prompt_tokens"]
1332
+ )
1333
+ metrics["total_tokens"] = (
1334
+ metrics["avg_prompt_tokens"] + metrics["avg_completion_tokens"]
1335
+ )
1336
+
1337
+ return metrics
1338
+
1339
+
1340
+ def add_occupational_categories_to_metrics(
1341
+ task_metrics, task_statements, soc_structure
1342
+ ):
1343
+ """
1344
+ Add occupational categories to task metrics based on ONET mappings.
1345
+
1346
+ Args:
1347
+ task_metrics: DataFrame with task metrics
1348
+ task_statements: ONET task statements DataFrame
1349
+ soc_structure: SOC structure DataFrame
1350
+
1351
+ Returns:
1352
+ DataFrame with occupational categories added
1353
+ """
1354
+ # Standardize task descriptions for matching
1355
+ task_statements["task_standardized"] = (
1356
+ task_statements["Task"].str.strip().str.lower()
1357
+ )
1358
+ task_metrics["cluster_name_standardized"] = (
1359
+ task_metrics["cluster_name"].str.strip().str.lower()
1360
+ )
1361
+
1362
+ # Create mapping from standardized task to major group
1363
+ task_to_major_group = {}
1364
+ for _, row in task_statements.iterrows():
1365
+ if pd.notna(row["Task"]) and pd.notna(row["soc_major_group"]):
1366
+ std_task = row["task_standardized"]
1367
+ major_group = str(int(row["soc_major_group"]))
1368
+ task_to_major_group[std_task] = major_group
1369
+
1370
+ # Map cluster names to major groups
1371
+ task_metrics["soc_major"] = task_metrics["cluster_name_standardized"].map(
1372
+ task_to_major_group
1373
+ )
1374
+
1375
+ # Get major occupational groups from SOC structure
1376
+ major_groups = soc_structure[soc_structure["Major Group"].notna()].copy()
1377
+ major_groups["soc_major"] = major_groups["Major Group"].astype(str).str[:2]
1378
+ major_groups["title"] = major_groups["SOC or O*NET-SOC 2019 Title"]
1379
+
1380
+ # Create a clean mapping from major group code to title
1381
+ major_group_mapping = (
1382
+ major_groups[["soc_major", "title"]]
1383
+ .drop_duplicates()
1384
+ .set_index("soc_major")["title"]
1385
+ .to_dict()
1386
+ )
1387
+
1388
+ # Map major group codes to titles
1389
+ task_metrics["occupational_category"] = task_metrics["soc_major"].map(
1390
+ major_group_mapping
1391
+ )
1392
+
1393
+ # Remove unmapped/not classified tasks from analysis
1394
+ task_metrics = task_metrics[task_metrics["occupational_category"].notna()].copy()
1395
+
1396
+ # Find top 6 categories by usage share (API calls) and group others as "All Other"
1397
+ category_usage = (
1398
+ task_metrics.groupby("occupational_category")["api_records"]
1399
+ .sum()
1400
+ .sort_values(ascending=False)
1401
+ )
1402
+ top_6_categories = list(category_usage.head(6).index)
1403
+
1404
+ # Group smaller categories as "All Other"
1405
+ task_metrics["occupational_category"] = task_metrics["occupational_category"].apply(
1406
+ lambda x: x if x in top_6_categories else "All Other"
1407
+ )
1408
+
1409
+ return task_metrics
1410
+
1411
+
1412
+ def create_token_output_bar_chart(df, output_dir):
1413
+ """
1414
+ Create bar chart showing average output (completion) tokens by occupational category.
1415
+
1416
+ Args:
1417
+ df: Preprocessed data DataFrame
1418
+ output_dir: Directory to save the figure
1419
+ """
1420
+ # Load ONET mappings for occupational categories
1421
+ task_statements, soc_structure = load_onet_mappings()
1422
+
1423
+ # Use preprocessed intersection data
1424
+ task_metrics = extract_token_metrics_from_intersections(df)
1425
+
1426
+ # Add occupational categories
1427
+ task_metrics = add_occupational_categories_to_metrics(
1428
+ task_metrics, task_statements, soc_structure
1429
+ )
1430
+
1431
+ # Calculate average output tokens by occupational category
1432
+ category_stats = (
1433
+ task_metrics.groupby("occupational_category")
1434
+ .agg(
1435
+ {
1436
+ "avg_completion_tokens": "mean", # Average across tasks
1437
+ "api_records": "sum", # Total API calls for ranking
1438
+ }
1439
+ )
1440
+ .reset_index()
1441
+ )
1442
+
1443
+ # Find top 6 categories by total API calls
1444
+ top_6_categories = category_stats.nlargest(6, "api_records")[
1445
+ "occupational_category"
1446
+ ].tolist()
1447
+
1448
+ # Group smaller categories as "All Other"
1449
+ def categorize(cat):
1450
+ return cat if cat in top_6_categories else "All Other"
1451
+
1452
+ task_metrics["category_group"] = task_metrics["occupational_category"].apply(
1453
+ categorize
1454
+ )
1455
+
1456
+ # Recalculate stats with grouped categories
1457
+ final_stats = (
1458
+ task_metrics.groupby("category_group")
1459
+ .agg(
1460
+ {
1461
+ "avg_completion_tokens": "mean", # Average output tokens across tasks
1462
+ "api_records": "sum", # Total usage for reference
1463
+ }
1464
+ )
1465
+ .reset_index()
1466
+ )
1467
+
1468
+ # Sort by output tokens (descending)
1469
+ final_stats = final_stats.sort_values("avg_completion_tokens", ascending=True)
1470
+
1471
+ # Create figure
1472
+ fig, ax = plt.subplots(figsize=(12, 8))
1473
+
1474
+ # Create horizontal bar chart
1475
+ y_pos = np.arange(len(final_stats))
1476
+ colors = [COLOR_CYCLE[i % len(COLOR_CYCLE)] for i in range(len(final_stats))]
1477
+
1478
+ ax.barh(
1479
+ y_pos,
1480
+ final_stats["avg_completion_tokens"],
1481
+ color=colors,
1482
+ alpha=0.8,
1483
+ edgecolor="#333333",
1484
+ linewidth=0.5,
1485
+ )
1486
+
1487
+ # Add value labels
1488
+ for i, (idx, row) in enumerate(final_stats.iterrows()):
1489
+ ax.text(
1490
+ row["avg_completion_tokens"] + 0.02,
1491
+ i,
1492
+ f"{row['avg_completion_tokens']:.2f}",
1493
+ va="center",
1494
+ fontsize=11,
1495
+ fontweight="bold",
1496
+ )
1497
+
1498
+ # Clean up category labels
1499
+ labels = []
1500
+ for cat in final_stats["category_group"]:
1501
+ clean_cat = cat.replace(" Occupations", "").replace(", and ", " & ")
1502
+ labels.append(clean_cat)
1503
+
1504
+ ax.set_yticks(y_pos)
1505
+ ax.set_yticklabels(labels, fontsize=10)
1506
+
1507
+ # Formatting
1508
+ ax.set_xlabel(
1509
+ "Average output token index for observed tasks in a given category",
1510
+ fontsize=12,
1511
+ )
1512
+ ax.set_title(
1513
+ "Average output token index across leading occupational categories",
1514
+ fontsize=14,
1515
+ fontweight="bold",
1516
+ pad=20,
1517
+ )
1518
+
1519
+ # Grid and styling
1520
+ ax.grid(True, alpha=0.3, axis="x")
1521
+ ax.set_axisbelow(True)
1522
+ ax.spines["top"].set_visible(False)
1523
+ ax.spines["right"].set_visible(False)
1524
+ ax.tick_params(axis="x", which="major", labelsize=11)
1525
+
1526
+ plt.tight_layout()
1527
+
1528
+ # Save plot
1529
+ output_path = Path(output_dir) / "token_output_bar_chart.png"
1530
+ plt.savefig(output_path, dpi=300, bbox_inches="tight")
1531
+ plt.show()
1532
+ return str(output_path)
1533
+
1534
+
1535
+ def create_completion_vs_input_tokens_scatter(df, output_dir):
1536
+ """
1537
+ Create scatter plot of ln(completion tokens) vs ln(input tokens) by occupational category.
1538
+
1539
+ Args:
1540
+ df: Preprocessed data DataFrame
1541
+ output_dir: Directory to save the figure
1542
+ """
1543
+ # Use preprocessed intersection data
1544
+ task_metrics = extract_token_metrics_from_intersections(df)
1545
+
1546
+ # Create figure
1547
+ fig, ax = plt.subplots(figsize=(12, 8))
1548
+
1549
+ # Transform to natural log
1550
+ ln_input = np.log(task_metrics["avg_prompt_tokens"])
1551
+ ln_output = np.log(task_metrics["avg_completion_tokens"])
1552
+
1553
+ # Load ONET mappings for occupational categories
1554
+ task_statements, soc_structure = load_onet_mappings()
1555
+
1556
+ # Add occupational categories
1557
+ # Standardize task descriptions for matching
1558
+ task_statements["task_standardized"] = (
1559
+ task_statements["Task"].str.strip().str.lower()
1560
+ )
1561
+ task_metrics["cluster_name_standardized"] = (
1562
+ task_metrics.index.str.strip().str.lower()
1563
+ )
1564
+
1565
+ # Create mapping from standardized task to major group
1566
+ task_to_major_group = {}
1567
+ for _, row in task_statements.iterrows():
1568
+ if pd.notna(row["Task"]) and pd.notna(row["soc_major_group"]):
1569
+ std_task = row["task_standardized"]
1570
+ major_group = str(int(row["soc_major_group"]))[:2]
1571
+ task_to_major_group[std_task] = major_group
1572
+
1573
+ # Map cluster names to major groups
1574
+ task_metrics["soc_major"] = task_metrics["cluster_name_standardized"].map(
1575
+ task_to_major_group
1576
+ )
1577
+
1578
+ # Get major occupational groups from SOC structure
1579
+ major_groups = soc_structure[soc_structure["Major Group"].notna()].copy()
1580
+ major_groups["soc_major"] = major_groups["Major Group"].astype(str).str[:2]
1581
+ major_groups["title"] = major_groups["SOC or O*NET-SOC 2019 Title"]
1582
+
1583
+ # Create mapping from major group code to title
1584
+ major_group_mapping = (
1585
+ major_groups[["soc_major", "title"]]
1586
+ .drop_duplicates()
1587
+ .set_index("soc_major")["title"]
1588
+ .to_dict()
1589
+ )
1590
+
1591
+ # Map major group codes to titles
1592
+ task_metrics["occupational_category"] = task_metrics["soc_major"].map(
1593
+ major_group_mapping
1594
+ )
1595
+
1596
+ # Remove unmapped tasks
1597
+ task_metrics = task_metrics[task_metrics["occupational_category"].notna()].copy()
1598
+
1599
+ # Find top 6 categories by total API calls and group others as "All Other"
1600
+ category_usage = (
1601
+ task_metrics.groupby("occupational_category")["api_records"]
1602
+ .sum()
1603
+ .sort_values(ascending=False)
1604
+ )
1605
+ top_6_categories = list(category_usage.head(6).index)
1606
+
1607
+ # Group smaller categories as "All Other"
1608
+ task_metrics["occupational_category"] = task_metrics["occupational_category"].apply(
1609
+ lambda x: x if x in top_6_categories else "All Other"
1610
+ )
1611
+
1612
+ # Transform to natural log
1613
+ ln_input = np.log(task_metrics["avg_prompt_tokens"])
1614
+ ln_output = np.log(task_metrics["avg_completion_tokens"])
1615
+
1616
+ # Create scatter plot with same color scheme as bar chart
1617
+ # Use exact same logic as token output bar chart for consistent colors
1618
+ category_stats = (
1619
+ task_metrics.groupby("occupational_category")
1620
+ .agg(
1621
+ {
1622
+ "avg_completion_tokens": "mean",
1623
+ "api_records": "sum",
1624
+ }
1625
+ )
1626
+ .reset_index()
1627
+ )
1628
+
1629
+ # Find top 6 categories by total API calls
1630
+ top_6_categories = category_stats.nlargest(6, "api_records")[
1631
+ "occupational_category"
1632
+ ].tolist()
1633
+
1634
+ # Group smaller categories as "All Other"
1635
+ def categorize(cat):
1636
+ return cat if cat in top_6_categories else "All Other"
1637
+
1638
+ task_metrics["category_group"] = task_metrics["occupational_category"].apply(
1639
+ categorize
1640
+ )
1641
+
1642
+ # Recalculate final stats with grouped categories
1643
+ final_stats = (
1644
+ task_metrics.groupby("category_group")
1645
+ .agg({"avg_completion_tokens": "mean"})
1646
+ .reset_index()
1647
+ .sort_values("avg_completion_tokens", ascending=True)
1648
+ )
1649
+
1650
+ # Use exact same color assignment as bar chart
1651
+ categories_ordered = final_stats["category_group"].tolist()
1652
+ category_colors = {}
1653
+ for i, category in enumerate(categories_ordered):
1654
+ category_colors[category] = COLOR_CYCLE[i % len(COLOR_CYCLE)]
1655
+
1656
+ for category in categories_ordered:
1657
+ category_data = task_metrics[task_metrics["category_group"] == category]
1658
+ if not category_data.empty:
1659
+ ln_input_cat = np.log(category_data["avg_prompt_tokens"])
1660
+ ln_output_cat = np.log(category_data["avg_completion_tokens"])
1661
+ bubble_sizes_cat = np.sqrt(category_data["api_records"]) * 2
1662
+
1663
+ # Clean up category name for legend
1664
+ clean_name = category.replace(" Occupations", "").replace(", and ", " & ")
1665
+
1666
+ ax.scatter(
1667
+ ln_input_cat,
1668
+ ln_output_cat,
1669
+ s=bubble_sizes_cat,
1670
+ alpha=0.8,
1671
+ c=category_colors[category],
1672
+ edgecolors="black",
1673
+ linewidth=0.2,
1674
+ )
1675
+
1676
+ # Create uniform legend entries
1677
+ legend_elements = []
1678
+ for category in categories_ordered:
1679
+ clean_name = category.replace(" Occupations", "").replace(", and ", " & ")
1680
+ # Get count for this category
1681
+ category_count = len(task_metrics[task_metrics["category_group"] == category])
1682
+ legend_elements.append(
1683
+ plt.scatter(
1684
+ [],
1685
+ [],
1686
+ s=100,
1687
+ alpha=0.8,
1688
+ c=category_colors[category],
1689
+ edgecolors="black",
1690
+ linewidth=0.2,
1691
+ label=f"{clean_name} (N={category_count})",
1692
+ )
1693
+ )
1694
+
1695
+ # Add legend for occupational categories with uniform sizes
1696
+ ax.legend(
1697
+ bbox_to_anchor=(1.05, 1), loc="upper left", frameon=True, facecolor="white"
1698
+ )
1699
+
1700
+ # Add line of best fit
1701
+ model = sm.OLS(ln_output, sm.add_constant(ln_input)).fit()
1702
+ slope = model.params.iloc[1]
1703
+ intercept = model.params.iloc[0]
1704
+ r_squared = model.rsquared
1705
+
1706
+ line_x = np.linspace(ln_input.min(), ln_input.max(), 100)
1707
+ line_y = slope * line_x + intercept
1708
+ ax.plot(
1709
+ line_x,
1710
+ line_y,
1711
+ "k--",
1712
+ alpha=0.7,
1713
+ linewidth=2,
1714
+ label=f"Best fit (R² = {r_squared:.3f}, $\\beta$ = {slope:.3f})",
1715
+ )
1716
+ ax.legend()
1717
+
1718
+ # Customize plot
1719
+ ax.set_xlabel("ln(Input Token Index)", fontsize=12)
1720
+ ax.set_ylabel("ln(Output Token Index)", fontsize=12)
1721
+ ax.set_title(
1722
+ "Output Token Index vs Input Token Index across tasks",
1723
+ fontsize=14,
1724
+ fontweight="bold",
1725
+ pad=20,
1726
+ )
1727
+ ax.grid(True, alpha=0.3)
1728
+
1729
+ plt.tight_layout()
1730
+
1731
+ # Save plot
1732
+ output_path = Path(output_dir) / "completion_vs_input_tokens_scatter.png"
1733
+ plt.savefig(output_path, dpi=300, bbox_inches="tight")
1734
+ plt.show()
1735
+ return str(output_path)
1736
+
1737
+
1738
+ def create_occupational_usage_cost_scatter(df, output_dir):
1739
+ """
1740
+ Create aggregated scatter plot of usage share vs average cost per API call by occupational category.
1741
+
1742
+ Args:
1743
+ df: Preprocessed data DataFrame
1744
+ output_dir: Directory to save the figure
1745
+ """
1746
+ # Load ONET mappings for occupational categories
1747
+ task_statements, soc_structure = load_onet_mappings()
1748
+
1749
+ # Use preprocessed intersection data
1750
+ task_metrics = extract_token_metrics_from_intersections(df)
1751
+
1752
+ # Add occupational categories without grouping into "All Other"
1753
+ # Standardize task descriptions for matching
1754
+ task_statements["task_standardized"] = (
1755
+ task_statements["Task"].str.strip().str.lower()
1756
+ )
1757
+ task_metrics["cluster_name_standardized"] = (
1758
+ task_metrics["cluster_name"].str.strip().str.lower()
1759
+ )
1760
+
1761
+ # Create mapping from standardized task to major group
1762
+ task_to_major_group = {}
1763
+ for _, row in task_statements.iterrows():
1764
+ if pd.notna(row["Task"]) and pd.notna(row["soc_major_group"]):
1765
+ std_task = row["task_standardized"]
1766
+ major_group = str(int(row["soc_major_group"]))
1767
+ task_to_major_group[std_task] = major_group
1768
+
1769
+ # Map cluster names to major groups
1770
+ task_metrics["soc_major"] = task_metrics["cluster_name_standardized"].map(
1771
+ task_to_major_group
1772
+ )
1773
+
1774
+ # Get major occupational groups from SOC structure
1775
+ major_groups = soc_structure[soc_structure["Major Group"].notna()].copy()
1776
+ major_groups["soc_major"] = major_groups["Major Group"].astype(str).str[:2]
1777
+ major_groups["title"] = major_groups["SOC or O*NET-SOC 2019 Title"]
1778
+
1779
+ # Create a clean mapping from major group code to title
1780
+ major_group_mapping = (
1781
+ major_groups[["soc_major", "title"]]
1782
+ .drop_duplicates()
1783
+ .set_index("soc_major")["title"]
1784
+ .to_dict()
1785
+ )
1786
+
1787
+ # Map major group codes to titles
1788
+ task_metrics["occupational_category"] = task_metrics["soc_major"].map(
1789
+ major_group_mapping
1790
+ )
1791
+
1792
+ # Remove unmapped/not classified tasks from analysis
1793
+ task_metrics = task_metrics[task_metrics["occupational_category"].notna()].copy()
1794
+
1795
+ # Aggregate by occupational category using pre-calculated percentages
1796
+ category_aggregates = (
1797
+ task_metrics.groupby("occupational_category")
1798
+ .agg(
1799
+ {
1800
+ "usage_pct": "sum", # Sum of pre-calculated task percentages within category
1801
+ "cost_per_record": "mean", # Average cost per API call for this category
1802
+ }
1803
+ )
1804
+ .reset_index()
1805
+ )
1806
+
1807
+ # Usage share is already calculated from preprocessing
1808
+ category_aggregates["usage_share"] = category_aggregates["usage_pct"]
1809
+
1810
+ # Create figure
1811
+ fig, ax = plt.subplots(figsize=(12, 8))
1812
+
1813
+ # Transform variables to natural log
1814
+ ln_cost = np.log(category_aggregates["cost_per_record"])
1815
+ ln_usage = np.log(category_aggregates["usage_share"])
1816
+
1817
+ # Get colors for each category - use same logic as token output bar chart
1818
+ # Sort by a metric to ensure consistent ordering (using usage_share descending)
1819
+ category_aggregates_sorted = category_aggregates.sort_values(
1820
+ "usage_share", ascending=False
1821
+ )
1822
+
1823
+ category_colors = {}
1824
+ for i, category in enumerate(category_aggregates_sorted["occupational_category"]):
1825
+ category_colors[category] = COLOR_CYCLE[i % len(COLOR_CYCLE)]
1826
+
1827
+ # Create invisible scatter plot to maintain axis limits
1828
+ ax.scatter(
1829
+ ln_cost,
1830
+ ln_usage,
1831
+ s=0, # Invisible markers
1832
+ alpha=0,
1833
+ )
1834
+
1835
+ # Add line of best fit
1836
+ model = sm.OLS(ln_usage, sm.add_constant(ln_cost)).fit()
1837
+ slope = model.params.iloc[1]
1838
+ intercept = model.params.iloc[0]
1839
+ r_squared = model.rsquared
1840
+
1841
+ # Generate line points
1842
+ x_line = np.linspace(ln_cost.min(), ln_cost.max(), 50)
1843
+ y_line = slope * x_line + intercept
1844
+
1845
+ # Plot the line of best fit
1846
+ ax.plot(
1847
+ x_line,
1848
+ y_line,
1849
+ "--",
1850
+ color="black",
1851
+ linewidth=2,
1852
+ alpha=0.8,
1853
+ label=f"Best fit (R² = {r_squared:.3f}, $\\beta$ = {slope:.3f})",
1854
+ )
1855
+
1856
+ # Add legend
1857
+ legend = ax.legend(loc="best", frameon=True, facecolor="white")
1858
+ legend.get_frame().set_alpha(0.9)
1859
+
1860
+ # Add category labels centered at data points with text wrapping
1861
+ for i, row in category_aggregates.iterrows():
1862
+ # Clean up and wrap category names
1863
+ clean_name = (
1864
+ row["occupational_category"]
1865
+ .replace(" Occupations", "")
1866
+ .replace(", and ", " & ")
1867
+ )
1868
+ # Wrap long category names to multiple lines
1869
+ wrapped_name = "\n".join(wrap(clean_name, 20))
1870
+
1871
+ ax.text(
1872
+ ln_cost.iloc[i],
1873
+ ln_usage.iloc[i],
1874
+ wrapped_name,
1875
+ ha="center",
1876
+ va="center",
1877
+ fontsize=8,
1878
+ alpha=0.9,
1879
+ )
1880
+
1881
+ # Set labels and title
1882
+ ax.set_xlabel("ln(Average API Cost Index across tasks)", fontsize=12)
1883
+ ax.set_ylabel("ln(Usage share (%))", fontsize=12)
1884
+ ax.set_title(
1885
+ "Usage share and average API cost index by occupational category",
1886
+ fontsize=14,
1887
+ fontweight="bold",
1888
+ pad=20,
1889
+ )
1890
+
1891
+ # Add grid
1892
+ ax.grid(True, alpha=0.3)
1893
+
1894
+ # Adjust layout and save
1895
+ plt.tight_layout()
1896
+
1897
+ output_path = Path(output_dir) / "occupational_usage_cost_scatter.png"
1898
+ plt.savefig(output_path, dpi=300, bbox_inches="tight")
1899
+ plt.show()
1900
+ return str(output_path)
1901
+
1902
+
1903
+ def get_merged_api_claude_task_data(api_df, cai_df):
1904
+ """
1905
+ Create merged dataset with API cost/usage data and Claude.ai collaboration modes.
1906
+
1907
+ Args:
1908
+ api_df: API preprocessed data DataFrame
1909
+ cai_df: Claude.ai preprocessed data DataFrame
1910
+
1911
+ Returns:
1912
+ DataFrame with API cost data + Claude.ai collaboration patterns for common tasks
1913
+ """
1914
+ # Extract API token metrics
1915
+ api_metrics = extract_token_metrics_from_intersections(api_df)
1916
+
1917
+ # Get Claude.ai collaboration shares
1918
+ claude_collab_shares = get_collaboration_shares(cai_df)
1919
+
1920
+ # Find common tasks between both platforms
1921
+ api_tasks = set(api_metrics.index)
1922
+ claude_tasks = set(claude_collab_shares.keys())
1923
+ common_tasks = api_tasks.intersection(claude_tasks)
1924
+
1925
+ # Create merged dataset
1926
+ merged_data = []
1927
+
1928
+ for task_name in common_tasks:
1929
+ # Get API metrics for this task
1930
+ api_row = api_metrics.loc[task_name]
1931
+
1932
+ # Get Claude.ai collaboration for this task
1933
+ claude_collab = claude_collab_shares[task_name]
1934
+
1935
+ # Create merged row
1936
+ merged_row = {
1937
+ "cluster_name": task_name,
1938
+ "cost_per_record": api_row["cost_per_record"],
1939
+ "avg_prompt_tokens": api_row["avg_prompt_tokens"],
1940
+ "avg_completion_tokens": api_row["avg_completion_tokens"],
1941
+ "api_records": api_row["api_records"],
1942
+ "output_input_ratio": api_row["output_input_ratio"],
1943
+ "total_tokens": api_row["total_tokens"],
1944
+ # Claude.ai collaboration modes
1945
+ "collab_directive": claude_collab.get("directive", 0),
1946
+ "collab_feedback_loop": claude_collab.get("feedback loop", 0),
1947
+ "collab_learning": claude_collab.get("learning", 0),
1948
+ "collab_task_iteration": claude_collab.get("task iteration", 0),
1949
+ "collab_validation": claude_collab.get("validation", 0),
1950
+ }
1951
+ merged_data.append(merged_row)
1952
+
1953
+ merged_df = pd.DataFrame(merged_data)
1954
+ merged_df.set_index("cluster_name", inplace=True)
1955
+
1956
+ return merged_df
1957
+
1958
+
1959
+ def reg_build_df(api_df, cai_df):
1960
+ """
1961
+ Build complete regression dataset for partial regression and full regression analysis.
1962
+ Each row is an ONET task with all variables needed for figures and regression.
1963
+
1964
+ Args:
1965
+ api_df: API preprocessed data DataFrame
1966
+ cai_df: Claude.ai preprocessed data DataFrame
1967
+
1968
+ Returns:
1969
+ DataFrame with complete regression dataset
1970
+ """
1971
+ # Load ONET mappings
1972
+ task_statements, soc_structure = load_onet_mappings()
1973
+
1974
+ # Use merged dataset with API metrics + Claude.ai collaboration
1975
+ task_metrics = get_merged_api_claude_task_data(api_df, cai_df)
1976
+
1977
+ # Add occupational categories (includes "All Other" grouping)
1978
+ task_metrics_with_names = task_metrics.reset_index()
1979
+ task_metrics_with_names = add_occupational_categories_to_metrics(
1980
+ task_metrics_with_names, task_statements, soc_structure
1981
+ )
1982
+ task_metrics = task_metrics_with_names.set_index("cluster_name")
1983
+
1984
+ # Add collaboration missing dummies
1985
+ collaboration_modes = [
1986
+ "directive",
1987
+ "feedback_loop",
1988
+ "learning",
1989
+ "task_iteration",
1990
+ "validation",
1991
+ ]
1992
+
1993
+ for mode in collaboration_modes:
1994
+ collab_col = f"collab_{mode}"
1995
+ missing_col = f"collab_{mode}_missing"
1996
+ if collab_col in task_metrics.columns:
1997
+ task_metrics[missing_col] = (task_metrics[collab_col] == 0).astype(int)
1998
+ else:
1999
+ task_metrics[missing_col] = 1
2000
+
2001
+ # Calculate usage variables
2002
+ total_api_records = task_metrics["api_records"].sum()
2003
+ task_metrics["usage_share"] = (
2004
+ task_metrics["api_records"] / total_api_records
2005
+ ) * 100
2006
+ task_metrics["ln_usage_share"] = np.log(task_metrics["usage_share"])
2007
+ task_metrics["ln_cost_per_task"] = np.log(task_metrics["cost_per_record"])
2008
+
2009
+ # Use all data
2010
+ valid_data = task_metrics
2011
+
2012
+ # Create occupational category dummies while preserving original column
2013
+ valid_data = pd.get_dummies(
2014
+ valid_data, columns=["occupational_category"], prefix="occ"
2015
+ )
2016
+
2017
+ # Restore the original occupational_category column for grouping operations
2018
+ # Extract category name from the dummy columns that are 1
2019
+ occ_cols = [col for col in valid_data.columns if col.startswith("occ_")]
2020
+ valid_data["occupational_category"] = ""
2021
+ for col in occ_cols:
2022
+ category_name = col.replace("occ_", "")
2023
+ mask = valid_data[col] == 1
2024
+ valid_data.loc[mask, "occupational_category"] = category_name
2025
+
2026
+ return valid_data
2027
+
2028
+
2029
+ def create_partial_regression_plot(api_df, cai_df, output_dir):
2030
+ """
2031
+ Create partial regression scatter plot of usage share vs cost, controlling for occupational categories.
2032
+
2033
+ Args:
2034
+ api_df: API preprocessed data DataFrame
2035
+ cai_df: Claude.ai preprocessed data DataFrame
2036
+ output_dir: Directory to save the figure
2037
+
2038
+ Returns:
2039
+ Tuple of (output_path, regression_results_dict)
2040
+ """
2041
+ # Use centralized data preparation (includes occupational dummies)
2042
+ valid_metrics = reg_build_df(api_df, cai_df)
2043
+
2044
+ # Extract occupational dummies and collaboration variables
2045
+ occ_cols = [col for col in valid_metrics.columns if col.startswith("occ_")]
2046
+ collab_vars = [
2047
+ "collab_directive",
2048
+ "collab_feedback_loop",
2049
+ "collab_learning",
2050
+ "collab_task_iteration",
2051
+ "collab_validation",
2052
+ ]
2053
+ collab_missing_vars = [
2054
+ "collab_directive_missing",
2055
+ "collab_feedback_loop_missing",
2056
+ "collab_learning_missing",
2057
+ "collab_task_iteration_missing",
2058
+ "collab_validation_missing",
2059
+ ]
2060
+
2061
+ # Control variables (all occupational dummies + collaboration modes)
2062
+ control_vars = valid_metrics[occ_cols + collab_vars + collab_missing_vars].astype(
2063
+ float
2064
+ )
2065
+
2066
+ # Ensure dependent variables are float
2067
+ y_usage = valid_metrics["ln_usage_share"].astype(float)
2068
+ y_cost = valid_metrics["ln_cost_per_task"].astype(float)
2069
+
2070
+ # Step 1: Regress ln(usage_share) on controls (no constant)
2071
+ usage_model = sm.OLS(y_usage, control_vars).fit()
2072
+ usage_residuals = usage_model.resid
2073
+
2074
+ # Step 2: Regress ln(cost) on controls (no constant)
2075
+ cost_model = sm.OLS(y_cost, control_vars).fit()
2076
+ cost_residuals = cost_model.resid
2077
+
2078
+ # Find top 6 categories by usage share for coloring
2079
+ category_usage = (
2080
+ valid_metrics.groupby("occupational_category")["api_records"]
2081
+ .sum()
2082
+ .sort_values(ascending=False)
2083
+ )
2084
+ top_6_categories = list(category_usage.head(6).index)
2085
+
2086
+ # Create category grouping for coloring
2087
+ valid_metrics["category_group"] = valid_metrics["occupational_category"].apply(
2088
+ lambda x: x if x in top_6_categories else "All Other"
2089
+ )
2090
+
2091
+ # Create figure
2092
+ fig, ax = plt.subplots(figsize=(14, 10))
2093
+
2094
+ # Create color mapping for top 6 + "All Other"
2095
+ unique_groups = valid_metrics["category_group"].unique()
2096
+ group_colors = {}
2097
+ color_idx = 0
2098
+
2099
+ # Assign colors to top 6 categories first
2100
+ for cat in top_6_categories:
2101
+ if cat in unique_groups:
2102
+ group_colors[cat] = COLOR_CYCLE[color_idx % len(COLOR_CYCLE)]
2103
+ color_idx += 1
2104
+
2105
+ # Assign color to "All Other"
2106
+ if "All Other" in unique_groups:
2107
+ group_colors["All Other"] = "#999999" # Gray for all other
2108
+
2109
+ # Create single scatter plot (no color by group)
2110
+ ax.scatter(
2111
+ cost_residuals,
2112
+ usage_residuals,
2113
+ s=100,
2114
+ alpha=0.8,
2115
+ color=COLOR_CYCLE[0],
2116
+ edgecolors="black",
2117
+ linewidth=0.2,
2118
+ )
2119
+
2120
+ # Add overall trend line for residuals
2121
+ model = sm.OLS(usage_residuals, sm.add_constant(cost_residuals)).fit()
2122
+ slope = model.params.iloc[1]
2123
+ intercept = model.params.iloc[0]
2124
+ r_squared = model.rsquared
2125
+
2126
+ line_x = np.linspace(cost_residuals.min(), cost_residuals.max(), 100)
2127
+ line_y = slope * line_x + intercept
2128
+ ax.plot(
2129
+ line_x,
2130
+ line_y,
2131
+ "k--",
2132
+ alpha=0.8,
2133
+ linewidth=2,
2134
+ label=f"Partial relationship (R² = {r_squared:.3f})",
2135
+ )
2136
+
2137
+ # Customize plot
2138
+ ax.set_xlabel("Residual ln(API Cost Index)")
2139
+ ax.set_ylabel("Residual ln(Usage share (%))")
2140
+ ax.set_title(
2141
+ "Task usage share vs API Cost Index \n(partial regression after controlling for task characteristics)",
2142
+ fontsize=16,
2143
+ fontweight="bold",
2144
+ pad=20,
2145
+ )
2146
+ ax.grid(True, alpha=0.3)
2147
+
2148
+ # Simple legend with just the trend line
2149
+ ax.legend(loc="best", frameon=True, facecolor="white", framealpha=0.9, fontsize=11)
2150
+
2151
+ plt.tight_layout()
2152
+
2153
+ # Save plot
2154
+ output_path = Path(output_dir) / "partial_regression_plot.png"
2155
+ plt.savefig(output_path, dpi=300, bbox_inches="tight")
2156
+ plt.show()
2157
+
2158
+ # Save regression results
2159
+ regression_results = {
2160
+ "partial_correlation": np.sqrt(r_squared),
2161
+ "partial_r_squared": r_squared,
2162
+ "slope": slope,
2163
+ "intercept": intercept,
2164
+ "n_observations": len(valid_metrics),
2165
+ "usage_model_summary": str(usage_model.summary()),
2166
+ "cost_model_summary": str(cost_model.summary()),
2167
+ }
2168
+
2169
+ # Print regression results instead of saving to file
2170
+ print("Partial Regression Analysis Results")
2171
+ print("=" * 50)
2172
+ print(f"Partial correlation: {np.sqrt(r_squared):.4f}")
2173
+ print(f"Partial R-squared: {r_squared:.4f}")
2174
+ print(f"Slope: {slope:.4f}")
2175
+ print(f"Intercept: {intercept:.4f}")
2176
+ print(f"Number of observations: {len(valid_metrics)}")
2177
+ print("\nUsage Model Summary:")
2178
+ print("-" * 30)
2179
+ print(usage_model.summary())
2180
+ print("\nCost Model Summary:")
2181
+ print("-" * 30)
2182
+ print(cost_model.summary())
2183
+
2184
+ return str(output_path), regression_results
2185
+
2186
+
2187
+ def perform_usage_share_regression_unweighted(api_df, cai_df, output_dir):
2188
+ """
2189
+ Perform unweighted usage share regression analysis using Claude.ai collaboration modes.
2190
+
2191
+ Args:
2192
+ api_df: API preprocessed data DataFrame
2193
+ cai_df: Claude.ai preprocessed data DataFrame
2194
+ output_dir: Directory to save regression results
2195
+
2196
+ Returns:
2197
+ OLS model results
2198
+ """
2199
+ # Use centralized data preparation (includes all dummies)
2200
+ valid_data = reg_build_df(api_df, cai_df)
2201
+
2202
+ # Extract all regression variables
2203
+ X_cols = ["ln_cost_per_task"]
2204
+ X_cols.extend(
2205
+ [
2206
+ f"collab_{mode}"
2207
+ for mode in [
2208
+ "directive",
2209
+ "feedback_loop",
2210
+ "learning",
2211
+ "task_iteration",
2212
+ "validation",
2213
+ ]
2214
+ ]
2215
+ )
2216
+ X_cols.extend(
2217
+ [
2218
+ f"collab_{mode}_missing"
2219
+ for mode in [
2220
+ "directive",
2221
+ "feedback_loop",
2222
+ "learning",
2223
+ "task_iteration",
2224
+ "validation",
2225
+ ]
2226
+ ]
2227
+ )
2228
+ X_cols.extend([col for col in valid_data.columns if col.startswith("occ_")])
2229
+
2230
+ # Ensure all columns are numeric
2231
+ X = valid_data[X_cols].astype(float)
2232
+ y = valid_data["ln_usage_share"].astype(float)
2233
+
2234
+ # Run unweighted OLS without constant (to include all occupational dummies)
2235
+ model = sm.OLS(y, X).fit()
2236
+
2237
+ # Get heteroskedasticity-robust standard errors (HC1)
2238
+ model_robust = model.get_robustcov_results(cov_type="HC1")
2239
+
2240
+ return model_robust
2241
+
2242
+
2243
+ def create_btos_ai_adoption_chart(btos_df, ref_dates_df, output_dir):
2244
+ """
2245
+ Create BTOS AI adoption time series chart.
2246
+
2247
+ Args:
2248
+ btos_df: BTOS response estimates DataFrame
2249
+ ref_dates_df: Collection and reference dates DataFrame
2250
+ output_dir: Directory to save the figure
2251
+ """
2252
+ # Filter for Question ID 7, Answer ID 1 (Yes response to AI usage)
2253
+ btos_filtered = btos_df[(btos_df["Question ID"] == 7) & (btos_df["Answer ID"] == 1)]
2254
+
2255
+ # Get date columns (string columns that look like YYYYWW)
2256
+ date_columns = [
2257
+ col for col in btos_df.columns[4:] if str(col).isdigit() and len(str(col)) == 6
2258
+ ]
2259
+
2260
+ # Extract time series
2261
+ btos_ts = btos_filtered[date_columns].T
2262
+ btos_ts.columns = ["percentage"]
2263
+
2264
+ # Map to reference end dates
2265
+ ref_dates_df["Ref End"] = pd.to_datetime(ref_dates_df["Ref End"])
2266
+ btos_ts = btos_ts.reset_index()
2267
+ btos_ts["smpdt"] = btos_ts["index"].astype(int)
2268
+ btos_ts = btos_ts.merge(
2269
+ ref_dates_df[["Smpdt", "Ref End"]],
2270
+ left_on="smpdt",
2271
+ right_on="Smpdt",
2272
+ how="left",
2273
+ )
2274
+ btos_ts = btos_ts.set_index("Ref End")[["percentage"]]
2275
+
2276
+ # Convert percentage strings to numeric
2277
+ btos_ts["percentage"] = btos_ts["percentage"].str.rstrip("%").astype(float)
2278
+ btos_ts = btos_ts.sort_index().dropna()
2279
+
2280
+ # Calculate 3-period moving average
2281
+ btos_ts["moving_avg"] = btos_ts["percentage"].rolling(window=3).mean()
2282
+
2283
+ # Create figure
2284
+ fig, ax = plt.subplots(figsize=(14, 8))
2285
+
2286
+ # Plot main line
2287
+ ax.plot(
2288
+ btos_ts.index,
2289
+ btos_ts["percentage"],
2290
+ linewidth=3,
2291
+ marker="o",
2292
+ markersize=6,
2293
+ label="AI Adoption Rate Among US Businesses",
2294
+ zorder=3,
2295
+ )
2296
+
2297
+ # Plot moving average
2298
+ ax.plot(
2299
+ btos_ts.index,
2300
+ btos_ts["moving_avg"],
2301
+ linewidth=2,
2302
+ linestyle="--",
2303
+ alpha=0.8,
2304
+ label="3-Period Moving Average",
2305
+ zorder=2,
2306
+ )
2307
+
2308
+ # Styling
2309
+ ax.set_xlabel("Date", fontsize=14)
2310
+ ax.set_ylabel("AI adoption rate (%)", fontsize=14)
2311
+ ax.set_title(
2312
+ "Census reported AI adoption rates among US businesses from the Business Trends and Outlook Survey",
2313
+ fontsize=16,
2314
+ fontweight="bold",
2315
+ pad=20,
2316
+ )
2317
+
2318
+ # Format y-axis as percentage
2319
+ ax.set_ylim(0, max(btos_ts["percentage"]) * 1.1)
2320
+
2321
+ # Rotate x-axis labels
2322
+ ax.tick_params(axis="x", rotation=45)
2323
+
2324
+ # Grid and styling
2325
+ ax.grid(True, alpha=0.3, linestyle="--")
2326
+ ax.set_axisbelow(True)
2327
+ ax.spines["top"].set_visible(False)
2328
+ ax.spines["right"].set_visible(False)
2329
+
2330
+ # Legend
2331
+ ax.legend(loc="upper left", fontsize=11, frameon=True, facecolor="white")
2332
+
2333
+ plt.tight_layout()
2334
+
2335
+ # Save plot
2336
+ output_path = Path(output_dir) / "btos_ai_adoption_chart.png"
2337
+ plt.savefig(output_path, dpi=300, bbox_inches="tight")
2338
+ plt.show()
2339
+ return str(output_path)
release_2025_09_15/code/aei_analysis_functions_claude_ai.py ADDED
@@ -0,0 +1,2926 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Analysis functions for AEI Report v3 Claude.ai chapter
4
+ """
5
+
6
+ import textwrap
7
+
8
+ import geopandas as gpd
9
+ import matplotlib.colors as mcolors
10
+ import matplotlib.patches as mpatches
11
+ import matplotlib.pyplot as plt
12
+ import numpy as np
13
+ import pandas as pd
14
+ import statsmodels.api as sm
15
+ from matplotlib.colors import LinearSegmentedColormap, Normalize, TwoSlopeNorm
16
+ from matplotlib.lines import Line2D
17
+ from matplotlib.patches import FancyBboxPatch, Patch
18
+ from mpl_toolkits.axes_grid1 import make_axes_locatable
19
+
20
+ # global list of excluded countries (ISO-3 codes)
21
+ EXCLUDED_COUNTRIES = [
22
+ "AFG",
23
+ "BLR",
24
+ "COD",
25
+ "CAF",
26
+ "CHN",
27
+ "CUB",
28
+ "ERI",
29
+ "ETH",
30
+ "HKG",
31
+ "IRN",
32
+ "PRK",
33
+ "LBY",
34
+ "MLI",
35
+ "MMR",
36
+ "MAC",
37
+ "NIC",
38
+ "RUS",
39
+ "SDN",
40
+ "SOM",
41
+ "SSD",
42
+ "SYR",
43
+ "VEN",
44
+ "YEM",
45
+ ]
46
+
47
+ # Minimum observation thresholds
48
+ MIN_OBSERVATIONS_COUNTRY = 200 # Threshold for countries
49
+ MIN_OBSERVATIONS_US_STATE = 100 # Threshold for US states
50
+
51
+ # Define the tier colors
52
+ TIER_COLORS_LIST = ["#E6DBD0", "#E5C5AB", "#E4AF86", "#E39961", "#D97757"]
53
+
54
+ # Anthropic brand color for borders
55
+ ANTHROPIC_OAT = "#E3DACC"
56
+ AUGMENTATION_COLOR = "#00A078"
57
+ AUTOMATION_COLOR = "#FF9940"
58
+
59
+ # Standard tier color mapping used throughout
60
+ TIER_COLORS_DICT = {
61
+ "Minimal": TIER_COLORS_LIST[0], # Lightest
62
+ "Emerging (bottom 25%)": TIER_COLORS_LIST[1],
63
+ "Lower middle (25-50%)": TIER_COLORS_LIST[2],
64
+ "Upper middle (50-75%)": TIER_COLORS_LIST[3],
65
+ "Leading (top 25%)": TIER_COLORS_LIST[4], # Darkest
66
+ }
67
+
68
+ # Standard tier ordering
69
+ TIER_ORDER = [
70
+ "Leading (top 25%)",
71
+ "Upper middle (50-75%)",
72
+ "Lower middle (25-50%)",
73
+ "Emerging (bottom 25%)",
74
+ "Minimal",
75
+ ]
76
+
77
+ # Numeric tier color mapping (for tier values 0-4)
78
+ TIER_COLORS_NUMERIC = {i: color for i, color in enumerate(TIER_COLORS_LIST)}
79
+
80
+ # Numeric tier name mapping (for tier values 1-4 in actual data)
81
+ TIER_NAMES_NUMERIC = {
82
+ 1: "Emerging (bottom 25%)",
83
+ 2: "Lower middle (25-50%)",
84
+ 3: "Upper middle (50-75%)",
85
+ 4: "Leading (top 25%)",
86
+ }
87
+
88
+ # Create a custom colormap that can be used for continuous variables
89
+ CUSTOM_CMAP = LinearSegmentedColormap.from_list("custom_tier", TIER_COLORS_LIST, N=256)
90
+
91
+ # Map layout constants
92
+ MAP_PADDING_X = 0.25 # Horizontal padding for legend space
93
+ MAP_PADDING_Y = 0.05 # Vertical padding
94
+ ALASKA_INSET_BOUNDS = [0.26, 0.18, 0.15, 0.15] # [left, bottom, width, height]
95
+ HAWAII_INSET_BOUNDS = [0.40, 0.18, 0.11, 0.11] # [left, bottom, width, height]
96
+
97
+
98
+ # Figure style and setup
99
+ def setup_plot_style():
100
+ """Configure matplotlib."""
101
+ plt.style.use("default")
102
+ plt.rcParams.update(
103
+ {
104
+ "figure.dpi": 150,
105
+ "savefig.dpi": 150,
106
+ "font.size": 10,
107
+ "axes.labelsize": 11,
108
+ "axes.titlesize": 12,
109
+ "xtick.labelsize": 9,
110
+ "ytick.labelsize": 9,
111
+ "legend.fontsize": 9,
112
+ "figure.facecolor": "white",
113
+ "axes.facecolor": "white",
114
+ "savefig.facecolor": "white",
115
+ "axes.edgecolor": "#333333",
116
+ "axes.linewidth": 0.8,
117
+ "axes.grid": True,
118
+ "grid.alpha": 0.3,
119
+ "grid.linestyle": "-",
120
+ "grid.linewidth": 0.5,
121
+ "axes.axisbelow": True,
122
+ }
123
+ )
124
+
125
+
126
+ def create_figure(figsize=(12, 8), tight_layout=True, nrows=1, ncols=1):
127
+ """Create a figure with consistent settings.
128
+
129
+ Args:
130
+ figsize: Figure size tuple
131
+ tight_layout: Whether to use tight layout
132
+ nrows: Number of subplot rows
133
+ ncols: Number of subplot columns
134
+
135
+ Returns:
136
+ fig, ax or fig, axes depending on subplot configuration
137
+ """
138
+ fig, ax = plt.subplots(nrows, ncols, figsize=figsize)
139
+ if tight_layout:
140
+ fig.tight_layout()
141
+ else:
142
+ # Explicitly disable the layout engine to prevent warnings
143
+ fig.set_layout_engine(layout="none")
144
+ return fig, ax
145
+
146
+
147
+ def format_axis(
148
+ ax,
149
+ xlabel=None,
150
+ ylabel=None,
151
+ title=None,
152
+ xlabel_size=11,
153
+ ylabel_size=11,
154
+ title_size=13,
155
+ grid=True,
156
+ grid_alpha=0.3,
157
+ ):
158
+ """Apply consistent axis formatting."""
159
+ if xlabel:
160
+ ax.set_xlabel(xlabel, fontsize=xlabel_size)
161
+ if ylabel:
162
+ ax.set_ylabel(ylabel, fontsize=ylabel_size)
163
+ if title:
164
+ ax.set_title(title, fontsize=title_size, fontweight="bold", pad=15)
165
+ if grid:
166
+ ax.grid(True, alpha=grid_alpha)
167
+ return ax
168
+
169
+
170
+ def get_color_normalizer(values, center_at_one=False, vmin=None, vmax=None):
171
+ """Create appropriate color normalizer for data."""
172
+ if center_at_one:
173
+ # Use TwoSlopeNorm for diverging around 1.0
174
+ if vmin is None:
175
+ vmin = min(values.min(), 0.1)
176
+ if vmax is None:
177
+ vmax = max(values.max(), 2.0)
178
+ return TwoSlopeNorm(vmin=vmin, vcenter=1.0, vmax=vmax)
179
+ else:
180
+ # Use regular normalization
181
+ if vmin is None:
182
+ vmin = values.min()
183
+ if vmax is None:
184
+ vmax = values.max()
185
+ return Normalize(vmin=vmin, vmax=vmax)
186
+
187
+
188
+ def create_tier_legend(
189
+ ax,
190
+ tier_colors,
191
+ tiers_in_data,
192
+ excluded_countries=False,
193
+ no_data=False,
194
+ loc="lower left",
195
+ title="Anthropic AI Usage Index tier",
196
+ ):
197
+ """Create a consistent tier legend for maps."""
198
+ legend_elements = []
199
+ for tier in TIER_ORDER:
200
+ if tier in tiers_in_data:
201
+ legend_elements.append(
202
+ mpatches.Patch(
203
+ facecolor=tier_colors[tier], edgecolor="none", label=tier
204
+ )
205
+ )
206
+
207
+ if excluded_countries:
208
+ legend_elements.append(
209
+ mpatches.Patch(
210
+ facecolor="#c0c0c0", edgecolor="white", label="Claude not available"
211
+ )
212
+ )
213
+
214
+ if no_data:
215
+ legend_elements.append(
216
+ mpatches.Patch(facecolor="#f0f0f0", edgecolor="white", label="No data")
217
+ )
218
+
219
+ if legend_elements:
220
+ ax.legend(
221
+ handles=legend_elements,
222
+ loc=loc,
223
+ fontsize=10,
224
+ bbox_to_anchor=(0, 0) if loc == "lower left" else None,
225
+ title=title,
226
+ title_fontsize=11,
227
+ frameon=True,
228
+ fancybox=True,
229
+ shadow=True,
230
+ )
231
+
232
+ return ax
233
+
234
+
235
+ # Data wrangling helpers
236
+
237
+
238
+ def filter_df(df, **kwargs):
239
+ """Universal filter helper for dataframes.
240
+
241
+ Args:
242
+ df: DataFrame to filter
243
+ **kwargs: Column-value pairs to filter on
244
+ Lists are handled with .isin()
245
+
246
+ Returns:
247
+ Filtered DataFrame
248
+ """
249
+ mask = pd.Series([True] * len(df), index=df.index)
250
+
251
+ for key, value in kwargs.items():
252
+ if value is None:
253
+ continue # Skip None values
254
+ if key in df.columns:
255
+ if isinstance(value, list):
256
+ mask = mask & df[key].isin(value)
257
+ else:
258
+ mask = mask & (df[key] == value)
259
+
260
+ return df[mask]
261
+
262
+
263
+ def get_filtered_geographies(df, min_obs_country=None, min_obs_state=None):
264
+ """
265
+ Get lists of countries and states that meet MIN_OBSERVATIONS thresholds.
266
+
267
+ This function does NOT filter the dataframe - it only identifies which
268
+ geographies meet the thresholds. The full dataframe is preserved
269
+ so we can still report statistics for all geographies.
270
+
271
+ Args:
272
+ df: Input dataframe
273
+ min_obs_country: Minimum observations for countries (default: MIN_OBSERVATIONS_COUNTRY)
274
+ min_obs_state: Minimum observations for states (default: MIN_OBSERVATIONS_US_STATE)
275
+
276
+ Returns:
277
+ Tuple of (filtered_countries list, filtered_states list)
278
+ """
279
+ # Use defaults if not specified
280
+ if min_obs_country is None:
281
+ min_obs_country = MIN_OBSERVATIONS_COUNTRY
282
+ if min_obs_state is None:
283
+ min_obs_state = MIN_OBSERVATIONS_US_STATE
284
+
285
+ # Get country usage counts
286
+ country_usage = filter_df(df, facet="country", variable="usage_count").set_index(
287
+ "geo_id"
288
+ )["value"]
289
+
290
+ # Get state usage counts
291
+ state_usage = filter_df(df, facet="state_us", variable="usage_count").set_index(
292
+ "geo_id"
293
+ )["value"]
294
+
295
+ # Get countries that meet threshold (excluding not_classified)
296
+ filtered_countries = country_usage[country_usage >= min_obs_country].index.tolist()
297
+ filtered_countries = [c for c in filtered_countries if c != "not_classified"]
298
+
299
+ # Get states that meet threshold (excluding not_classified)
300
+ filtered_states = state_usage[state_usage >= min_obs_state].index.tolist()
301
+ filtered_states = [s for s in filtered_states if s != "not_classified"]
302
+
303
+ return filtered_countries, filtered_states
304
+
305
+
306
+ def filter_requests_by_threshold(df, geography, geo_id, level=1, threshold=1.0):
307
+ """
308
+ Filter requests to only include requests at a specific level that meet threshold requirements.
309
+
310
+ Args:
311
+ df: Long format dataframe with request data
312
+ geography: Current geography level ('country' or 'state_us')
313
+ geo_id: Current geography ID (e.g., 'USA', 'CA')
314
+ level: Request level to filter (default=1 for middle aggregated)
315
+ threshold: Minimum percentage threshold (default=1.0%)
316
+
317
+ Returns:
318
+ List of valid cluster_names that:
319
+ 1. Are at the specified level (default level 1)
320
+ 2. Have >= threshold % in the current geography
321
+ 3. Have >= threshold % in the parent geography (USA for states, GLOBAL for countries)
322
+ """
323
+ # Determine parent geography
324
+ if geography == "state_us":
325
+ parent_geo = "USA"
326
+ parent_geography = "country"
327
+ elif geography == "country":
328
+ parent_geo = "GLOBAL"
329
+ parent_geography = "global"
330
+ else: # global
331
+ # For global, no parent filtering needed
332
+ df_local = filter_df(
333
+ df,
334
+ geography=geography,
335
+ geo_id=geo_id,
336
+ facet="request",
337
+ level=level,
338
+ variable="request_pct",
339
+ )
340
+ return df_local[df_local["value"] >= threshold]["cluster_name"].tolist()
341
+
342
+ # Get local request percentages at specified level
343
+ df_local = filter_df(
344
+ df,
345
+ geography=geography,
346
+ geo_id=geo_id,
347
+ facet="request",
348
+ level=level,
349
+ variable="request_pct",
350
+ )
351
+
352
+ # Get parent request percentages at same level
353
+ df_parent = filter_df(
354
+ df,
355
+ geography=parent_geography,
356
+ geo_id=parent_geo,
357
+ facet="request",
358
+ level=level,
359
+ variable="request_pct",
360
+ )
361
+
362
+ # Filter by local threshold
363
+ local_valid = set(df_local[df_local["value"] >= threshold]["cluster_name"])
364
+
365
+ # Filter by parent threshold
366
+ parent_valid = set(df_parent[df_parent["value"] >= threshold]["cluster_name"])
367
+
368
+ # Return intersection (must meet both thresholds)
369
+ return list(local_valid & parent_valid)
370
+
371
+
372
+ # Data loading
373
+
374
+
375
+ def load_world_shapefile():
376
+ """Load and prepare world shapefile for mapping."""
377
+ url = "https://naciscdn.org/naturalearth/10m/cultural/ne_10m_admin_0_countries_iso.zip"
378
+ world = gpd.read_file(url)
379
+
380
+ # Remove Antarctica from the dataset entirely
381
+ world = world[world["ISO_A3_EH"] != "ATA"]
382
+
383
+ # Use Robinson projection for better world map appearance
384
+ world = world.to_crs("+proj=robin")
385
+
386
+ # Mark excluded countries using global EXCLUDED_COUNTRIES
387
+ world["is_excluded"] = world["ISO_A3_EH"].isin(EXCLUDED_COUNTRIES)
388
+
389
+ return world
390
+
391
+
392
+ def load_us_states_shapefile():
393
+ """Load and prepare US states shapefile for mapping."""
394
+ import ssl
395
+
396
+ # Create unverified SSL context to handle Census Bureau cert issues
397
+ ssl._create_default_https_context = ssl._create_unverified_context
398
+
399
+ states_url = (
400
+ "https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_state_20m.zip"
401
+ )
402
+ states = gpd.read_file(states_url)
403
+
404
+ # Filter out territories but keep all 50 states and DC
405
+ states = states[~states["STUSPS"].isin(["PR", "VI", "MP", "GU", "AS"])]
406
+
407
+ return states
408
+
409
+
410
+ def merge_geo_data(shapefile, df_data, geo_column, columns_to_merge, is_tier=False):
411
+ """Merge data with geographic shapefile.
412
+
413
+ Args:
414
+ shapefile: GeoDataFrame (world or states)
415
+ df_data: DataFrame with data to merge
416
+ geo_column: Column in shapefile to join on (e.g., 'ISO_A3_EH', 'STUSPS')
417
+ columns_to_merge: List of columns to merge from df_data
418
+ is_tier: Whether this is tier data (includes cluster_name)
419
+
420
+ Returns:
421
+ Merged GeoDataFrame
422
+ """
423
+ if is_tier and "cluster_name" not in columns_to_merge:
424
+ columns_to_merge = columns_to_merge + ["cluster_name"]
425
+
426
+ return shapefile.merge(
427
+ df_data[columns_to_merge], left_on=geo_column, right_on="geo_id", how="left"
428
+ )
429
+
430
+
431
+ def prepare_map_data(
432
+ geo_df,
433
+ value_column="value",
434
+ center_at_one=False,
435
+ excluded_mask=None,
436
+ ):
437
+ """Prepare data and normalization for map plotting.
438
+
439
+ Args:
440
+ geo_df: GeoDataFrame with geographic data and values to plot
441
+ value_column: Name of column containing values to plot (default: "value")
442
+ center_at_one: If True, center color scale at 1.0 for diverging colormap (default: False)
443
+ excluded_mask: Boolean Series indicating which rows to exclude from normalization
444
+ (e.g., countries where service isn't available). If None, no exclusions.
445
+
446
+ Returns:
447
+ tuple: (plot_column_name, norm) where norm is the matplotlib Normalize object
448
+ """
449
+ if excluded_mask is None:
450
+ excluded_mask = pd.Series([False] * len(geo_df), index=geo_df.index)
451
+
452
+ valid_data = geo_df[geo_df[value_column].notna() & ~excluded_mask][value_column]
453
+
454
+ vmin = valid_data.min() if len(valid_data) > 0 else 0
455
+ vmax = valid_data.max() if len(valid_data) > 0 else 1
456
+ norm = get_color_normalizer(
457
+ valid_data, center_at_one=center_at_one, vmin=vmin, vmax=vmax
458
+ )
459
+
460
+ return value_column, norm
461
+
462
+
463
+ # Main visualization functions
464
+
465
+
466
+ def plot_world_map(
467
+ ax, world, data_column="value", tier_colors=None, cmap=None, norm=None
468
+ ):
469
+ """Plot world map with data.
470
+
471
+ Args:
472
+ ax: matplotlib axis
473
+ world: GeoDataFrame with world data (already merged with values)
474
+ data_column: column name containing data to plot
475
+ tier_colors: dict mapping tier names to colors (for categorical)
476
+ cmap: colormap (for continuous)
477
+ norm: normalization (for continuous)
478
+ """
479
+ if tier_colors:
480
+ # Plot each tier with its color
481
+ for tier, color in tier_colors.items():
482
+ tier_countries = world[
483
+ (world["cluster_name"] == tier) & (~world["is_excluded"])
484
+ ]
485
+ tier_countries.plot(ax=ax, color=color, edgecolor="white", linewidth=0.5)
486
+ else:
487
+ # Plot continuous data
488
+ world_with_data = world[
489
+ world[data_column].notna() & (world["is_excluded"] == False)
490
+ ]
491
+ world_with_data.plot(
492
+ column=data_column, ax=ax, cmap=cmap, norm=norm, legend=False
493
+ )
494
+
495
+ # Plot excluded countries
496
+ excluded = world[world["is_excluded"] == True]
497
+ if not excluded.empty:
498
+ excluded.plot(ax=ax, color="#c0c0c0", edgecolor="white", linewidth=0.5)
499
+
500
+ # Plot no-data countries
501
+ no_data = world[
502
+ (world[data_column if not tier_colors else "cluster_name"].isna())
503
+ & (~world["is_excluded"])
504
+ ]
505
+ if not no_data.empty:
506
+ no_data.plot(ax=ax, color="#f0f0f0", edgecolor="white", linewidth=0.5)
507
+
508
+ # Set appropriate bounds for Robinson projection
509
+ ax.set_xlim(-17000000, 17000000)
510
+ ax.set_ylim(-8500000, 8500000)
511
+
512
+
513
+ def plot_us_states_map(
514
+ fig, ax, states, data_column="value", tier_colors=None, cmap=None, norm=None
515
+ ):
516
+ """Plot US states map with Alaska and Hawaii insets.
517
+
518
+ Args:
519
+ fig: matplotlib figure
520
+ ax: main axis for continental US
521
+ states: GeoDataFrame with state data (already merged with values)
522
+ data_column: column name containing data to plot
523
+ tier_colors: dict mapping tier names to colors (for categorical)
524
+ cmap: colormap (for continuous)
525
+ norm: normalization (for continuous)
526
+ """
527
+ # Project to EPSG:2163 for US Albers Equal Area
528
+ states = states.to_crs("EPSG:2163")
529
+
530
+ # Plot continental US (everything except AK and HI)
531
+ continental = states[~states["STUSPS"].isin(["AK", "HI"])]
532
+
533
+ # First plot all continental states as no-data background
534
+ continental.plot(ax=ax, color="#f0f0f0", edgecolor="white", linewidth=0.5)
535
+
536
+ # Plot continental states with data
537
+ if tier_colors:
538
+ # Plot each tier with its color
539
+ for tier, color in tier_colors.items():
540
+ tier_states = continental[continental["cluster_name"] == tier]
541
+ if not tier_states.empty:
542
+ tier_states.plot(ax=ax, color=color, edgecolor="white", linewidth=0.5)
543
+ else:
544
+ # Plot continuous data
545
+ continental_with_data = continental[continental[data_column].notna()]
546
+ if not continental_with_data.empty:
547
+ continental_with_data.plot(
548
+ column=data_column, ax=ax, cmap=cmap, norm=norm, legend=False
549
+ )
550
+
551
+ # Set axis limits with padding for legend
552
+ xlim = ax.get_xlim()
553
+ ylim = ax.get_ylim()
554
+ x_padding = (xlim[1] - xlim[0]) * MAP_PADDING_X
555
+ y_padding = (ylim[1] - ylim[0]) * MAP_PADDING_Y
556
+ ax.set_xlim(xlim[0] - x_padding, xlim[1] + x_padding)
557
+ ax.set_ylim(ylim[0] - y_padding, ylim[1] + y_padding)
558
+
559
+ # Add Alaska inset
560
+ akax = fig.add_axes(ALASKA_INSET_BOUNDS)
561
+ akax.axis("off")
562
+
563
+ alaska = states[states["STUSPS"] == "AK"]
564
+ if not alaska.empty:
565
+ alaska.plot(ax=akax, color="#f0f0f0", edgecolor="white", linewidth=0.5)
566
+
567
+ if tier_colors and alaska["cluster_name"].notna().any():
568
+ tier_name = alaska["cluster_name"].iloc[0]
569
+ if tier_name in tier_colors:
570
+ alaska.plot(
571
+ ax=akax,
572
+ color=tier_colors[tier_name],
573
+ edgecolor="white",
574
+ linewidth=0.5,
575
+ )
576
+ elif not tier_colors and alaska[data_column].notna().any():
577
+ alaska.plot(column=data_column, ax=akax, cmap=cmap, norm=norm, legend=False)
578
+
579
+ # Add Hawaii inset
580
+ hiax = fig.add_axes(HAWAII_INSET_BOUNDS)
581
+ hiax.axis("off")
582
+
583
+ hawaii = states[states["STUSPS"] == "HI"]
584
+ if not hawaii.empty:
585
+ hawaii.plot(ax=hiax, color="#f0f0f0", edgecolor="white", linewidth=0.5)
586
+
587
+ if tier_colors and hawaii["cluster_name"].notna().any():
588
+ tier_name = hawaii["cluster_name"].iloc[0]
589
+ if tier_name in tier_colors:
590
+ hawaii.plot(
591
+ ax=hiax,
592
+ color=tier_colors[tier_name],
593
+ edgecolor="white",
594
+ linewidth=0.5,
595
+ )
596
+ elif not tier_colors and hawaii[data_column].notna().any():
597
+ hawaii.plot(column=data_column, ax=hiax, cmap=cmap, norm=norm, legend=False)
598
+
599
+
600
+ def plot_usage_index_bars(
601
+ df,
602
+ geography="country",
603
+ top_n=None,
604
+ figsize=(12, 8),
605
+ title=None,
606
+ filtered_entities=None,
607
+ show_usage_counts=True,
608
+ cmap=CUSTOM_CMAP,
609
+ ):
610
+ """
611
+ Create horizontal bar chart of Anthropic AI Usage Index.
612
+
613
+ Args:
614
+ df: Long format dataframe
615
+ geography: 'country' or 'state_us'
616
+ top_n: Number of top entities to show (None for all)
617
+ figsize: Figure size
618
+ title: Chart title
619
+ filtered_entities: List of geo_id values to include (if None, include all)
620
+ show_usage_counts: If True, show usage counts in labels (default: True)
621
+ """
622
+ # Get data
623
+ df_metric = filter_df(
624
+ df, geography=geography, facet=geography, variable="usage_per_capita_index"
625
+ )
626
+
627
+ # Apply entity filtering if provided
628
+ if filtered_entities is not None:
629
+ df_metric = df_metric[df_metric["geo_id"].isin(filtered_entities)]
630
+
631
+ # Get usage counts for display if requested
632
+ if show_usage_counts:
633
+ df_usage = filter_df(
634
+ df, geography=geography, facet=geography, variable="usage_count"
635
+ )
636
+ # Merge to get usage counts
637
+ df_metric = df_metric.merge(
638
+ df_usage[["geo_id", "value"]],
639
+ on="geo_id",
640
+ suffixes=("", "_usage"),
641
+ how="left",
642
+ )
643
+
644
+ # Select entities to display
645
+ if top_n is None or top_n >= len(df_metric):
646
+ # Show all entities, sorted by lowest value first (will appear at bottom of chart)
647
+ df_top = df_metric.sort_values("value", ascending=True)
648
+ # Adjust figure height for many entities
649
+ if len(df_top) > 20:
650
+ figsize = (figsize[0], max(10, len(df_top) * 0.3))
651
+ else:
652
+ # Select top N entities, then sort ascending so highest values appear at top
653
+ df_top = df_metric.nlargest(top_n, "value")
654
+ df_top = df_top.sort_values("value", ascending=True)
655
+
656
+ # Create figure
657
+ fig, ax = create_figure(figsize=figsize)
658
+
659
+ # Get colormap and create diverging colors centered at 1
660
+ values = df_top["value"].values
661
+ min_val = values.min()
662
+ max_val = values.max()
663
+
664
+ # Determine the range for symmetric color scaling around 1
665
+ max_distance = max(abs(min_val - 1), abs(max_val - 1))
666
+
667
+ # Normalize values for color mapping
668
+ if max_distance > 0:
669
+ # Normalize to 0-1 centered at 0.5 for value 1
670
+ normalized = 0.5 + (values - 1) / (2 * max_distance)
671
+ # Truncate colormap to avoid too light colors
672
+ truncate_low = 0.2
673
+ truncate_high = 0.8
674
+ normalized = truncate_low + normalized * (truncate_high - truncate_low)
675
+ normalized = np.clip(normalized, truncate_low, truncate_high)
676
+ else:
677
+ normalized = np.ones_like(values) * 0.5
678
+
679
+ colors = cmap(normalized)
680
+
681
+ # Create horizontal bars
682
+ y_positions = range(len(df_top))
683
+ bars = ax.barh(y_positions, values, color=colors, height=0.7)
684
+
685
+ # Set y-tick labels
686
+ ax.set_yticks(y_positions)
687
+ ax.set_yticklabels(df_top["geo_name"].values)
688
+
689
+ # Set y-axis limits to reduce white space
690
+ ax.set_ylim(-0.5, len(df_top) - 0.5)
691
+
692
+ # Add baseline reference line at 1.0
693
+ ax.axvline(x=1.0, color="black", linestyle="--", alpha=0.5, linewidth=1)
694
+
695
+ # Calculate and set x-axis limits with extra space for labels
696
+ if max_val > 2:
697
+ ax.set_xlim(0, max_val * 1.25)
698
+ else:
699
+ ax.set_xlim(0, max_val * 1.2)
700
+
701
+ # Add value labels and usage counts
702
+ for i, bar in enumerate(bars):
703
+ width = bar.get_width()
704
+ # Always use 2 decimal places for consistency
705
+ label = f"{width:.2f}"
706
+
707
+ # Get usage count
708
+ usage_count = df_top.iloc[i]["value_usage"]
709
+ if usage_count >= 1000:
710
+ usage_str = f"{usage_count / 1000:.1f}k"
711
+ else:
712
+ usage_str = f"{int(usage_count)}"
713
+
714
+ # For top_n > 20, combine label with usage count to avoid overlap
715
+ if not top_n or top_n > 20:
716
+ combined_label = f"{label} (N={usage_str})"
717
+ ax.text(
718
+ width + 0.03,
719
+ bar.get_y() + bar.get_height() / 2.0,
720
+ combined_label,
721
+ ha="left",
722
+ va="center",
723
+ fontsize=8,
724
+ )
725
+ else:
726
+ # Add value label to the right of the bar
727
+ ax.text(
728
+ width + 0.03,
729
+ bar.get_y() + bar.get_height() / 2.0,
730
+ label,
731
+ ha="left",
732
+ va="center",
733
+ fontsize=9,
734
+ )
735
+
736
+ # Add usage count inside the bar
737
+ usage_str_full = f"N = {usage_str}"
738
+ ax.text(
739
+ 0.05,
740
+ bar.get_y() + bar.get_height() / 2.0,
741
+ usage_str_full,
742
+ ha="left",
743
+ va="center",
744
+ fontsize=8,
745
+ color="white",
746
+ )
747
+
748
+ # Set labels and title
749
+ if top_n:
750
+ default_title = f"Top {top_n} {'countries' if geography == 'country' else 'US states'} by Anthropic AI Usage Index"
751
+ else:
752
+ default_title = f"Anthropic AI Usage Index by {'country' if geography == 'country' else 'US state'}"
753
+
754
+ format_axis(
755
+ ax,
756
+ xlabel="Anthropic AI Usage Index (usage % / working-age population %)",
757
+ title=title or default_title,
758
+ grid=True,
759
+ grid_alpha=0.3,
760
+ )
761
+
762
+ return fig
763
+
764
+
765
+ def plot_variable_bars(
766
+ df,
767
+ variable,
768
+ facet,
769
+ geography="country",
770
+ geo_id=None,
771
+ top_n=None,
772
+ figsize=(12, 8),
773
+ title=None,
774
+ xlabel=None,
775
+ filtered_entities=None,
776
+ cmap=CUSTOM_CMAP,
777
+ normalize=False,
778
+ exclude_not_classified=False,
779
+ ):
780
+ """
781
+ Create horizontal bar chart for any variable.
782
+
783
+ Args:
784
+ df: Long format dataframe
785
+ variable: Variable name to plot (e.g., 'soc_pct', 'gdp_per_capita')
786
+ facet: Facet to use
787
+ geography: 'country' or 'state_us'
788
+ geo_id: Optional specific geo_id to filter (e.g., 'USA' for SOC data)
789
+ top_n: Number of top entities to show (None for all)
790
+ figsize: Figure size
791
+ title: Chart title
792
+ xlabel: x-axis label
793
+ filtered_entities: List of cluster_name or geo_id values to include
794
+ cmap: Colormap to use
795
+ normalize: If True, rescale values to sum to 100% (useful for percentages)
796
+ exclude_not_classified: If True, exclude 'not_classified' entries before normalizing
797
+ """
798
+ # Get data
799
+ df_metric = filter_df(
800
+ df, geography=geography, facet=facet, variable=variable, geo_id=geo_id
801
+ )
802
+
803
+ # Exclude not_classified if requested (before normalization)
804
+ if exclude_not_classified:
805
+ # Check both cluster_name and geo_id columns
806
+ if "cluster_name" in df_metric.columns:
807
+ df_metric = df_metric[
808
+ ~df_metric["cluster_name"].isin(["not_classified", "none"])
809
+ ]
810
+ if "geo_id" in df_metric.columns:
811
+ df_metric = df_metric[~df_metric["geo_id"].isin(["not_classified", "none"])]
812
+
813
+ # Normalize if requested (after filtering not_classified)
814
+ if normalize:
815
+ total_sum = df_metric["value"].sum()
816
+ if total_sum > 0:
817
+ df_metric["value"] = (df_metric["value"] / total_sum) * 100
818
+
819
+ # Apply entity filtering if provided
820
+ if filtered_entities is not None:
821
+ # Check if we're filtering by cluster_name or geo_id
822
+ if "cluster_name" in df_metric.columns:
823
+ df_metric = df_metric[df_metric["cluster_name"].isin(filtered_entities)]
824
+ else:
825
+ df_metric = df_metric[df_metric["geo_id"].isin(filtered_entities)]
826
+
827
+ # Select entities to display
828
+ if top_n is None or top_n >= len(df_metric):
829
+ # Show all entities, sorted by lowest value first
830
+ df_top = df_metric.sort_values("value", ascending=True)
831
+ # Adjust figure height for many entities
832
+ if len(df_top) > 20:
833
+ figsize = (figsize[0], max(10, len(df_top) * 0.3))
834
+ else:
835
+ # Select top N entities
836
+ df_top = df_metric.nlargest(top_n, "value")
837
+ df_top = df_top.sort_values("value", ascending=True)
838
+
839
+ # Create figure
840
+ fig, ax = create_figure(figsize=figsize)
841
+
842
+ # Get colormap and colors
843
+ values = df_top["value"].values
844
+ min_val = values.min()
845
+ max_val = values.max()
846
+
847
+ # Linear color mapping
848
+ if max_val > min_val:
849
+ normalized = (values - min_val) / (max_val - min_val)
850
+ # Truncate to avoid extremes
851
+ normalized = 0.2 + normalized * 0.6
852
+ else:
853
+ normalized = np.ones_like(values) * 0.5
854
+
855
+ colors = cmap(normalized)
856
+
857
+ # Create horizontal bars
858
+ y_positions = range(len(df_top))
859
+ bars = ax.barh(y_positions, values, color=colors, height=0.7)
860
+
861
+ # Set y-tick labels
862
+ ax.set_yticks(y_positions)
863
+ # Use cluster_name or geo_name depending on what's available
864
+ if "cluster_name" in df_top.columns:
865
+ labels = df_top["cluster_name"].values
866
+ elif "geo_name" in df_top.columns:
867
+ labels = df_top["geo_name"].values
868
+ else:
869
+ labels = df_top["geo_id"].values
870
+ ax.set_yticklabels(labels)
871
+
872
+ # Set y-axis limits to reduce white space
873
+ ax.set_ylim(-0.5, len(df_top) - 0.5)
874
+
875
+ # Calculate and set x-axis limits
876
+ x_range = max_val - min_val
877
+ if min_val < 0:
878
+ # Include negative values with some padding
879
+ ax.set_xlim(min_val - x_range * 0.1, max_val + x_range * 0.2)
880
+ else:
881
+ # Positive values only
882
+ ax.set_xlim(0, max_val * 1.2)
883
+
884
+ # Add value labels
885
+ for _, bar in enumerate(bars):
886
+ width = bar.get_width()
887
+ # Format based on value magnitude
888
+ if abs(width) >= 1000:
889
+ label = f"{width:.0f}"
890
+ elif abs(width) >= 10:
891
+ label = f"{width:.1f}"
892
+ else:
893
+ label = f"{width:.2f}"
894
+
895
+ # Position label
896
+ if width < 0:
897
+ ha = "right"
898
+ x_offset = -0.01 * (max_val - min_val)
899
+ else:
900
+ ha = "left"
901
+ x_offset = 0.01 * (max_val - min_val)
902
+
903
+ ax.text(
904
+ width + x_offset,
905
+ bar.get_y() + bar.get_height() / 2.0,
906
+ label,
907
+ ha=ha,
908
+ va="center",
909
+ fontsize=8 if len(df_top) > 20 else 9,
910
+ )
911
+
912
+ # Set labels and title
913
+ if not title:
914
+ if top_n:
915
+ title = f"Top {top_n} by {variable}"
916
+ else:
917
+ title = f"{variable} distribution"
918
+
919
+ format_axis(
920
+ ax,
921
+ xlabel=xlabel or variable,
922
+ title=title,
923
+ grid=True,
924
+ grid_alpha=0.3,
925
+ )
926
+
927
+ return fig
928
+
929
+
930
+ def plot_usage_share_bars(
931
+ df,
932
+ geography="country",
933
+ top_n=20,
934
+ figsize=(12, 8),
935
+ title=None,
936
+ filtered_entities=None,
937
+ cmap=CUSTOM_CMAP,
938
+ ):
939
+ """
940
+ Create bar chart showing share of global usage.
941
+
942
+ Args:
943
+ df: Long format dataframe
944
+ geography: Geographic level
945
+ top_n: Number of top entities
946
+ figsize: Figure size
947
+ title: Chart title
948
+ filtered_entities: List of geo_id values to include (if None, include all)
949
+
950
+ """
951
+ # Get data
952
+ df_metric = filter_df(
953
+ df, geography=geography, facet=geography, variable="usage_pct"
954
+ )
955
+
956
+ # Exclude "not_classified" from the data
957
+ df_metric = df_metric[df_metric["geo_id"] != "not_classified"]
958
+
959
+ # Apply entity filtering if provided
960
+ if filtered_entities is not None:
961
+ df_metric = df_metric[df_metric["geo_id"].isin(filtered_entities)]
962
+
963
+ # Get top n
964
+ df_top = df_metric.nlargest(top_n, "value")
965
+
966
+ # Create figure
967
+ fig, ax = create_figure(figsize=figsize)
968
+
969
+ # Create bars
970
+ positions = range(len(df_top))
971
+ values = df_top["value"].values
972
+ names = df_top["geo_name"].values
973
+
974
+ # Use custom colormap
975
+ norm = get_color_normalizer(values, center_at_one=False)
976
+ colors = [cmap(norm(val)) for val in values]
977
+
978
+ bars = ax.bar(positions, values, color=colors, alpha=0.8)
979
+
980
+ # Customize
981
+ ax.set_xticks(positions)
982
+ ax.set_xticklabels(names, rotation=45, ha="right")
983
+ # Reduce horizontal margins to bring bars closer to plot borders
984
+ ax.margins(x=0.01)
985
+
986
+ default_title = f"Top {top_n} {'countries' if geography == 'country' else 'US states'} by share of global Claude usage"
987
+ format_axis(
988
+ ax, ylabel="Share of global usage (%)", title=title or default_title, grid=False
989
+ )
990
+
991
+ # Add value labels
992
+ for bar, value in zip(bars, values, strict=True):
993
+ label = f"{value:.1f}%"
994
+
995
+ # Add value label above the bar
996
+ ax.text(
997
+ bar.get_x() + bar.get_width() / 2,
998
+ value + 0.1,
999
+ label,
1000
+ ha="center",
1001
+ fontsize=8,
1002
+ )
1003
+
1004
+ # Grid
1005
+ ax.grid(True, axis="y", alpha=0.3)
1006
+
1007
+ return fig
1008
+
1009
+
1010
+ def plot_usage_index_histogram(
1011
+ df, geography="country", bins=30, figsize=(10, 6), title=None, cmap=CUSTOM_CMAP
1012
+ ):
1013
+ """
1014
+ Create histogram of Anthropic AI Usage Index distribution.
1015
+
1016
+ Args:
1017
+ df: Long format dataframe
1018
+ geography: Geographic level
1019
+ bins: Number of histogram bins
1020
+ figsize: Figure size
1021
+ title: Chart title
1022
+ """
1023
+ # Get data
1024
+ df_metric = filter_df(
1025
+ df, geography=geography, facet=geography, variable="usage_per_capita_index"
1026
+ )
1027
+
1028
+ # Create figure
1029
+ fig, ax = create_figure(figsize=figsize)
1030
+
1031
+ # Create histogram
1032
+ values = df_metric["value"].values
1033
+ _, bins_edges, patches = ax.hist(
1034
+ values, bins=bins, edgecolor="white", linewidth=0.5
1035
+ )
1036
+
1037
+ # Color bars with custom gradient based on value
1038
+ norm = get_color_normalizer(
1039
+ values,
1040
+ center_at_one=False,
1041
+ vmin=min(bins_edges[0], 0),
1042
+ vmax=max(bins_edges[-1], 2),
1043
+ )
1044
+
1045
+ for patch, left_edge, right_edge in zip(
1046
+ patches, bins_edges[:-1], bins_edges[1:], strict=True
1047
+ ):
1048
+ # Use the midpoint of the bin for color
1049
+ mid_val = (left_edge + right_edge) / 2
1050
+ color = cmap(norm(mid_val))
1051
+ patch.set_facecolor(color)
1052
+
1053
+ # Add vertical line at 1.0 (where usage and population shares match)
1054
+ ax.axvline(x=1.0, color="black", linestyle="--", alpha=0.5, linewidth=1)
1055
+
1056
+ # Add statistics
1057
+ mean_val = values.mean()
1058
+ median_val = np.median(values)
1059
+
1060
+ stats_text = f"Mean: {mean_val:.2f}\nMedian: {median_val:.2f}\nN = {len(values)}"
1061
+ ax.text(
1062
+ 0.98,
1063
+ 0.97,
1064
+ stats_text,
1065
+ transform=ax.transAxes,
1066
+ ha="right",
1067
+ va="top",
1068
+ fontsize=9,
1069
+ bbox=dict(boxstyle="round", facecolor="white", alpha=0.8),
1070
+ )
1071
+
1072
+ # Customize
1073
+ geo_label = "countries" if geography == "country" else "US states"
1074
+ default_title = f"Distribution of Anthropic AI Usage Index ({geo_label})"
1075
+
1076
+ format_axis(
1077
+ ax,
1078
+ xlabel="Anthropic AI Usage Index (usage % / working-age population %)",
1079
+ ylabel=f"Number of {geo_label}",
1080
+ title=title or default_title,
1081
+ )
1082
+
1083
+ return fig
1084
+
1085
+
1086
+ def plot_gdp_scatter(
1087
+ df,
1088
+ geography="country",
1089
+ figsize=(10, 8),
1090
+ title=None,
1091
+ cmap=CUSTOM_CMAP,
1092
+ filtered_entities=None,
1093
+ ):
1094
+ """
1095
+ Create log-log scatter plot of GDP vs Anthropic AI Usage Index.
1096
+
1097
+ Args:
1098
+ df: Long format dataframe
1099
+ geography: Geographic level
1100
+ figsize: Figure size
1101
+ title: Chart title
1102
+ cmap: Colormap to use
1103
+ filtered_entities: List of geo_id values that meet MIN_OBSERVATIONS threshold (optional)
1104
+ """
1105
+ # Get usage data
1106
+ df_usage = filter_df(
1107
+ df, geography=geography, facet=geography, variable="usage_per_capita_index"
1108
+ )
1109
+
1110
+ # Apply filtering if provided
1111
+ if filtered_entities is not None:
1112
+ df_usage = df_usage[df_usage["geo_id"].isin(filtered_entities)]
1113
+
1114
+ df_usage = df_usage[["geo_id", "cluster_name", "value"]].rename(
1115
+ columns={"value": "usage_index"}
1116
+ )
1117
+
1118
+ # Get GDP data
1119
+ df_gdp = filter_df(
1120
+ df, geography=geography, facet=geography, variable="gdp_per_working_age_capita"
1121
+ )
1122
+
1123
+ # Apply same filtering to GDP data
1124
+ if filtered_entities is not None:
1125
+ df_gdp = df_gdp[df_gdp["geo_id"].isin(filtered_entities)]
1126
+
1127
+ df_gdp = df_gdp[["geo_id", "value"]].rename(columns={"value": "gdp_per_capita"})
1128
+
1129
+ # Merge
1130
+ df_plot = df_usage.merge(df_gdp, on="geo_id", how="inner")
1131
+
1132
+ # Filter out zeros and negative values for log scale
1133
+ # Explicitly check both GDP and usage are positive (will be true for filtered geos)
1134
+ mask = (df_plot["gdp_per_capita"] > 0) & (df_plot["usage_index"] > 0)
1135
+ df_plot = df_plot[mask]
1136
+
1137
+ # Create figure
1138
+ fig, ax = create_figure(figsize=figsize)
1139
+
1140
+ # Create scatter plot with geo_id values as labels
1141
+ x = df_plot["gdp_per_capita"].values
1142
+ y = df_plot["usage_index"].values
1143
+
1144
+ # Transform to log space for plotting
1145
+ log_x = np.log(x)
1146
+ log_y = np.log(y)
1147
+
1148
+ # Create norm for colorbar (using natural log)
1149
+ norm = plt.Normalize(vmin=log_y.min(), vmax=log_y.max())
1150
+
1151
+ # First, plot invisible points to ensure matplotlib's autoscaling includes all data points
1152
+ ax.scatter(log_x, log_y, s=0, alpha=0) # Size 0, invisible points for autoscaling
1153
+
1154
+ # Plot the geo_id values as text at the exact data points in log space
1155
+ for ln_x, ln_y, geo_id in zip(log_x, log_y, df_plot["geo_id"].values, strict=True):
1156
+ # Get color from colormap based on ln(usage_index)
1157
+ color_val = norm(ln_y)
1158
+ text_color = cmap(color_val)
1159
+
1160
+ ax.text(
1161
+ ln_x,
1162
+ ln_y,
1163
+ geo_id,
1164
+ fontsize=7,
1165
+ ha="center",
1166
+ va="center",
1167
+ color=text_color,
1168
+ alpha=0.9,
1169
+ weight="bold",
1170
+ )
1171
+
1172
+ # Add constant for intercept
1173
+ X_with_const = sm.add_constant(log_x)
1174
+
1175
+ # Fit OLS regression in log space
1176
+ model = sm.OLS(log_y, X_with_const)
1177
+ results = model.fit()
1178
+
1179
+ # Extract statistics
1180
+ intercept = results.params[0]
1181
+ slope = results.params[1]
1182
+ r_squared = results.rsquared
1183
+ p_value = results.pvalues[1] # p-value for slope
1184
+
1185
+ # Create fit line (we're already in log space)
1186
+ x_fit = np.linspace(log_x.min(), log_x.max(), 100)
1187
+ y_fit = intercept + slope * x_fit
1188
+ ax.plot(
1189
+ x_fit,
1190
+ y_fit,
1191
+ "gray",
1192
+ linestyle="--",
1193
+ alpha=0.7,
1194
+ linewidth=2,
1195
+ label=f"Power law: AUI ~ GDP^{slope:.2f}",
1196
+ )
1197
+
1198
+ # Add regression statistics
1199
+ # Format p-value display
1200
+ if p_value < 0.001:
1201
+ p_str = "p < 0.001"
1202
+ else:
1203
+ p_str = f"p = {p_value:.3f}"
1204
+
1205
+ ax.text(
1206
+ 0.05,
1207
+ 0.95,
1208
+ f"$\\beta = {slope:.3f}\\ ({p_str})$\n$R^2 = {r_squared:.3f}$",
1209
+ transform=ax.transAxes,
1210
+ fontsize=10,
1211
+ bbox=dict(boxstyle="round", facecolor="white", alpha=0.8),
1212
+ verticalalignment="top",
1213
+ )
1214
+
1215
+ # Customize labels for log-transformed values
1216
+ xlabel = "ln(GDP per working-age capita in USD)"
1217
+ ylabel = "ln(Anthropic AI Usage Index)"
1218
+ default_title = f"Income and Anthropic AI Usage Index by {'country' if geography == 'country' else 'US state'}"
1219
+
1220
+ format_axis(
1221
+ ax, xlabel=xlabel, ylabel=ylabel, title=title or default_title, grid=False
1222
+ )
1223
+
1224
+ # Grid for log scale
1225
+ ax.grid(True, alpha=0.3, which="both", linestyle="-", linewidth=0.5)
1226
+
1227
+ # Add legend
1228
+ ax.legend(loc="best")
1229
+
1230
+ # Create colorbar using ScalarMappable
1231
+ scalar_mappable = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
1232
+ scalar_mappable.set_array([])
1233
+ cbar = plt.colorbar(scalar_mappable, ax=ax)
1234
+ cbar.set_label(
1235
+ "ln(Anthropic AI Usage Index)", fontsize=9, rotation=270, labelpad=15
1236
+ )
1237
+
1238
+ return fig
1239
+
1240
+
1241
+ def plot_request_comparison_cards(
1242
+ df,
1243
+ geo_ids,
1244
+ title,
1245
+ geography,
1246
+ top_n=5,
1247
+ figsize=(10, 6),
1248
+ exclude_not_classified=True,
1249
+ request_level=1,
1250
+ request_threshold=1.0,
1251
+ ):
1252
+ """
1253
+ Create a condensed card visualization showing top overrepresented request categories
1254
+ for multiple geographies (countries or states).
1255
+
1256
+ Args:
1257
+ df: Long format dataframe
1258
+ geo_ids: List of geography IDs to compare (e.g., ['USA', 'BRA', 'VNM', 'IND'])
1259
+ title: Title for the figure (required)
1260
+ geography: Geographic level ('country' or 'state_us')
1261
+ top_n: Number of top requests to show per geography (default 5)
1262
+ figsize: Figure size as tuple
1263
+ exclude_not_classified: Whether to exclude "not_classified" entries
1264
+ request_level: Request hierarchy level to use (default 1)
1265
+ request_threshold: Minimum percentage threshold for requests (default 1.0%)
1266
+ """
1267
+ # Get data for specified geography
1268
+ data_subset = filter_df(df, facet="request", geo_id=geo_ids, geography=geography)
1269
+
1270
+ # Filter for request_pct_index variable and specified level
1271
+ data_subset = filter_df(
1272
+ data_subset, variable="request_pct_index", level=request_level
1273
+ )
1274
+
1275
+ # Exclude not_classified if requested
1276
+ if exclude_not_classified:
1277
+ data_subset = data_subset[
1278
+ ~data_subset["cluster_name"].str.contains("not_classified", na=False)
1279
+ ]
1280
+
1281
+ # Get tier and geo_name information
1282
+ geo_info = filter_df(
1283
+ df, geography=geography, variable="usage_tier", geo_id=geo_ids
1284
+ )[["geo_id", "geo_name", "value"]].drop_duplicates()
1285
+ tier_map = dict(zip(geo_info["geo_id"], geo_info["value"], strict=True))
1286
+ name_map = dict(zip(geo_info["geo_id"], geo_info["geo_name"], strict=True))
1287
+
1288
+ # Set up figure with 2x2 grid for 4 geographies
1289
+ n_rows, n_cols = 2, 2
1290
+ fig, axes = create_figure(figsize=figsize, nrows=n_rows, ncols=n_cols)
1291
+ axes = axes.flatten()
1292
+
1293
+ # Use global tier colors
1294
+ tier_colors = TIER_COLORS_NUMERIC
1295
+
1296
+ # Process each geography
1297
+ for idx, geo_id in enumerate(geo_ids):
1298
+ ax = axes[idx]
1299
+
1300
+ # Apply request threshold filtering to get valid requests for this geography
1301
+ valid_requests = filter_requests_by_threshold(
1302
+ df, geography, geo_id, level=request_level, threshold=request_threshold
1303
+ )
1304
+
1305
+ # Get data for this geography, filtered by valid requests
1306
+ geo_data = data_subset[
1307
+ (data_subset["geo_id"] == geo_id)
1308
+ & (data_subset["cluster_name"].isin(valid_requests))
1309
+ & (data_subset["value"] > 1.0) # Only show overrepresented requests
1310
+ ].copy()
1311
+
1312
+ # Get top n from the filtered requests
1313
+ geo_data = geo_data.nlargest(top_n, "value")
1314
+
1315
+ # Get tier color
1316
+ tier = tier_map[geo_id]
1317
+ base_color = tier_colors[tier]
1318
+
1319
+ # Create a lighter version of the tier color for the card background
1320
+ rgb = mcolors.to_rgb(base_color)
1321
+ # Mix with white (85% white, 15% color for very subtle background)
1322
+ pastel_rgb = tuple(0.85 + 0.15 * c for c in rgb)
1323
+ card_bg_color = mcolors.to_hex(pastel_rgb)
1324
+
1325
+ # Fill entire axis with background color
1326
+ ax.set_facecolor(card_bg_color)
1327
+
1328
+ # Create card with requests
1329
+ card_height = 0.9 # Fixed height for all cards
1330
+ card_bottom = 0.965 - card_height # Consistent positioning
1331
+
1332
+ card_rect = FancyBboxPatch(
1333
+ (0.10, card_bottom),
1334
+ 0.80,
1335
+ card_height,
1336
+ transform=ax.transAxes,
1337
+ boxstyle="round,pad=0.02,rounding_size=0.035",
1338
+ facecolor=card_bg_color,
1339
+ edgecolor="none",
1340
+ linewidth=2,
1341
+ clip_on=False,
1342
+ )
1343
+ ax.add_patch(card_rect)
1344
+
1345
+ # Header bar
1346
+ header_top = 0.965 - 0.10
1347
+ header_rect = FancyBboxPatch(
1348
+ (0.14, header_top),
1349
+ 0.72,
1350
+ 0.08,
1351
+ transform=ax.transAxes,
1352
+ boxstyle="round,pad=0.01,rounding_size=0.03",
1353
+ facecolor=base_color,
1354
+ edgecolor="none",
1355
+ alpha=0.7,
1356
+ clip_on=False,
1357
+ )
1358
+ ax.add_patch(header_rect)
1359
+
1360
+ # Add geography name
1361
+ geo_name = name_map[geo_id]
1362
+
1363
+ ax.text(
1364
+ 0.5,
1365
+ header_top + 0.04,
1366
+ geo_name,
1367
+ transform=ax.transAxes,
1368
+ ha="center",
1369
+ va="center",
1370
+ fontsize=12,
1371
+ fontweight="bold",
1372
+ color="#1C1C1C",
1373
+ )
1374
+
1375
+ # Adjust start position below header upwards
1376
+ y_pos = header_top - 0.05
1377
+
1378
+ for _, row in geo_data.iterrows():
1379
+ request = row["cluster_name"]
1380
+ value = row["value"]
1381
+
1382
+ # Format ratio
1383
+ if value >= 10:
1384
+ ratio_str = f"{value:.0f}x"
1385
+ elif value >= 2:
1386
+ ratio_str = f"{value:.1f}x"
1387
+ else:
1388
+ ratio_str = f"{value:.2f}x"
1389
+
1390
+ # Wrap text
1391
+ wrapped_text = textwrap.fill(request, width=46, break_long_words=False)
1392
+ lines = wrapped_text.split("\n")
1393
+
1394
+ # Display text lines with sufficient line spacing
1395
+ line_spacing = 0.045
1396
+ for j, line in enumerate(lines):
1397
+ ax.text(
1398
+ 0.13, # Adjust text position for wider card
1399
+ y_pos - j * line_spacing,
1400
+ line,
1401
+ transform=ax.transAxes,
1402
+ ha="left",
1403
+ va="top",
1404
+ fontsize=9,
1405
+ color="#1C1C1C",
1406
+ rasterized=False,
1407
+ )
1408
+
1409
+ # Position ratio with adjusted margin for wide card
1410
+ text_height = len(lines) * line_spacing
1411
+ ax.text(
1412
+ 0.85,
1413
+ y_pos - (text_height - line_spacing) / 2,
1414
+ ratio_str,
1415
+ transform=ax.transAxes,
1416
+ ha="right",
1417
+ va="center",
1418
+ fontsize=10,
1419
+ fontweight="bold",
1420
+ color="#B85450",
1421
+ rasterized=False,
1422
+ )
1423
+
1424
+ # Add space between different requests
1425
+ y_pos -= text_height + 0.05
1426
+
1427
+ # Remove axes
1428
+ ax.axis("off")
1429
+
1430
+ # Add title
1431
+ fig.suptitle(title, fontsize=14, fontweight="bold", y=0.98)
1432
+
1433
+ plt.tight_layout()
1434
+ plt.subplots_adjust(
1435
+ top=0.92, bottom=0.02, left=0.01, right=0.99, hspace=0.02, wspace=0.02
1436
+ )
1437
+
1438
+ return fig
1439
+
1440
+
1441
+ def plot_dc_task_request_cards(
1442
+ df,
1443
+ title,
1444
+ figsize=(10, 5),
1445
+ ):
1446
+ """
1447
+ Create professional card visualizations showing top overrepresented O*NET tasks and requests for Washington, DC.
1448
+
1449
+ Args:
1450
+ df: Long format dataframe
1451
+ figsize: Figure size as tuple
1452
+ title: Optional title for the figure
1453
+ """
1454
+ # Fixed parameters for DC
1455
+ geo_id = "DC"
1456
+ geography = "state_us"
1457
+ top_n = 5
1458
+
1459
+ # Get tier for color
1460
+ tier_data = filter_df(
1461
+ df, geography=geography, variable="usage_tier", geo_id=[geo_id]
1462
+ )
1463
+ tier = tier_data["value"].iloc[0]
1464
+
1465
+ # Use tier color
1466
+ tier_colors = TIER_COLORS_NUMERIC
1467
+ base_color = tier_colors[tier]
1468
+
1469
+ # Create lighter version for card background
1470
+ rgb = mcolors.to_rgb(base_color)
1471
+ pastel_rgb = tuple(0.85 + 0.15 * c for c in rgb)
1472
+ card_bg_color = mcolors.to_hex(pastel_rgb)
1473
+
1474
+ # Create figure with 2 subplots (cards)
1475
+ fig, axes = create_figure(figsize=figsize, ncols=2)
1476
+
1477
+ # Card 1: Top O*NET Tasks
1478
+ ax1 = axes[0]
1479
+ ax1.set_facecolor(card_bg_color)
1480
+
1481
+ # Get O*NET task data
1482
+ df_tasks = filter_df(
1483
+ df,
1484
+ geography=geography,
1485
+ geo_id=[geo_id],
1486
+ facet="onet_task",
1487
+ variable="onet_task_pct_index",
1488
+ )
1489
+
1490
+ # Exclude not_classified and none
1491
+ df_tasks = df_tasks[~df_tasks["cluster_name"].isin(["not_classified", "none"])]
1492
+
1493
+ # Get top n overrepresented tasks
1494
+ df_tasks = df_tasks[df_tasks["value"] > 1.0].nlargest(top_n, "value")
1495
+
1496
+ # Use fixed card heights
1497
+ card_height_tasks = 0.955
1498
+ card_bottom_tasks = 0.965 - card_height_tasks
1499
+
1500
+ # Draw card for O*NET tasks
1501
+ card_rect1 = FancyBboxPatch(
1502
+ (0.10, card_bottom_tasks),
1503
+ 0.80,
1504
+ card_height_tasks,
1505
+ transform=ax1.transAxes,
1506
+ boxstyle="round,pad=0.02,rounding_size=0.035",
1507
+ facecolor=card_bg_color,
1508
+ edgecolor="none",
1509
+ linewidth=2,
1510
+ clip_on=False,
1511
+ )
1512
+ ax1.add_patch(card_rect1)
1513
+
1514
+ # Header for O*NET tasks
1515
+ header_top = 0.965 - 0.10
1516
+ header_rect1 = FancyBboxPatch(
1517
+ (0.12, header_top),
1518
+ 0.76,
1519
+ 0.08,
1520
+ transform=ax1.transAxes,
1521
+ boxstyle="round,pad=0.01,rounding_size=0.03",
1522
+ facecolor=base_color,
1523
+ edgecolor="none",
1524
+ alpha=0.7,
1525
+ clip_on=False,
1526
+ )
1527
+ ax1.add_patch(header_rect1)
1528
+
1529
+ ax1.text(
1530
+ 0.5,
1531
+ header_top + 0.04,
1532
+ "Top 5 overrepresented O*NET tasks in DC",
1533
+ transform=ax1.transAxes,
1534
+ ha="center",
1535
+ va="center",
1536
+ fontsize=11,
1537
+ fontweight="bold",
1538
+ color="#1C1C1C",
1539
+ )
1540
+
1541
+ # Add task items
1542
+ y_pos = header_top - 0.05
1543
+
1544
+ for _, row in df_tasks.iterrows():
1545
+ task = row["cluster_name"]
1546
+ value = row["value"]
1547
+
1548
+ # Convert to sentence case and remove trailing period
1549
+ task = task[0].upper() + task[1:].lower() if task else task
1550
+ task = task.rstrip(".") # Remove trailing period
1551
+
1552
+ # Format ratio - always with 2 decimal places
1553
+ ratio_str = f"{value:.2f}x"
1554
+
1555
+ # Wrap text
1556
+ wrapped_text = textwrap.fill(task, width=46, break_long_words=False)
1557
+ lines = wrapped_text.split("\n")
1558
+
1559
+ # Display text lines
1560
+ line_spacing = 0.045
1561
+ for j, line in enumerate(lines):
1562
+ ax1.text(
1563
+ 0.13,
1564
+ y_pos - j * line_spacing,
1565
+ line,
1566
+ transform=ax1.transAxes,
1567
+ ha="left",
1568
+ va="top",
1569
+ fontsize=9,
1570
+ color="#1C1C1C",
1571
+ rasterized=False,
1572
+ )
1573
+
1574
+ # Add ratio at the right with consistent color
1575
+ ax1.text(
1576
+ 0.87,
1577
+ y_pos - (len(lines) - 1) * line_spacing / 2,
1578
+ ratio_str,
1579
+ transform=ax1.transAxes,
1580
+ ha="right",
1581
+ va="center",
1582
+ fontsize=10,
1583
+ color="#B85450",
1584
+ fontweight="bold",
1585
+ )
1586
+
1587
+ # Move to next item position
1588
+ y_pos -= len(lines) * line_spacing + 0.025
1589
+
1590
+ ax1.axis("off")
1591
+
1592
+ # Card 2: Top Requests
1593
+ ax2 = axes[1]
1594
+ ax2.set_facecolor(card_bg_color)
1595
+
1596
+ # Get valid requests using threshold
1597
+ valid_requests = filter_requests_by_threshold(
1598
+ df, geography, geo_id, level=1, threshold=1.0
1599
+ )
1600
+
1601
+ # Get request data
1602
+ df_requests = filter_df(
1603
+ df,
1604
+ geography=geography,
1605
+ geo_id=[geo_id],
1606
+ facet="request",
1607
+ variable="request_pct_index",
1608
+ level=1,
1609
+ )
1610
+
1611
+ # Filter by valid requests and overrepresented
1612
+ df_requests = df_requests[
1613
+ (df_requests["cluster_name"].isin(valid_requests))
1614
+ & (df_requests["value"] > 1.0)
1615
+ & (~df_requests["cluster_name"].str.contains("not_classified", na=False))
1616
+ ]
1617
+
1618
+ # Get top n
1619
+ df_requests = df_requests.nlargest(top_n, "value")
1620
+
1621
+ # Draw card for requests with fixed height
1622
+ card_height_requests = 0.72
1623
+ card_bottom_requests = 0.965 - card_height_requests
1624
+
1625
+ card_rect2 = FancyBboxPatch(
1626
+ (0.10, card_bottom_requests),
1627
+ 0.80,
1628
+ card_height_requests,
1629
+ transform=ax2.transAxes,
1630
+ boxstyle="round,pad=0.02,rounding_size=0.035",
1631
+ facecolor=card_bg_color,
1632
+ edgecolor="none",
1633
+ linewidth=2,
1634
+ clip_on=False,
1635
+ )
1636
+ ax2.add_patch(card_rect2)
1637
+
1638
+ # Header for requests
1639
+ header_rect2 = FancyBboxPatch(
1640
+ (0.12, header_top),
1641
+ 0.76,
1642
+ 0.08,
1643
+ transform=ax2.transAxes,
1644
+ boxstyle="round,pad=0.01,rounding_size=0.03",
1645
+ facecolor=base_color,
1646
+ edgecolor="none",
1647
+ alpha=0.7,
1648
+ clip_on=False,
1649
+ )
1650
+ ax2.add_patch(header_rect2)
1651
+
1652
+ ax2.text(
1653
+ 0.5,
1654
+ header_top + 0.04,
1655
+ "Top 5 overrepresented request clusters in DC",
1656
+ transform=ax2.transAxes,
1657
+ ha="center",
1658
+ va="center",
1659
+ fontsize=11,
1660
+ fontweight="bold",
1661
+ color="#1C1C1C",
1662
+ )
1663
+
1664
+ # Add request items
1665
+ y_pos = header_top - 0.05
1666
+
1667
+ for _, row in df_requests.iterrows():
1668
+ request = row["cluster_name"]
1669
+ value = row["value"]
1670
+
1671
+ # Format ratio always with 2 decimal places
1672
+ ratio_str = f"{value:.2f}x"
1673
+
1674
+ # Wrap text
1675
+ wrapped_text = textwrap.fill(request, width=46, break_long_words=False)
1676
+ lines = wrapped_text.split("\n")
1677
+
1678
+ # Display text lines
1679
+ line_spacing = 0.045
1680
+ for j, line in enumerate(lines):
1681
+ ax2.text(
1682
+ 0.13,
1683
+ y_pos - j * line_spacing,
1684
+ line,
1685
+ transform=ax2.transAxes,
1686
+ ha="left",
1687
+ va="top",
1688
+ fontsize=9,
1689
+ color="#1C1C1C",
1690
+ rasterized=False,
1691
+ )
1692
+
1693
+ # Add ratio at the right with consistent color
1694
+ ax2.text(
1695
+ 0.87,
1696
+ y_pos - (len(lines) - 1) * line_spacing / 2,
1697
+ ratio_str,
1698
+ transform=ax2.transAxes,
1699
+ ha="right",
1700
+ va="center",
1701
+ fontsize=10,
1702
+ color="#B85450",
1703
+ fontweight="bold",
1704
+ )
1705
+
1706
+ # Move to next item position
1707
+ y_pos -= len(lines) * line_spacing + 0.025
1708
+
1709
+ ax2.axis("off")
1710
+
1711
+ # Add subtle title if provided
1712
+ fig.suptitle(title, fontsize=13, fontweight="bold", y=0.98)
1713
+
1714
+ plt.tight_layout()
1715
+ return fig
1716
+
1717
+
1718
+ # Summary statistics function
1719
+ def plot_tier_summary_table(df, geography="country", figsize=(12, 6)):
1720
+ """
1721
+ Create a visual table showing entities per tier and example members.
1722
+
1723
+ Args:
1724
+ df: Long format dataframe
1725
+ geography: 'country' or 'state_us'
1726
+ figsize: Figure size
1727
+ """
1728
+ # Get tier data
1729
+ df_tier = filter_df(df, geography=geography, variable="usage_tier")
1730
+
1731
+ # Exclude US territories that appear as countries (may be confusing to readers)
1732
+ if geography == "country":
1733
+ us_territories_as_countries = [
1734
+ "PRI",
1735
+ "VIR",
1736
+ "GUM",
1737
+ "ASM",
1738
+ "MNP",
1739
+ ] # Puerto Rico, Virgin Islands, Guam, American Samoa, Northern Mariana Islands
1740
+ df_tier = df_tier[~df_tier["geo_id"].isin(us_territories_as_countries)]
1741
+
1742
+ # Get usage per capita index for sorting entities within tiers
1743
+ df_usage_index = filter_df(
1744
+ df, geography=geography, variable="usage_per_capita_index"
1745
+ )
1746
+
1747
+ # Apply same territory filter to usage index data
1748
+ if geography == "country":
1749
+ df_usage_index = df_usage_index[
1750
+ ~df_usage_index["geo_id"].isin(us_territories_as_countries)
1751
+ ]
1752
+
1753
+ # Merge tier with usage index
1754
+ df_tier_full = df_tier[["geo_id", "geo_name", "cluster_name"]].merge(
1755
+ df_usage_index[["geo_id", "value"]],
1756
+ on="geo_id",
1757
+ how="left",
1758
+ suffixes=("", "_index"),
1759
+ )
1760
+
1761
+ # Use global tier colors
1762
+ tier_colors = TIER_COLORS_DICT
1763
+
1764
+ # Calculate appropriate figure height based on number of tiers
1765
+ n_tiers = sum(
1766
+ 1 for tier in TIER_ORDER if tier in df_tier_full["cluster_name"].values
1767
+ )
1768
+ # Adjust height: minimal padding for compact display
1769
+ fig_height = 0.5 + n_tiers * 0.3 # Much more compact
1770
+
1771
+ # Create figure with calculated size
1772
+ fig, ax = create_figure(figsize=(figsize[0], fig_height))
1773
+ ax.axis("tight")
1774
+ ax.axis("off")
1775
+
1776
+ # Make background transparent
1777
+ fig.patch.set_alpha(0.0)
1778
+ ax.patch.set_alpha(0.0)
1779
+
1780
+ # Prepare table data
1781
+ table_data = []
1782
+ entity_type = "countries" if geography == "country" else "states"
1783
+ col_labels = [
1784
+ "Tier",
1785
+ "AUI range",
1786
+ f"# of {entity_type}",
1787
+ f"Example {entity_type}",
1788
+ ]
1789
+
1790
+ for tier in TIER_ORDER:
1791
+ if tier in df_tier_full["cluster_name"].values:
1792
+ # Get entities in this tier
1793
+ tier_entities = filter_df(df_tier_full, cluster_name=tier)
1794
+ count = len(tier_entities)
1795
+
1796
+ # Calculate usage index range for this tier
1797
+ min_index = tier_entities["value"].min()
1798
+ max_index = tier_entities["value"].max()
1799
+ index_range = f"{min_index:.2f} - {max_index:.2f}"
1800
+
1801
+ # For Minimal tier where all have 0 index, pick shortest names
1802
+ if tier == "Minimal" and tier_entities["value"].max() == 0:
1803
+ tier_entities = tier_entities.copy()
1804
+ tier_entities["name_length"] = tier_entities["geo_name"].str.len()
1805
+ top_entities = tier_entities.nsmallest(5, "name_length")[
1806
+ "geo_name"
1807
+ ].tolist()
1808
+ else:
1809
+ # Get top 5 entities by usage index in this tier
1810
+ top_entities = tier_entities.nlargest(5, "value")["geo_name"].tolist()
1811
+
1812
+ # Format the example entities as a comma-separated string
1813
+ examples = ", ".join(top_entities[:5])
1814
+
1815
+ table_data.append([tier, index_range, str(count), examples])
1816
+
1817
+ # Create table with better column widths
1818
+ table = ax.table(
1819
+ cellText=table_data,
1820
+ colLabels=col_labels,
1821
+ cellLoc="left",
1822
+ loc="center",
1823
+ colWidths=[0.20, 0.18, 0.12, 0.50],
1824
+ colColours=[ANTHROPIC_OAT] * 4,
1825
+ )
1826
+
1827
+ # Style the table
1828
+ table.auto_set_font_size(False)
1829
+ table.set_fontsize(11)
1830
+ table.scale(1, 2.2)
1831
+
1832
+ # Set all cell edges to Anthropic oat color
1833
+ for _, cell in table.get_celld().items():
1834
+ cell.set_edgecolor(ANTHROPIC_OAT)
1835
+ cell.set_linewidth(1.5)
1836
+
1837
+ # Color code the rows with consistent black text
1838
+ for i, row_data in enumerate(table_data):
1839
+ tier_name = row_data[0]
1840
+ if tier_name in tier_colors:
1841
+ # Color the tier name cell with full opacity
1842
+ table[(i + 1, 0)].set_facecolor(tier_colors[tier_name])
1843
+ table[(i + 1, 0)].set_text_props(color="black", weight="bold")
1844
+
1845
+ # Light background for usage index range column
1846
+ table[(i + 1, 1)].set_facecolor(tier_colors[tier_name])
1847
+ table[(i + 1, 1)].set_alpha(0.3)
1848
+ table[(i + 1, 1)].set_text_props(ha="center", color="black")
1849
+
1850
+ # Light background for count column
1851
+ table[(i + 1, 2)].set_facecolor(tier_colors[tier_name])
1852
+ table[(i + 1, 2)].set_alpha(0.2)
1853
+ table[(i + 1, 2)].set_text_props(ha="center", color="black")
1854
+
1855
+ # Even lighter background for examples column
1856
+ table[(i + 1, 3)].set_facecolor(tier_colors[tier_name])
1857
+ table[(i + 1, 3)].set_alpha(0.1)
1858
+ table[(i + 1, 3)].set_text_props(color="black")
1859
+
1860
+ # Style header row with Anthropic oat and black text
1861
+ for j in range(4):
1862
+ table[(0, j)].set_facecolor(ANTHROPIC_OAT)
1863
+ table[(0, j)].set_text_props(color="black", weight="bold")
1864
+
1865
+ # Center the count column
1866
+ for i in range(len(table_data)):
1867
+ table[(i + 1, 1)].set_text_props(ha="center")
1868
+
1869
+ return fig
1870
+
1871
+
1872
+ def plot_tier_map(
1873
+ df,
1874
+ title,
1875
+ geography,
1876
+ figsize=(16, 10),
1877
+ show_labels=True,
1878
+ ):
1879
+ """
1880
+ Create a map showing per Anthropic AI Usage Tiers.
1881
+
1882
+ Args:
1883
+ df: Long format dataframe with usage_tier variable
1884
+ geography: 'country' or 'state_us'
1885
+ figsize: Figure size
1886
+ title: Map title
1887
+ show_labels: whether to show title and legend (False for clean export)
1888
+ """
1889
+ # Filter for tier data
1890
+ df_tier = filter_df(df, geography=geography, variable="usage_tier").copy()
1891
+
1892
+ # Use global tier colors definition
1893
+ tier_colors = TIER_COLORS_DICT
1894
+
1895
+ # Map tiers to colors
1896
+ df_tier["color"] = df_tier["cluster_name"].map(tier_colors)
1897
+
1898
+ # Set up figure
1899
+ # Create figure with tight_layout disabled
1900
+ fig, ax = create_figure(figsize=figsize, tight_layout=False)
1901
+
1902
+ if geography == "country":
1903
+ # Load world shapefile function
1904
+ world = load_world_shapefile()
1905
+
1906
+ # Merge with world data using geo_id (which contains ISO-3 codes)
1907
+ # Use ISO_A3_EH for merging as it's complete (ISO_A3 has -99 for France)
1908
+ world = merge_geo_data(
1909
+ world,
1910
+ df_tier,
1911
+ "ISO_A3_EH",
1912
+ ["geo_id", "color", "cluster_name"],
1913
+ is_tier=True,
1914
+ )
1915
+
1916
+ # Plot world map
1917
+ plot_world_map(ax, world, data_column="cluster_name", tier_colors=tier_colors)
1918
+
1919
+ else: # state_us
1920
+ # Load US states shapefile function
1921
+ states = load_us_states_shapefile()
1922
+
1923
+ # Merge with tier data BEFORE projection
1924
+ states = merge_geo_data(
1925
+ states, df_tier, "STUSPS", ["geo_id", "color", "cluster_name"], is_tier=True
1926
+ )
1927
+
1928
+ # Pot states with insets
1929
+ plot_us_states_map(
1930
+ fig, ax, states, data_column="cluster_name", tier_colors=tier_colors
1931
+ )
1932
+
1933
+ # Remove axes
1934
+ ax.set_axis_off()
1935
+
1936
+ # Add title only if show_labels=True
1937
+ if show_labels:
1938
+ format_axis(ax, title=title, title_size=14, grid=False)
1939
+
1940
+ # Check which tiers actually appear in the data
1941
+ tiers_in_data = df_tier["cluster_name"].unique()
1942
+
1943
+ # Add legend only if show_labels=True
1944
+ if show_labels:
1945
+ # Check for excluded countries and no data
1946
+ excluded = False
1947
+ no_data = False
1948
+ if geography == "country":
1949
+ if "world" in locals() and "is_excluded" in world.columns:
1950
+ excluded = world["is_excluded"].any()
1951
+ if "world" in locals():
1952
+ no_data = world["cluster_name"].isna().any()
1953
+ else: # state_us
1954
+ if "states" in locals():
1955
+ no_data = states["cluster_name"].isna().any()
1956
+
1957
+ create_tier_legend(
1958
+ ax, tier_colors, tiers_in_data, excluded_countries=excluded, no_data=no_data
1959
+ )
1960
+
1961
+ return fig
1962
+
1963
+
1964
+ def plot_variable_map(
1965
+ df,
1966
+ variable,
1967
+ geography="country",
1968
+ figsize=(16, 10),
1969
+ title=None,
1970
+ cmap=CUSTOM_CMAP,
1971
+ center_at_one=None,
1972
+ ):
1973
+ """
1974
+ Create static map for any variable.
1975
+
1976
+ Args:
1977
+ df: Long format dataframe
1978
+ variable: Variable to plot (e.g., 'usage_pct')
1979
+ geography: 'country' or 'state_us'
1980
+ figsize: Figure size (width, height) in inches
1981
+ title: Map title
1982
+ cmap: Matplotlib colormap or name (default uses custom colormap)
1983
+ center_at_one: Whether to center the color scale at 1.0 (default True for usage_per_capita_index)
1984
+ """
1985
+ # Get data for the specified variable
1986
+ df_data = filter_df(df, geography=geography, facet=geography, variable=variable)
1987
+
1988
+ # Create figure
1989
+ fig = plt.figure(figsize=figsize, dpi=150)
1990
+ fig.set_layout_engine(layout="none") # Disable layout engine for custom axes
1991
+ ax = fig.add_subplot(111)
1992
+
1993
+ if geography == "country":
1994
+ # Load world shapefile function (automatically marks excluded countries)
1995
+ world = load_world_shapefile()
1996
+
1997
+ # Merge using geo_id (which contains ISO-3 codes)
1998
+ world = merge_geo_data(
1999
+ world, df_data, "ISO_A3_EH", ["geo_id", "value"], is_tier=False
2000
+ )
2001
+
2002
+ # Prepare data and normalization
2003
+ plot_column, norm = prepare_map_data(
2004
+ world, "value", center_at_one, world["is_excluded"]
2005
+ )
2006
+
2007
+ # Plot world map
2008
+ plot_world_map(ax, world, data_column=plot_column, cmap=cmap, norm=norm)
2009
+
2010
+ else: # state_us
2011
+ # Load US states shapefile function
2012
+ states = load_us_states_shapefile()
2013
+
2014
+ # Merge our data with the states shapefile
2015
+ states = merge_geo_data(
2016
+ states, df_data, "STUSPS", ["geo_id", "value"], is_tier=False
2017
+ )
2018
+
2019
+ # Prepare data and normalization
2020
+ plot_column, norm = prepare_map_data(states, "value", center_at_one)
2021
+
2022
+ # Plot states with insets
2023
+ plot_us_states_map(
2024
+ fig, ax, states, data_column=plot_column, cmap=cmap, norm=norm
2025
+ )
2026
+
2027
+ # Remove axes
2028
+ ax.set_axis_off()
2029
+
2030
+ # Add colorbar with proper size and positioning
2031
+ divider = make_axes_locatable(ax)
2032
+ cax = divider.append_axes("right", size="3%", pad=0.1)
2033
+
2034
+ # Create colorbar
2035
+ scalar_mappable = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
2036
+ scalar_mappable.set_array([])
2037
+ cbar = plt.colorbar(scalar_mappable, cax=cax)
2038
+
2039
+ # Set colorbar label based on variable
2040
+ if variable == "usage_pct":
2041
+ cbar.set_label("Usage share (%)", fontsize=10, rotation=270, labelpad=15)
2042
+ elif variable == "usage_per_capita_index":
2043
+ cbar.set_label(
2044
+ "Anthropic AI Usage Index", fontsize=10, rotation=270, labelpad=15
2045
+ )
2046
+ else:
2047
+ cbar.set_label(variable, fontsize=10, rotation=270, labelpad=15)
2048
+
2049
+ # Set title
2050
+ if variable == "usage_pct":
2051
+ default_title = "Share of Claude usage by " + (
2052
+ "country" if geography == "country" else "US state"
2053
+ )
2054
+ else:
2055
+ default_title = f"{variable} by " + (
2056
+ "country" if geography == "country" else "US state"
2057
+ )
2058
+
2059
+ format_axis(ax, title=title or default_title, title_size=14, grid=False)
2060
+
2061
+ # Add legend for excluded countries and no data
2062
+ legend_elements = []
2063
+
2064
+ # Check if we have excluded countries or no data regions
2065
+ if geography == "country":
2066
+ # Check for excluded countries (world['is_excluded'] == True)
2067
+ if "is_excluded" in world.columns:
2068
+ excluded_countries = world[world["is_excluded"] == True]
2069
+ if not excluded_countries.empty:
2070
+ legend_elements.append(
2071
+ Patch(
2072
+ facecolor="#c0c0c0",
2073
+ edgecolor="white",
2074
+ label="Claude not available",
2075
+ )
2076
+ )
2077
+
2078
+ # Check for countries with no data
2079
+ no_data_countries = world[
2080
+ (world["value"].isna()) & (world["is_excluded"] != True)
2081
+ ]
2082
+ if not no_data_countries.empty:
2083
+ legend_elements.append(
2084
+ Patch(facecolor="#f0f0f0", edgecolor="white", label="No data")
2085
+ )
2086
+
2087
+ if legend_elements:
2088
+ ax.legend(
2089
+ handles=legend_elements,
2090
+ loc="lower left",
2091
+ fontsize=9,
2092
+ frameon=True,
2093
+ fancybox=True,
2094
+ shadow=True,
2095
+ bbox_to_anchor=(0, 0),
2096
+ )
2097
+
2098
+ return fig
2099
+
2100
+
2101
+ def plot_soc_usage_scatter(
2102
+ df,
2103
+ geography,
2104
+ filtered_entities=None,
2105
+ ):
2106
+ """
2107
+ Create faceted scatterplot of SOC percentages vs Anthropic AI Usage Index.
2108
+ Always creates a 2x2 grid of square subplots showing the top 4 SOC groups.
2109
+
2110
+ Args:
2111
+ df: Long format dataframe with enriched data
2112
+ geography: 'country' or 'state_us'
2113
+ filtered_entities: List of geo_id values that meet MIN_OBSERVATIONS threshold
2114
+ """
2115
+ # Fixed configuration for 2x2 grid
2116
+ n_cols = 2
2117
+ n_rows = 2
2118
+ n_top_groups = 4
2119
+
2120
+ # Apply MIN_OBSERVATIONS filtering if not provided
2121
+ if filtered_entities is None:
2122
+ filtered_countries, filtered_states = get_filtered_geographies(df)
2123
+ filtered_entities = (
2124
+ filtered_countries if geography == "country" else filtered_states
2125
+ )
2126
+
2127
+ # Get Anthropic AI Usage Index data
2128
+ df_usage_index = filter_df(
2129
+ df,
2130
+ geography=geography,
2131
+ variable="usage_per_capita_index",
2132
+ geo_id=filtered_entities,
2133
+ )[["geo_id", "value"]].rename(columns={"value": "ai_usage_index"})
2134
+
2135
+ # Get usage counts for bubble sizes
2136
+ df_usage = filter_df(
2137
+ df, geography=geography, variable="usage_count", geo_id=filtered_entities
2138
+ )[["geo_id", "value"]].rename(columns={"value": "usage_count"})
2139
+
2140
+ # Get tier data for colors
2141
+ df_tier = filter_df(
2142
+ df, geography=geography, variable="usage_tier", geo_id=filtered_entities
2143
+ )[["geo_id", "cluster_name", "value"]].rename(
2144
+ columns={"cluster_name": "tier_name", "value": "tier_value"}
2145
+ )
2146
+
2147
+ # Get SOC percentages
2148
+ df_soc = filter_df(
2149
+ df,
2150
+ geography=geography,
2151
+ facet="soc_occupation",
2152
+ variable="soc_pct",
2153
+ geo_id=filtered_entities,
2154
+ )[["geo_id", "cluster_name", "value"]].rename(
2155
+ columns={"cluster_name": "soc_group", "value": "soc_pct"}
2156
+ )
2157
+
2158
+ # Merge all data
2159
+ df_plot = df_soc.merge(
2160
+ df_usage_index, on="geo_id", how="inner"
2161
+ ) # inner join because some geographies don't have data for all SOC groups
2162
+ df_plot = df_plot.merge(df_usage, on="geo_id", how="left")
2163
+ df_plot = df_plot.merge(
2164
+ df_tier[["geo_id", "tier_name", "tier_value"]], on="geo_id", how="left"
2165
+ )
2166
+
2167
+ # Use parent geography reference for consistent SOC selection
2168
+ if geography == "country":
2169
+ # Use global reference for countries
2170
+ reference_soc = filter_df(
2171
+ df,
2172
+ geography="global",
2173
+ geo_id="GLOBAL",
2174
+ facet="soc_occupation",
2175
+ variable="soc_pct",
2176
+ )
2177
+ else: # state_us
2178
+ # Use US reference for states
2179
+ reference_soc = filter_df(
2180
+ df,
2181
+ geography="country",
2182
+ geo_id="USA",
2183
+ facet="soc_occupation",
2184
+ variable="soc_pct",
2185
+ )
2186
+
2187
+ # Get top SOC groups from reference (excluding not_classified)
2188
+ reference_filtered = reference_soc[
2189
+ ~reference_soc["cluster_name"].str.contains("not_classified", na=False)
2190
+ ]
2191
+ plot_soc_groups = reference_filtered.nlargest(n_top_groups, "value")[
2192
+ "cluster_name"
2193
+ ].tolist()
2194
+
2195
+ # Filter to selected SOC groups
2196
+ df_plot = df_plot[df_plot["soc_group"].isin(plot_soc_groups)]
2197
+
2198
+ tier_colors = TIER_COLORS_DICT
2199
+
2200
+ # Fixed square subplot size for 2x2 grid
2201
+ subplot_size = 6 # Each subplot is 6x6 inches
2202
+ figsize = (subplot_size * n_cols, subplot_size * n_rows)
2203
+
2204
+ # Create figure
2205
+ fig, axes = create_figure(figsize=figsize, nrows=n_rows, ncols=n_cols)
2206
+ fig.suptitle(
2207
+ "Occupation group shares vs Anthropic AI Usage Index",
2208
+ fontsize=16,
2209
+ fontweight="bold",
2210
+ y=0.98,
2211
+ )
2212
+
2213
+ # Flatten axes for easier iteration (always 2x2 grid)
2214
+ axes_flat = axes.flatten()
2215
+
2216
+ # Plot each SOC group
2217
+ for idx, soc_group in enumerate(plot_soc_groups):
2218
+ ax = axes_flat[idx]
2219
+
2220
+ # Get data for this SOC group
2221
+ soc_data = filter_df(df_plot, soc_group=soc_group)
2222
+
2223
+ # Create scatter plot for each tier
2224
+ for tier_name in tier_colors.keys():
2225
+ tier_data = filter_df(soc_data, tier_name=tier_name)
2226
+
2227
+ # Scale bubble sizes using sqrt for better visibility
2228
+ sizes = np.sqrt(tier_data["usage_count"]) * 2
2229
+
2230
+ ax.scatter(
2231
+ tier_data["ai_usage_index"],
2232
+ tier_data["soc_pct"],
2233
+ s=sizes,
2234
+ c=tier_colors[tier_name],
2235
+ alpha=0.6,
2236
+ edgecolors="black",
2237
+ linewidth=0.5,
2238
+ label=tier_name,
2239
+ )
2240
+
2241
+ # Add trend line and regression statistics
2242
+ X = sm.add_constant(soc_data["ai_usage_index"].values)
2243
+ y = soc_data["soc_pct"].values
2244
+
2245
+ model = sm.OLS(y, X)
2246
+ results = model.fit()
2247
+
2248
+ intercept = results.params[0]
2249
+ slope = results.params[1]
2250
+ r_squared = results.rsquared
2251
+ p_value = results.pvalues[1] # p-value for slope
2252
+
2253
+ # Plot trend line
2254
+ x_line = np.linspace(
2255
+ soc_data["ai_usage_index"].min(), soc_data["ai_usage_index"].max(), 100
2256
+ )
2257
+ y_line = intercept + slope * x_line
2258
+ ax.plot(x_line, y_line, "--", color="gray", alpha=0.5, linewidth=1)
2259
+
2260
+ # Format p-value display
2261
+ if p_value < 0.001:
2262
+ p_str = "p < 0.001"
2263
+ else:
2264
+ p_str = f"p = {p_value:.3f}"
2265
+
2266
+ # Add regression statistics
2267
+ ax.text(
2268
+ 0.95,
2269
+ 0.95,
2270
+ f"$\\beta = {slope:.3f}\\ ({p_str})$\n$R^2 = {r_squared:.3f}$",
2271
+ transform=ax.transAxes,
2272
+ ha="right",
2273
+ va="top",
2274
+ fontsize=9,
2275
+ bbox=dict(boxstyle="round", facecolor="white", alpha=0.8),
2276
+ )
2277
+
2278
+ # Format axes
2279
+ format_axis(
2280
+ ax,
2281
+ xlabel="Anthropic AI Usage Index (usage % / working-age population %)",
2282
+ ylabel="Occupation group share (%)",
2283
+ title=soc_group,
2284
+ xlabel_size=10,
2285
+ ylabel_size=10,
2286
+ grid=False,
2287
+ )
2288
+ ax.grid(True, alpha=0.3)
2289
+
2290
+ # Add legend
2291
+ handles, labels = axes_flat[0].get_legend_handles_labels()
2292
+ if handles:
2293
+ # Create new handles with consistent size for legend only
2294
+ # This doesn't modify the actual plot markers
2295
+ legend_handles = []
2296
+ for handle in handles:
2297
+ # Get the color from the original handle
2298
+ color = (
2299
+ handle.get_facecolor()[0]
2300
+ if hasattr(handle, "get_facecolor")
2301
+ else "gray"
2302
+ )
2303
+ # Create a Line2D object with circle marker for legend
2304
+ new_handle = Line2D(
2305
+ [0],
2306
+ [0],
2307
+ marker="o",
2308
+ color="w",
2309
+ markerfacecolor=color,
2310
+ markersize=8,
2311
+ markeredgecolor="black",
2312
+ markeredgewidth=0.5,
2313
+ alpha=0.6,
2314
+ )
2315
+ legend_handles.append(new_handle)
2316
+
2317
+ # Position tier legend centered under the left column with vertical layout
2318
+ fig.legend(
2319
+ legend_handles,
2320
+ labels,
2321
+ title="Anthropic AI Usage Index tier",
2322
+ loc="upper center",
2323
+ bbox_to_anchor=(0.25, -0.03),
2324
+ frameon=True,
2325
+ fancybox=True,
2326
+ shadow=True,
2327
+ ncol=2,
2328
+ borderpad=0.6,
2329
+ )
2330
+
2331
+ # Add size legend using actual scatter points for perfect matching
2332
+ reference_counts = [100, 1000, 10000]
2333
+
2334
+ # Create invisible scatter points with the exact same size formula as the plot
2335
+ size_legend_elements = []
2336
+ for count in reference_counts:
2337
+ # Use exact same formula as in the plot
2338
+ size = np.sqrt(count) * 2
2339
+ # Create scatter on first axis (will be invisible) just for legend
2340
+ scatter = axes_flat[0].scatter(
2341
+ [],
2342
+ [], # Empty data
2343
+ s=size,
2344
+ c="gray",
2345
+ alpha=0.6,
2346
+ edgecolors="black",
2347
+ linewidth=0.5,
2348
+ label=f"{count:,}",
2349
+ )
2350
+ size_legend_elements.append(scatter)
2351
+
2352
+ # Add size legend centered under the right column with vertical layout
2353
+ fig.legend(
2354
+ handles=size_legend_elements,
2355
+ title="Claude usage count",
2356
+ loc="upper center",
2357
+ bbox_to_anchor=(0.75, -0.03),
2358
+ frameon=True,
2359
+ fancybox=True,
2360
+ shadow=True,
2361
+ ncol=1,
2362
+ borderpad=0.6,
2363
+ )
2364
+
2365
+ plt.tight_layout(rect=[0, -0.03, 1, 0.98])
2366
+ return fig
2367
+
2368
+
2369
+ def collaboration_task_regression(df, geography="country"):
2370
+ """
2371
+ Analyze automation vs augmentation patterns controlling for task mix for
2372
+ geographies that meet the minimum observation threshold.
2373
+
2374
+ Uses global task weights to calculate expected automation for each geography,
2375
+ then compares actual vs expected automation.
2376
+
2377
+ Note: Includes "none" tasks in calculations since they have automation/augmentation
2378
+ patterns in the data. Excludes "not_classified" tasks which lack collaboration data.
2379
+
2380
+ Args:
2381
+ df: Input dataframe
2382
+ geography: "country" or "state_us"
2383
+ """
2384
+ # Filter to geographies that meet min observation threshold
2385
+ filtered_countries, filtered_states = get_filtered_geographies(df)
2386
+ filtered_geos = filtered_countries if geography == "country" else filtered_states
2387
+
2388
+ # Get collaboration automation data
2389
+ df_automation = filter_df(
2390
+ df,
2391
+ facet="collaboration_automation_augmentation",
2392
+ geography=geography,
2393
+ variable="automation_pct",
2394
+ geo_id=filtered_geos,
2395
+ )[["geo_id", "value"]].rename(columns={"value": "automation_pct"})
2396
+
2397
+ # Get Anthropic AI Usage Index data
2398
+ df_usage = filter_df(
2399
+ df,
2400
+ geography=geography,
2401
+ facet=geography,
2402
+ variable="usage_per_capita_index",
2403
+ geo_id=filtered_geos,
2404
+ )[["geo_id", "geo_name", "value"]].copy()
2405
+ df_usage.rename(columns={"value": "usage_per_capita_index"}, inplace=True)
2406
+
2407
+ # Get geography-specific task weights (percentages)
2408
+ df_geo_tasks = filter_df(
2409
+ df,
2410
+ facet="onet_task",
2411
+ geography=geography,
2412
+ variable="onet_task_pct",
2413
+ geo_id=filtered_geos,
2414
+ ).copy()
2415
+
2416
+ # Exclude not_classified and none tasks
2417
+ df_geo_tasks = df_geo_tasks[
2418
+ ~df_geo_tasks["cluster_name"].isin(["not_classified", "none"])
2419
+ ]
2420
+
2421
+ # Get global task-specific collaboration patterns (only available at global level)
2422
+ df_task_collab = filter_df(
2423
+ df,
2424
+ facet="onet_task::collaboration",
2425
+ geography="global",
2426
+ geo_id="GLOBAL",
2427
+ variable="onet_task_collaboration_pct",
2428
+ ).copy()
2429
+
2430
+ # Parse task name and collaboration type from cluster_name
2431
+ df_task_collab["task_name"] = df_task_collab["cluster_name"].str.split("::").str[0]
2432
+ df_task_collab["collab_type"] = (
2433
+ df_task_collab["cluster_name"].str.split("::").str[1]
2434
+ )
2435
+
2436
+ # Map collaboration types to automation/augmentation
2437
+ # Automation: directive, feedback loop
2438
+ # Augmentation: validation, task iteration, learning
2439
+ # Excluded: none, not_classified
2440
+ def is_automation(collab_type):
2441
+ if collab_type in ["directive", "feedback loop"]:
2442
+ return True
2443
+ elif collab_type in [
2444
+ "validation",
2445
+ "task iteration",
2446
+ "learning",
2447
+ ]:
2448
+ return False
2449
+ else: # none, not_classified
2450
+ return None
2451
+
2452
+ df_task_collab["is_automation"] = df_task_collab["collab_type"].apply(is_automation)
2453
+
2454
+ # Exclude not_classified tasks upfront
2455
+ df_task_collab_valid = df_task_collab[
2456
+ df_task_collab["task_name"] != "not_classified"
2457
+ ]
2458
+
2459
+ # Calculate automation percentage for each task
2460
+ task_automation_rates = {}
2461
+ for task_name in df_task_collab_valid["task_name"].unique():
2462
+ task_data = df_task_collab_valid[
2463
+ (df_task_collab_valid["task_name"] == task_name)
2464
+ & (df_task_collab_valid["is_automation"].notna())
2465
+ ]
2466
+
2467
+ # Skip tasks that only have "not_classified" collaboration types
2468
+ if task_data.empty or task_data["value"].sum() == 0:
2469
+ continue
2470
+
2471
+ automation_sum = task_data[task_data["is_automation"]]["value"].sum()
2472
+ total_sum = task_data["value"].sum()
2473
+ task_automation_rates[task_name] = (automation_sum / total_sum) * 100
2474
+
2475
+ # Calculate expected automation for each country using its own task weights
2476
+ expected_automation = []
2477
+ geo_ids = []
2478
+
2479
+ for geo_id in filtered_geos:
2480
+ # Get this geography's task distribution (excluding not_classified)
2481
+ geo_tasks = df_geo_tasks[
2482
+ (df_geo_tasks["geo_id"] == geo_id)
2483
+ & (df_geo_tasks["cluster_name"] != "not_classified")
2484
+ ]
2485
+
2486
+ # Skip geographies with no task data
2487
+ if geo_tasks.empty:
2488
+ continue
2489
+
2490
+ # Calculate weighted automation using geography's task weights
2491
+ weighted_auto = 0.0
2492
+ total_weight = 0.0
2493
+
2494
+ for _, row in geo_tasks.iterrows():
2495
+ task = row["cluster_name"]
2496
+ weight = row["value"] # Already in percentage
2497
+
2498
+ # Get automation rate for this task (from global data)
2499
+ if task in task_automation_rates:
2500
+ auto_rate = task_automation_rates[task]
2501
+ weighted_auto += weight * auto_rate
2502
+ total_weight += weight
2503
+
2504
+ # Calculate expected automation
2505
+ expected_auto = weighted_auto / total_weight
2506
+ expected_automation.append(expected_auto)
2507
+ geo_ids.append(geo_id)
2508
+
2509
+ # Create dataframe with expected automation
2510
+ df_expected = pd.DataFrame(
2511
+ {"geo_id": geo_ids, "expected_automation_pct": expected_automation}
2512
+ )
2513
+
2514
+ # Merge all data
2515
+ df_regression = df_automation.merge(df_expected, on="geo_id", how="inner")
2516
+ df_regression = df_regression.merge(df_usage, on="geo_id", how="inner")
2517
+
2518
+ # Count unique tasks for reporting
2519
+ n_tasks = len(task_automation_rates)
2520
+
2521
+ # Calculate residuals from regressions for proper partial correlation
2522
+ # For automation, regress actual on expected to get residuals
2523
+ X_expected = sm.add_constant(df_regression["expected_automation_pct"])
2524
+ model_automation = sm.OLS(df_regression["automation_pct"], X_expected)
2525
+ results_automation = model_automation.fit()
2526
+ df_regression["automation_residuals"] = results_automation.resid
2527
+
2528
+ # For usage, regress on expected automation to get residuals
2529
+ model_usage = sm.OLS(df_regression["usage_per_capita_index"], X_expected)
2530
+ results_usage = model_usage.fit()
2531
+ df_regression["usage_residuals"] = results_usage.resid
2532
+
2533
+ # Partial regression is regression of residuals
2534
+ # We want usage (X) to explain automation (Y)
2535
+ X_partial = sm.add_constant(df_regression["usage_residuals"])
2536
+ model_partial = sm.OLS(df_regression["automation_residuals"], X_partial)
2537
+ results_partial = model_partial.fit()
2538
+ partial_slope = results_partial.params.iloc[1]
2539
+ partial_r2 = results_partial.rsquared
2540
+ partial_p = results_partial.pvalues.iloc[1]
2541
+
2542
+ # Create visualization - only show partial correlation
2543
+ fig, ax = create_figure(figsize=(10, 8))
2544
+
2545
+ # Define colormap for automation residuals
2546
+ colors_automation = [AUGMENTATION_COLOR, AUTOMATION_COLOR]
2547
+ cmap_automation = LinearSegmentedColormap.from_list(
2548
+ "automation", colors_automation, N=100
2549
+ )
2550
+
2551
+ # Plot partial correlation
2552
+ # Create colormap normalization for automation residuals
2553
+ norm = plt.Normalize(
2554
+ vmin=df_regression["automation_residuals"].min(),
2555
+ vmax=df_regression["automation_residuals"].max(),
2556
+ )
2557
+
2558
+ # Plot invisible points to ensure matplotlib's autoscaling includes all data points
2559
+ ax.scatter(
2560
+ df_regression["usage_residuals"],
2561
+ df_regression["automation_residuals"],
2562
+ s=0, # invisible points for autoscaling
2563
+ alpha=0,
2564
+ )
2565
+
2566
+ # Plot country geo_id values as text instead of scatter points
2567
+ for _, row in df_regression.iterrows():
2568
+ color_val = norm(row["automation_residuals"])
2569
+ text_color = cmap_automation(color_val)
2570
+
2571
+ ax.text(
2572
+ row["usage_residuals"],
2573
+ row["automation_residuals"],
2574
+ row["geo_id"],
2575
+ fontsize=7,
2576
+ ha="center",
2577
+ va="center",
2578
+ color=text_color,
2579
+ alpha=0.9,
2580
+ weight="bold",
2581
+ )
2582
+
2583
+ # Create a ScalarMappable for the colorbar
2584
+ scalar_mappable = plt.cm.ScalarMappable(cmap=cmap_automation, norm=norm)
2585
+ scalar_mappable.set_array([])
2586
+
2587
+ # Add regression line using actual regression results
2588
+ # OLS model: automation_residuals = intercept + slope * usage_residuals
2589
+ x_resid_line = np.linspace(
2590
+ df_regression["usage_residuals"].min(),
2591
+ df_regression["usage_residuals"].max(),
2592
+ 100,
2593
+ )
2594
+ intercept = results_partial.params.iloc[0]
2595
+ y_resid_line = intercept + partial_slope * x_resid_line
2596
+ ax.plot(
2597
+ x_resid_line,
2598
+ y_resid_line,
2599
+ "grey",
2600
+ linestyle="--",
2601
+ linewidth=2,
2602
+ alpha=0.7,
2603
+ )
2604
+
2605
+ # Set axis labels and title
2606
+ format_axis(
2607
+ ax,
2608
+ xlabel="Anthropic AI Usage Index residuals\n(per capita usage not explained by task mix)",
2609
+ ylabel="Automation % residuals\n(automation not explained by task mix)",
2610
+ title="Relationship between Anthropic AI Usage Index and automation",
2611
+ grid=False,
2612
+ )
2613
+
2614
+ # Add correlation info inside the plot
2615
+ if partial_p < 0.001:
2616
+ p_str = "p < 0.001"
2617
+ else:
2618
+ p_str = f"p = {partial_p:.3f}"
2619
+
2620
+ ax.text(
2621
+ 0.08,
2622
+ 0.975,
2623
+ f"Partial regression (controlling for task mix): $\\beta = {partial_slope:.3f}, R^2 = {partial_r2:.3f}\\ ({p_str})$",
2624
+ transform=ax.transAxes,
2625
+ fontsize=10,
2626
+ bbox=dict(boxstyle="round", facecolor="white", alpha=0.8),
2627
+ verticalalignment="top",
2628
+ )
2629
+
2630
+ ax.axhline(y=0, color="gray", linestyle=":", linewidth=1, alpha=0.3)
2631
+ ax.axvline(x=0, color="gray", linestyle=":", linewidth=1, alpha=0.3)
2632
+ ax.grid(True, alpha=0.3, linestyle="--")
2633
+
2634
+ # Add colorbar
2635
+ fig.subplots_adjust(right=0.92)
2636
+ cbar_ax = fig.add_axes([0.94, 0.2, 0.02, 0.6])
2637
+ cbar = plt.colorbar(scalar_mappable, cax=cbar_ax)
2638
+ cbar.set_label("Automation % residuals", fontsize=10, rotation=270, labelpad=15)
2639
+
2640
+ # Adjust plot to make room for titles and ensure all data is visible
2641
+ plt.subplots_adjust(top=0.92, right=0.92, left=0.12, bottom=0.12)
2642
+
2643
+ # Return results
2644
+ return {
2645
+ "figure": fig,
2646
+ "partial_slope": partial_slope,
2647
+ "partial_r2": partial_r2,
2648
+ "partial_pvalue": partial_p,
2649
+ "n_countries": len(df_regression),
2650
+ "n_tasks": n_tasks,
2651
+ "df_residuals": df_regression,
2652
+ }
2653
+
2654
+
2655
+ def plot_automation_preference_residuals(df, geography="country", figsize=(14, 12)):
2656
+ """Plot automation vs augmentation preference after controlling for task mix.
2657
+
2658
+ For geographies meeting minimum observation threshold only.
2659
+
2660
+ Args:
2661
+ df: Input dataframe
2662
+ geography: "country" or "state_us"
2663
+ figsize: Figure size
2664
+ """
2665
+ # First run the collaboration analysis to get residuals
2666
+ results = collaboration_task_regression(df, geography=geography)
2667
+
2668
+ # Suppress figure created by collaboration_task_regression
2669
+ plt.close(results["figure"])
2670
+
2671
+ # Get the dataframe with residuals
2672
+ df_residuals = results["df_residuals"]
2673
+
2674
+ # Sort by automation residuals (most augmentation to most automation)
2675
+ df_plot = df_residuals.sort_values("automation_residuals", ascending=True)
2676
+
2677
+ # Adjust figure size based on number of geographies
2678
+ n_geos = len(df_plot)
2679
+ fig_height = max(8, n_geos * 0.25)
2680
+ fig, ax = create_figure(figsize=(figsize[0], fig_height))
2681
+
2682
+ # Create color map
2683
+ colors = [
2684
+ AUGMENTATION_COLOR if x < 0 else AUTOMATION_COLOR
2685
+ for x in df_plot["automation_residuals"]
2686
+ ]
2687
+
2688
+ # Create horizontal bar chart
2689
+ ax.barh(
2690
+ range(len(df_plot)),
2691
+ df_plot["automation_residuals"].values,
2692
+ color=colors,
2693
+ alpha=0.8,
2694
+ )
2695
+
2696
+ # Set y-axis labels with geography names only
2697
+ y_labels = [row["geo_name"] for _, row in df_plot.iterrows()]
2698
+ ax.set_yticks(range(len(df_plot)))
2699
+ ax.set_yticklabels(y_labels, fontsize=7)
2700
+
2701
+ # Reduce white space at top and bottom
2702
+ ax.set_ylim(-0.5, len(df_plot) - 0.5)
2703
+
2704
+ # Add vertical line at zero
2705
+ ax.axvline(x=0, color="black", linestyle="-", linewidth=1, alpha=0.7)
2706
+
2707
+ # Labels and title
2708
+ geo_label = "Countries'" if geography == "country" else "States'"
2709
+ format_axis(
2710
+ ax,
2711
+ xlabel="Automation % residual (after controlling for task mix)",
2712
+ ylabel="",
2713
+ title=f"{geo_label} automation vs augmentation preference\n(after controlling for task composition)",
2714
+ grid=False,
2715
+ )
2716
+
2717
+ # Add grid
2718
+ ax.grid(True, axis="x", alpha=0.3, linestyle="--")
2719
+
2720
+ # Add value labels on the bars
2721
+ for i, (_, row) in enumerate(df_plot.iterrows()):
2722
+ value = row["automation_residuals"]
2723
+ x_offset = 0.2 if abs(value) < 5 else 0.3
2724
+ x_pos = value + (x_offset if value > 0 else -x_offset)
2725
+ ax.text(
2726
+ x_pos,
2727
+ i,
2728
+ f"{value:.1f}",
2729
+ ha="left" if value > 0 else "right",
2730
+ va="center",
2731
+ fontsize=8,
2732
+ )
2733
+
2734
+ # Add annotations
2735
+ y_range = ax.get_ylim()
2736
+ annotation_y = y_range[1] * 0.85
2737
+
2738
+ # Left annotation for augmentation
2739
+ ax.text(
2740
+ ax.get_xlim()[0] * 0.7,
2741
+ annotation_y,
2742
+ "Prefer augmentation",
2743
+ fontsize=9,
2744
+ color=AUGMENTATION_COLOR,
2745
+ fontweight="bold",
2746
+ ha="left",
2747
+ va="center",
2748
+ )
2749
+
2750
+ # Right annotation for automation
2751
+ ax.text(
2752
+ ax.get_xlim()[1] * 0.7,
2753
+ annotation_y,
2754
+ "Prefer automation",
2755
+ fontsize=9,
2756
+ color=AUTOMATION_COLOR,
2757
+ fontweight="bold",
2758
+ ha="right",
2759
+ va="center",
2760
+ )
2761
+
2762
+ plt.tight_layout()
2763
+
2764
+ return fig
2765
+
2766
+
2767
+ def plot_soc_distribution(
2768
+ df, geo_list, geography, figsize=(14, 10), title=None, exclude_not_classified=True
2769
+ ):
2770
+ """
2771
+ Plot SOC occupation distribution for multiple geographies (countries or states) with horizontal bars, colored by tier.
2772
+
2773
+ Args:
2774
+ df: Long format dataframe
2775
+ geo_list: List of geo_id values to compare (e.g., ['USA', 'BRA'] for countries or ['CA', 'TX'] for states)
2776
+ geography: Geographic level ('country' or 'state_us')
2777
+ figsize: Figure size
2778
+ title: Chart title
2779
+ exclude_not_classified: If True, excludes 'not_classified' from the chart
2780
+ """
2781
+ # Use global tier colors and names
2782
+ tier_colors = TIER_COLORS_NUMERIC
2783
+ tier_names = TIER_NAMES_NUMERIC
2784
+
2785
+ # Get usage tier and geo_name for each geography
2786
+ tier_data = filter_df(
2787
+ df, geography=geography, variable="usage_tier", facet=geography, geo_id=geo_list
2788
+ )[["geo_id", "geo_name", "value"]].rename(columns={"value": "tier"})
2789
+
2790
+ # Collect SOC data for all geographies first to determine consistent ordering
2791
+ all_soc_data = []
2792
+ for geo_id in geo_list:
2793
+ geo_soc = filter_df(
2794
+ df,
2795
+ geography=geography,
2796
+ geo_id=geo_id,
2797
+ facet="soc_occupation",
2798
+ variable="soc_pct",
2799
+ ).copy()
2800
+
2801
+ if not geo_soc.empty:
2802
+ # Optionally filter out not_classified
2803
+ if exclude_not_classified:
2804
+ geo_soc = geo_soc[geo_soc["cluster_name"] != "not_classified"].copy()
2805
+
2806
+ geo_soc["geo"] = geo_id
2807
+ all_soc_data.append(geo_soc)
2808
+
2809
+ combined_data = pd.concat(all_soc_data)
2810
+
2811
+ # Use global SOC distribution for countries, USA distribution for states
2812
+ if geography == "country":
2813
+ reference_data = filter_df(
2814
+ df,
2815
+ geography="global",
2816
+ geo_id="GLOBAL",
2817
+ facet="soc_occupation",
2818
+ variable="soc_pct",
2819
+ )
2820
+ else: # state_us
2821
+ reference_data = filter_df(
2822
+ df,
2823
+ geography="country",
2824
+ geo_id="USA",
2825
+ facet="soc_occupation",
2826
+ variable="soc_pct",
2827
+ )
2828
+
2829
+ # Filter out not_classified from reference data if needed
2830
+ if exclude_not_classified:
2831
+ reference_data = reference_data[
2832
+ reference_data["cluster_name"] != "not_classified"
2833
+ ]
2834
+
2835
+ # Sort by reference values ascending so highest appears at top when plotted
2836
+ soc_order = reference_data.sort_values("value", ascending=True)[
2837
+ "cluster_name"
2838
+ ].tolist()
2839
+
2840
+ # Create figure
2841
+ fig, ax = create_figure(figsize=figsize)
2842
+
2843
+ # Width of bars and positions
2844
+ n_geos = len(geo_list)
2845
+ bar_width = 0.95 / n_geos # Wider bars, less spacing within groups
2846
+ y_positions = (
2847
+ np.arange(len(soc_order)) * 1.05
2848
+ ) # Reduce spacing between SOC groups to 5%
2849
+
2850
+ # Sort geo_list to ensure highest tier appears at top within each group
2851
+ # Reverse the order so tier 4 is plotted first and appears on top
2852
+ geo_tier_map = dict(zip(tier_data["geo_id"], tier_data["tier"], strict=True))
2853
+ geo_list_sorted = sorted(geo_list, key=lambda x: geo_tier_map[x])
2854
+
2855
+ # Plot bars for each geography
2856
+ for i, geo_id in enumerate(geo_list_sorted):
2857
+ geo_data = filter_df(combined_data, geo=geo_id)
2858
+ geo_name = filter_df(tier_data, geo_id=geo_id)["geo_name"].iloc[0]
2859
+ geo_tier = filter_df(tier_data, geo_id=geo_id)["tier"].iloc[0]
2860
+
2861
+ # Get values in the right order
2862
+ values = []
2863
+ for soc in soc_order:
2864
+ val_data = filter_df(geo_data, cluster_name=soc)["value"]
2865
+ # Use NaN for missing data
2866
+ values.append(val_data.iloc[0] if not val_data.empty else float("nan"))
2867
+
2868
+ # Determine color based on tier
2869
+ color = tier_colors[int(geo_tier)]
2870
+
2871
+ # Create bars with offset for multiple geographies
2872
+ # Reverse the offset calculation so first geo (lowest tier) goes to bottom
2873
+ offset = ((n_geos - 1 - i) - n_geos / 2 + 0.5) * bar_width
2874
+
2875
+ # Get tier name for label
2876
+ tier_label = tier_names[int(geo_tier)]
2877
+ label_text = f"{geo_name} ({tier_label})"
2878
+
2879
+ bars = ax.barh(
2880
+ y_positions + offset,
2881
+ values,
2882
+ bar_width,
2883
+ label=label_text,
2884
+ color=color,
2885
+ alpha=0.8,
2886
+ )
2887
+
2888
+ # Add value labels for bars with data
2889
+ for bar, value in zip(bars, values, strict=True):
2890
+ if not pd.isna(value):
2891
+ ax.text(
2892
+ value + 0.1,
2893
+ bar.get_y() + bar.get_height() / 2,
2894
+ f"{value:.1f}%",
2895
+ va="center",
2896
+ fontsize=5,
2897
+ )
2898
+
2899
+ # Set y-axis labels - position them at the center of each SOC group
2900
+ ax.set_yticks(y_positions)
2901
+ ax.set_yticklabels(soc_order, fontsize=9, va="center")
2902
+
2903
+ # Reduce white space at top and bottom
2904
+ ax.set_ylim(y_positions[0] - 0.5, y_positions[-1] + 0.5)
2905
+
2906
+ # Customize plot
2907
+ format_axis(
2908
+ ax,
2909
+ xlabel="Share of Claude task usage (%)",
2910
+ ylabel="Standard Occupation Classification group",
2911
+ grid=False,
2912
+ )
2913
+
2914
+ if title is None:
2915
+ title = "Claude task usage by occupation: Comparison by AI usage tier"
2916
+ format_axis(ax, title=title, title_size=14, grid=False)
2917
+
2918
+ # Add legend
2919
+ ax.legend(loc="lower right", fontsize=10, framealpha=0.95)
2920
+
2921
+ # Grid
2922
+ ax.grid(True, axis="x", alpha=0.3, linestyle="--")
2923
+ ax.set_xlim(0, max(combined_data["value"]) * 1.15)
2924
+
2925
+ plt.tight_layout()
2926
+ return fig
release_2025_09_15/code/aei_report_v3_analysis_1p_api.ipynb ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# AEI Report v3 API Analysis\n",
8
+ "This notebook produces the streamlined analysis for the AEI report API chapter"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": null,
14
+ "metadata": {
15
+ "vscode": {
16
+ "languageId": "python"
17
+ }
18
+ },
19
+ "outputs": [],
20
+ "source": [
21
+ "from pathlib import Path\n",
22
+ "import pandas as pd"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": null,
28
+ "metadata": {
29
+ "vscode": {
30
+ "languageId": "python"
31
+ }
32
+ },
33
+ "outputs": [],
34
+ "source": [
35
+ "# Import the analysis functions\n",
36
+ "from aei_analysis_functions_1p_api import (\n",
37
+ " setup_plot_style,\n",
38
+ " load_preprocessed_data,\n",
39
+ " create_top_requests_bar_chart,\n",
40
+ " create_platform_occupational_comparison,\n",
41
+ " create_platform_lorenz_curves,\n",
42
+ " create_collaboration_alluvial,\n",
43
+ " create_automation_augmentation_panel,\n",
44
+ " create_token_output_bar_chart,\n",
45
+ " create_completion_vs_input_tokens_scatter,\n",
46
+ " create_occupational_usage_cost_scatter,\n",
47
+ " create_partial_regression_plot,\n",
48
+ " perform_usage_share_regression_unweighted,\n",
49
+ " create_btos_ai_adoption_chart,\n",
50
+ ")"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "execution_count": null,
56
+ "metadata": {
57
+ "vscode": {
58
+ "languageId": "python"
59
+ }
60
+ },
61
+ "outputs": [],
62
+ "source": [
63
+ "# Set matplotlib to use the correct backend and style\n",
64
+ "setup_plot_style()"
65
+ ]
66
+ },
67
+ {
68
+ "cell_type": "code",
69
+ "execution_count": null,
70
+ "metadata": {
71
+ "vscode": {
72
+ "languageId": "python"
73
+ }
74
+ },
75
+ "outputs": [],
76
+ "source": [
77
+ "# Set up output directory for saving figures\n",
78
+ "output_dir = Path(\"../data/output/figures/\")\n",
79
+ "btos_data_path = Path(\"../data/input/BTOS_National.xlsx\")\n",
80
+ "api_data_path = Path(\"../data/intermediate/aei_raw_1p_api_2025-08-04_to_2025-08-11.csv\")\n",
81
+ "cai_data_path = Path(\n",
82
+ " \"../data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv\"\n",
83
+ ")\n",
84
+ "\n",
85
+ "# Create output directory\n",
86
+ "output_dir.mkdir(parents=True, exist_ok=True)"
87
+ ]
88
+ },
89
+ {
90
+ "cell_type": "code",
91
+ "execution_count": null,
92
+ "metadata": {
93
+ "vscode": {
94
+ "languageId": "python"
95
+ }
96
+ },
97
+ "outputs": [],
98
+ "source": [
99
+ "# Load BTOS Data\n",
100
+ "print(\"Loading BTOS data...\")\n",
101
+ "btos_df = pd.read_excel(btos_data_path, sheet_name=\"Response Estimates\")\n",
102
+ "btos_df_ref_dates_df = pd.read_excel(\n",
103
+ " btos_data_path, sheet_name=\"Collection and Reference Dates\"\n",
104
+ ")\n",
105
+ "\n",
106
+ "# Load the API data\n",
107
+ "print(\"Loading API data...\")\n",
108
+ "api_df = load_preprocessed_data(api_data_path)\n",
109
+ "\n",
110
+ "# Load the Claude.ai data\n",
111
+ "print(\"Loading Claude.ai data...\")\n",
112
+ "cai_df = load_preprocessed_data(cai_data_path)"
113
+ ]
114
+ },
115
+ {
116
+ "cell_type": "code",
117
+ "execution_count": null,
118
+ "metadata": {
119
+ "vscode": {
120
+ "languageId": "python"
121
+ }
122
+ },
123
+ "outputs": [],
124
+ "source": [
125
+ "create_btos_ai_adoption_chart(btos_df, btos_df_ref_dates_df, output_dir)"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": null,
131
+ "metadata": {
132
+ "vscode": {
133
+ "languageId": "python"
134
+ }
135
+ },
136
+ "outputs": [],
137
+ "source": [
138
+ "# Create the top requests bar chart\n",
139
+ "print(\"Creating top requests bar chart...\")\n",
140
+ "top_requests_chart = create_top_requests_bar_chart(api_df, output_dir)\n",
141
+ "print(f\"Chart saved to: {top_requests_chart}\")"
142
+ ]
143
+ },
144
+ {
145
+ "cell_type": "code",
146
+ "execution_count": null,
147
+ "metadata": {
148
+ "vscode": {
149
+ "languageId": "python"
150
+ }
151
+ },
152
+ "outputs": [],
153
+ "source": [
154
+ "# Create the platform occupational comparison chart\n",
155
+ "print(\"Creating platform occupational comparison chart...\")\n",
156
+ "occupational_comparison_chart = create_platform_occupational_comparison(\n",
157
+ " api_df, cai_df, output_dir\n",
158
+ ")\n",
159
+ "print(f\"Chart saved to: {occupational_comparison_chart}\")"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "execution_count": null,
165
+ "metadata": {
166
+ "vscode": {
167
+ "languageId": "python"
168
+ }
169
+ },
170
+ "outputs": [],
171
+ "source": [
172
+ "# Create the platform Lorenz curves\n",
173
+ "print(\"Creating platform Lorenz curves...\")\n",
174
+ "lorenz_curves_chart = create_platform_lorenz_curves(api_df, cai_df, output_dir)\n",
175
+ "print(f\"Chart saved to: {lorenz_curves_chart}\")"
176
+ ]
177
+ },
178
+ {
179
+ "cell_type": "code",
180
+ "execution_count": null,
181
+ "metadata": {
182
+ "vscode": {
183
+ "languageId": "python"
184
+ }
185
+ },
186
+ "outputs": [],
187
+ "source": [
188
+ "# Create the collaboration alluvial diagram\n",
189
+ "print(\"Creating collaboration alluvial diagram...\")\n",
190
+ "alluvial_chart = create_collaboration_alluvial(api_df, cai_df, output_dir)\n",
191
+ "print(f\"Chart saved to: {alluvial_chart}\")"
192
+ ]
193
+ },
194
+ {
195
+ "cell_type": "code",
196
+ "execution_count": null,
197
+ "metadata": {
198
+ "vscode": {
199
+ "languageId": "python"
200
+ }
201
+ },
202
+ "outputs": [],
203
+ "source": [
204
+ "# Create the automation vs augmentation panel\n",
205
+ "print(\"Creating automation vs augmentation panel...\")\n",
206
+ "automation_panel_chart = create_automation_augmentation_panel(\n",
207
+ " api_df, cai_df, output_dir\n",
208
+ ")\n",
209
+ "print(f\"Chart saved to: {automation_panel_chart}\")"
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "code",
214
+ "execution_count": null,
215
+ "metadata": {
216
+ "vscode": {
217
+ "languageId": "python"
218
+ }
219
+ },
220
+ "outputs": [],
221
+ "source": [
222
+ "# Create the token output bar chart\n",
223
+ "print(\"Creating token output bar chart...\")\n",
224
+ "token_output_chart = create_token_output_bar_chart(api_df, output_dir)\n",
225
+ "print(f\"Chart saved to: {token_output_chart}\")"
226
+ ]
227
+ },
228
+ {
229
+ "cell_type": "code",
230
+ "execution_count": null,
231
+ "metadata": {
232
+ "vscode": {
233
+ "languageId": "python"
234
+ }
235
+ },
236
+ "outputs": [],
237
+ "source": [
238
+ "# Create the completion vs input tokens scatter plot\n",
239
+ "print(\"Creating completion vs input tokens scatter plot...\")\n",
240
+ "completion_input_scatter = create_completion_vs_input_tokens_scatter(api_df, output_dir)\n",
241
+ "print(f\"Chart saved to: {completion_input_scatter}\")"
242
+ ]
243
+ },
244
+ {
245
+ "cell_type": "code",
246
+ "execution_count": null,
247
+ "metadata": {
248
+ "vscode": {
249
+ "languageId": "python"
250
+ }
251
+ },
252
+ "outputs": [],
253
+ "source": [
254
+ "# Create the occupational usage vs cost scatter plot\n",
255
+ "print(\"Creating occupational usage vs cost scatter plot...\")\n",
256
+ "usage_cost_scatter = create_occupational_usage_cost_scatter(api_df, output_dir)\n",
257
+ "print(f\"Chart saved to: {usage_cost_scatter}\")"
258
+ ]
259
+ },
260
+ {
261
+ "cell_type": "code",
262
+ "execution_count": null,
263
+ "metadata": {
264
+ "vscode": {
265
+ "languageId": "python"
266
+ }
267
+ },
268
+ "outputs": [],
269
+ "source": [
270
+ "# Create the partial regression plot\n",
271
+ "print(\"Creating partial regression plot...\")\n",
272
+ "partial_plot, regression_results = create_partial_regression_plot(\n",
273
+ " api_df, cai_df, output_dir\n",
274
+ ")\n",
275
+ "print(f\"Chart saved to: {partial_plot}\")"
276
+ ]
277
+ },
278
+ {
279
+ "cell_type": "code",
280
+ "execution_count": null,
281
+ "metadata": {
282
+ "vscode": {
283
+ "languageId": "python"
284
+ }
285
+ },
286
+ "outputs": [],
287
+ "source": [
288
+ "# Perform the unweighted usage share regression analysis\n",
289
+ "print(\"Performing unweighted usage share regression analysis...\")\n",
290
+ "regression_model = perform_usage_share_regression_unweighted(api_df, cai_df, output_dir)\n",
291
+ "regression_model.summary()"
292
+ ]
293
+ }
294
+ ],
295
+ "metadata": {
296
+ "kernelspec": {
297
+ "display_name": "Coconut",
298
+ "language": "coconut",
299
+ "name": "coconut"
300
+ },
301
+ "language_info": {
302
+ "codemirror_mode": {
303
+ "name": "python",
304
+ "version": 3
305
+ },
306
+ "file_extension": ".coco",
307
+ "mimetype": "text/x-python3",
308
+ "name": "coconut",
309
+ "pygments_lexer": "coconut",
310
+ "version": "3.0.2"
311
+ }
312
+ },
313
+ "nbformat": 4,
314
+ "nbformat_minor": 4
315
+ }
release_2025_09_15/code/aei_report_v3_analysis_claude_ai.ipynb ADDED
@@ -0,0 +1,868 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# AEI Report v3 Claude.ai Analysis\n",
8
+ "\n",
9
+ "This notebook performs statistical analysis and creates visualizations from enriched Clio data.\n",
10
+ "It works directly with long format data from the preprocessing pipeline.\n",
11
+ "\n",
12
+ "**Input**: `aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv`\n",
13
+ "\n",
14
+ "**Output**: Visualizations"
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "markdown",
19
+ "metadata": {},
20
+ "source": [
21
+ "## 1. Setup and Data Loading"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "code",
26
+ "execution_count": null,
27
+ "metadata": {
28
+ "vscode": {
29
+ "languageId": "python"
30
+ }
31
+ },
32
+ "outputs": [],
33
+ "source": [
34
+ "from pathlib import Path\n",
35
+ "import pandas as pd\n",
36
+ "import matplotlib.pyplot as plt\n",
37
+ "\n",
38
+ "# Import all analysis functions\n",
39
+ "from aei_analysis_functions_claude_ai import (\n",
40
+ " setup_plot_style,\n",
41
+ " get_filtered_geographies,\n",
42
+ " plot_usage_index_bars,\n",
43
+ " plot_tier_map,\n",
44
+ " plot_usage_share_bars,\n",
45
+ " plot_tier_summary_table,\n",
46
+ " plot_gdp_scatter,\n",
47
+ " plot_request_comparison_cards,\n",
48
+ " plot_soc_usage_scatter,\n",
49
+ " plot_dc_task_request_cards,\n",
50
+ " collaboration_task_regression,\n",
51
+ " plot_usage_index_histogram,\n",
52
+ " plot_variable_map,\n",
53
+ " plot_soc_distribution,\n",
54
+ " plot_automation_preference_residuals,\n",
55
+ " plot_variable_bars,\n",
56
+ ")"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "code",
61
+ "execution_count": null,
62
+ "metadata": {
63
+ "vscode": {
64
+ "languageId": "python"
65
+ }
66
+ },
67
+ "outputs": [],
68
+ "source": [
69
+ "# Set matplotlib to use the correct backend and style\n",
70
+ "setup_plot_style()"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": null,
76
+ "metadata": {
77
+ "vscode": {
78
+ "languageId": "python"
79
+ }
80
+ },
81
+ "outputs": [],
82
+ "source": [
83
+ "# Set up output directory for saving figures\n",
84
+ "output_dir = Path(\"../data/output/figures/\")\n",
85
+ "output_dir.mkdir(parents=True, exist_ok=True)\n",
86
+ "output_dir_app = Path(\"../data/output/figures/appendix/\")\n",
87
+ "output_dir_app.mkdir(parents=True, exist_ok=True)\n",
88
+ "\n",
89
+ "# Load enriched data\n",
90
+ "data_path = \"../data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv\"\n",
91
+ "\n",
92
+ "# Load the data - use keep_default_na=False to preserve \"NA\" (Namibia) as string\n",
93
+ "df = pd.read_csv(data_path, keep_default_na=False, na_values=[\"\"])"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": null,
99
+ "metadata": {
100
+ "vscode": {
101
+ "languageId": "python"
102
+ }
103
+ },
104
+ "outputs": [],
105
+ "source": [
106
+ "# Filter countries to those with at least 200 observations\n",
107
+ "# Filter US states to those with at least 100 observations\n",
108
+ "filtered_countries, filtered_states = get_filtered_geographies(df)"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "markdown",
113
+ "metadata": {},
114
+ "source": [
115
+ "## 2.2 Global"
116
+ ]
117
+ },
118
+ {
119
+ "cell_type": "code",
120
+ "execution_count": null,
121
+ "metadata": {
122
+ "vscode": {
123
+ "languageId": "python"
124
+ }
125
+ },
126
+ "outputs": [],
127
+ "source": [
128
+ "# Top countries by share of global usage\n",
129
+ "plot_usage_share_bars(\n",
130
+ " df,\n",
131
+ " geography=\"country\",\n",
132
+ " top_n=30,\n",
133
+ ")\n",
134
+ "plt.savefig(\n",
135
+ " output_dir / \"usage_pct_bar_country_top30.png\", dpi=300, bbox_inches=\"tight\"\n",
136
+ ")"
137
+ ]
138
+ },
139
+ {
140
+ "cell_type": "code",
141
+ "execution_count": null,
142
+ "metadata": {
143
+ "vscode": {
144
+ "languageId": "python"
145
+ }
146
+ },
147
+ "outputs": [],
148
+ "source": [
149
+ "# Create world map showing usage tiers\n",
150
+ "plot_tier_map(\n",
151
+ " df,\n",
152
+ " geography=\"country\",\n",
153
+ " title=\"Anthropic AI Usage Index tiers by country\",\n",
154
+ " figsize=(16, 10),\n",
155
+ ")\n",
156
+ "plt.savefig(\n",
157
+ " output_dir / \"ai_usage_index_tier_map_country_all.png\", dpi=300, bbox_inches=\"tight\"\n",
158
+ ")"
159
+ ]
160
+ },
161
+ {
162
+ "cell_type": "code",
163
+ "execution_count": null,
164
+ "metadata": {
165
+ "vscode": {
166
+ "languageId": "python"
167
+ }
168
+ },
169
+ "outputs": [],
170
+ "source": [
171
+ "# Create tier summary table for countries\n",
172
+ "plot_tier_summary_table(df, geography=\"country\")\n",
173
+ "plt.savefig(\n",
174
+ " output_dir / \"tier_summary_table_country.png\",\n",
175
+ " dpi=300,\n",
176
+ " bbox_inches=\"tight\",\n",
177
+ " transparent=True,\n",
178
+ ")"
179
+ ]
180
+ },
181
+ {
182
+ "cell_type": "code",
183
+ "execution_count": null,
184
+ "metadata": {
185
+ "vscode": {
186
+ "languageId": "python"
187
+ }
188
+ },
189
+ "outputs": [],
190
+ "source": [
191
+ "# Top countries by usage per capita\n",
192
+ "plot_usage_index_bars(\n",
193
+ " df, geography=\"country\", top_n=20, filtered_entities=filtered_countries\n",
194
+ ")\n",
195
+ "plt.savefig(\n",
196
+ " output_dir / \"ai_usage_index_bar_country_top20.png\", dpi=300, bbox_inches=\"tight\"\n",
197
+ ")"
198
+ ]
199
+ },
200
+ {
201
+ "cell_type": "code",
202
+ "execution_count": null,
203
+ "metadata": {
204
+ "vscode": {
205
+ "languageId": "python"
206
+ }
207
+ },
208
+ "outputs": [],
209
+ "source": [
210
+ "# GDP vs usage regression for countries\n",
211
+ "plot_gdp_scatter(df, geography=\"country\", filtered_entities=filtered_countries)\n",
212
+ "plt.savefig(\n",
213
+ " output_dir / \"ai_usage_index_gdp_reg_country_min_obs.png\",\n",
214
+ " dpi=300,\n",
215
+ " bbox_inches=\"tight\",\n",
216
+ ")"
217
+ ]
218
+ },
219
+ {
220
+ "cell_type": "code",
221
+ "execution_count": null,
222
+ "metadata": {
223
+ "vscode": {
224
+ "languageId": "python"
225
+ }
226
+ },
227
+ "outputs": [],
228
+ "source": [
229
+ "# GDP vs usage regression for countries\n",
230
+ "plot_gdp_scatter(\n",
231
+ " df, geography=\"country\", filtered_entities=filtered_countries, figsize=(13.2, 8.25)\n",
232
+ ")\n",
233
+ "plt.savefig(\n",
234
+ " output_dir / \"ai_usage_index_gdp_reg_country_min_obs_wide.png\",\n",
235
+ " dpi=300,\n",
236
+ " bbox_inches=\"tight\",\n",
237
+ ")"
238
+ ]
239
+ },
240
+ {
241
+ "cell_type": "code",
242
+ "execution_count": null,
243
+ "metadata": {
244
+ "vscode": {
245
+ "languageId": "python"
246
+ }
247
+ },
248
+ "outputs": [],
249
+ "source": [
250
+ "# Create SOC diffusion scatter plot with top 4 classified SOC groups (2x2 grid)\n",
251
+ "plot_soc_usage_scatter(df, geography=\"country\")\n",
252
+ "plt.savefig(\n",
253
+ " output_dir / \"soc_usage_scatter_top4_country_min.png\", dpi=300, bbox_inches=\"tight\"\n",
254
+ ")"
255
+ ]
256
+ },
257
+ {
258
+ "cell_type": "code",
259
+ "execution_count": null,
260
+ "metadata": {
261
+ "vscode": {
262
+ "languageId": "python"
263
+ }
264
+ },
265
+ "outputs": [],
266
+ "source": [
267
+ "# Find the highest usage country in each tier (1-4)\n",
268
+ "\n",
269
+ "# Get usage tier and usage count data for all countries\n",
270
+ "tier_data = df[\n",
271
+ " (df[\"geography\"] == \"country\")\n",
272
+ " & (df[\"variable\"] == \"usage_tier\")\n",
273
+ " & (df[\"facet\"] == \"country\")\n",
274
+ "][[\"geo_id\", \"value\"]].rename(columns={\"value\": \"tier\"})\n",
275
+ "\n",
276
+ "usage_data = df[\n",
277
+ " (df[\"geography\"] == \"country\")\n",
278
+ " & (df[\"variable\"] == \"usage_count\")\n",
279
+ " & (df[\"facet\"] == \"country\")\n",
280
+ "][[\"geo_id\", \"geo_name\", \"value\"]].rename(columns={\"value\": \"usage_count\"})\n",
281
+ "\n",
282
+ "# Merge tier and usage data\n",
283
+ "country_data = usage_data.merge(tier_data, on=\"geo_id\")\n",
284
+ "\n",
285
+ "selected_countries = [\n",
286
+ " country_data[country_data[\"tier\"] == tier]\n",
287
+ " .sort_values(\"usage_count\", ascending=False)\n",
288
+ " .iloc[0][\"geo_id\"]\n",
289
+ " for tier in [4, 3, 2, 1]\n",
290
+ "]"
291
+ ]
292
+ },
293
+ {
294
+ "cell_type": "code",
295
+ "execution_count": null,
296
+ "metadata": {
297
+ "vscode": {
298
+ "languageId": "python"
299
+ }
300
+ },
301
+ "outputs": [],
302
+ "source": [
303
+ "# Compare top overrepresented requests for 4 highest usage countries in each tier\n",
304
+ "plot_request_comparison_cards(\n",
305
+ " df,\n",
306
+ " geo_ids=selected_countries,\n",
307
+ " top_n=5,\n",
308
+ " title=\"Top overrepresented requests for the United States, Brazil, Vietnam and India\",\n",
309
+ " geography=\"country\",\n",
310
+ ")\n",
311
+ "\n",
312
+ "plt.savefig(\n",
313
+ " output_dir / \"request_comparison_cards_by_tier_country_selected4.png\",\n",
314
+ " dpi=300,\n",
315
+ " bbox_inches=\"tight\",\n",
316
+ ")"
317
+ ]
318
+ },
319
+ {
320
+ "cell_type": "markdown",
321
+ "metadata": {},
322
+ "source": [
323
+ "## 3. United States"
324
+ ]
325
+ },
326
+ {
327
+ "cell_type": "code",
328
+ "execution_count": null,
329
+ "metadata": {
330
+ "vscode": {
331
+ "languageId": "python"
332
+ }
333
+ },
334
+ "outputs": [],
335
+ "source": [
336
+ "# State tier map\n",
337
+ "plot_tier_map(\n",
338
+ " df, geography=\"state_us\", title=\"Anthropic AI Usage Index tier by US state\"\n",
339
+ ")\n",
340
+ "plt.savefig(\n",
341
+ " output_dir / \"ai_usage_index_tier_map_state_all.png\", dpi=300, bbox_inches=\"tight\"\n",
342
+ ")"
343
+ ]
344
+ },
345
+ {
346
+ "cell_type": "code",
347
+ "execution_count": null,
348
+ "metadata": {
349
+ "vscode": {
350
+ "languageId": "python"
351
+ }
352
+ },
353
+ "outputs": [],
354
+ "source": [
355
+ "# Top 20 US states\n",
356
+ "plot_usage_index_bars(\n",
357
+ " df,\n",
358
+ " geography=\"state_us\",\n",
359
+ " top_n=20,\n",
360
+ ")\n",
361
+ "plt.savefig(\n",
362
+ " output_dir / \"ai_usage_index_bar_state_top20.png\", dpi=300, bbox_inches=\"tight\"\n",
363
+ ")"
364
+ ]
365
+ },
366
+ {
367
+ "cell_type": "code",
368
+ "execution_count": null,
369
+ "metadata": {
370
+ "vscode": {
371
+ "languageId": "python"
372
+ }
373
+ },
374
+ "outputs": [],
375
+ "source": [
376
+ "# Create tier summary table for US states\n",
377
+ "plot_tier_summary_table(df, geography=\"state_us\")\n",
378
+ "plt.savefig(\n",
379
+ " output_dir / \"tier_summary_table_state.png\",\n",
380
+ " dpi=300,\n",
381
+ " bbox_inches=\"tight\",\n",
382
+ " transparent=True,\n",
383
+ ")"
384
+ ]
385
+ },
386
+ {
387
+ "cell_type": "code",
388
+ "execution_count": null,
389
+ "metadata": {
390
+ "vscode": {
391
+ "languageId": "python"
392
+ }
393
+ },
394
+ "outputs": [],
395
+ "source": [
396
+ "# Find the highest usage US state in each tier (1-4)\n",
397
+ "\n",
398
+ "# Get usage tier and usage count data for US states\n",
399
+ "tier_data_states = df[\n",
400
+ " (df[\"geography\"] == \"state_us\")\n",
401
+ " & (df[\"variable\"] == \"usage_tier\")\n",
402
+ " & (df[\"facet\"] == \"state_us\")\n",
403
+ "][[\"geo_id\", \"value\"]].rename(columns={\"value\": \"tier\"})\n",
404
+ "\n",
405
+ "usage_data_states = df[\n",
406
+ " (df[\"geography\"] == \"state_us\")\n",
407
+ " & (df[\"variable\"] == \"usage_count\")\n",
408
+ " & (df[\"facet\"] == \"state_us\")\n",
409
+ "][[\"geo_id\", \"geo_name\", \"value\"]].rename(columns={\"value\": \"usage_count\"})\n",
410
+ "\n",
411
+ "# Merge tier and usage data\n",
412
+ "state_data = usage_data_states.merge(tier_data_states, on=\"geo_id\")\n",
413
+ "\n",
414
+ "# Find the highest usage state in each tier\n",
415
+ "selected_states = [\n",
416
+ " state_data[state_data[\"tier\"] == tier]\n",
417
+ " .sort_values(\"usage_count\", ascending=False)\n",
418
+ " .iloc[0][\"geo_id\"]\n",
419
+ " for tier in [4, 3, 2, 1]\n",
420
+ "]"
421
+ ]
422
+ },
423
+ {
424
+ "cell_type": "code",
425
+ "execution_count": null,
426
+ "metadata": {
427
+ "vscode": {
428
+ "languageId": "python"
429
+ }
430
+ },
431
+ "outputs": [],
432
+ "source": [
433
+ "# Compare top overrepresented requests for US states representing each tier\n",
434
+ "# CA (Tier 4), TX (Tier 3), FL (Tier 2), SC (Tier 1)\n",
435
+ "states_to_compare = [\"CA\", \"TX\", \"FL\", \"SC\"]\n",
436
+ "\n",
437
+ "plot_request_comparison_cards(\n",
438
+ " df,\n",
439
+ " geo_ids=states_to_compare,\n",
440
+ " top_n=5,\n",
441
+ " title=\"Top overrepresented high-level requests for California, Texas, Florida and South Carolina\",\n",
442
+ " geography=\"state_us\",\n",
443
+ ")\n",
444
+ "\n",
445
+ "plt.savefig(\n",
446
+ " output_dir / \"request_comparison_cards_by_tier_state_selected4.png\",\n",
447
+ " dpi=300,\n",
448
+ " bbox_inches=\"tight\",\n",
449
+ ")"
450
+ ]
451
+ },
452
+ {
453
+ "cell_type": "code",
454
+ "execution_count": null,
455
+ "metadata": {
456
+ "vscode": {
457
+ "languageId": "python"
458
+ }
459
+ },
460
+ "outputs": [],
461
+ "source": [
462
+ "# Create card-style visualization for Washington DC\n",
463
+ "# Shows top O*NET tasks and top request categories\n",
464
+ "plot_dc_task_request_cards(\n",
465
+ " df, title=\"Washington, DC: Highest Anthropic AI Usage Index in the US\"\n",
466
+ ")\n",
467
+ "\n",
468
+ "plt.savefig(\n",
469
+ " output_dir / \"task_request_comparison_state_dc.png\", dpi=300, bbox_inches=\"tight\"\n",
470
+ ")"
471
+ ]
472
+ },
473
+ {
474
+ "cell_type": "code",
475
+ "execution_count": null,
476
+ "metadata": {
477
+ "vscode": {
478
+ "languageId": "python"
479
+ }
480
+ },
481
+ "outputs": [],
482
+ "source": [
483
+ "# Collaboration pattern analysis with task mix control\n",
484
+ "# This analysis determines whether the relationship between AUI\n",
485
+ "# and automation preference persists after controlling for task composition\n",
486
+ "collaboration_task_regression(df, geography=\"country\")\n",
487
+ "plt.savefig(\n",
488
+ " output_dir / \"collaboration_task_control_partial_corr_country.png\",\n",
489
+ " dpi=300,\n",
490
+ " bbox_inches=\"tight\",\n",
491
+ ")"
492
+ ]
493
+ },
494
+ {
495
+ "cell_type": "markdown",
496
+ "metadata": {},
497
+ "source": [
498
+ "# Appendix"
499
+ ]
500
+ },
501
+ {
502
+ "cell_type": "markdown",
503
+ "metadata": {},
504
+ "source": [
505
+ "## Global"
506
+ ]
507
+ },
508
+ {
509
+ "cell_type": "code",
510
+ "execution_count": null,
511
+ "metadata": {
512
+ "vscode": {
513
+ "languageId": "python"
514
+ }
515
+ },
516
+ "outputs": [],
517
+ "source": [
518
+ "# Distribution histogram\n",
519
+ "plot_usage_index_histogram(\n",
520
+ " df, geography=\"country\", title=\"Distribution of Anthropic AI Usage Index\"\n",
521
+ ")\n",
522
+ "plt.savefig(\n",
523
+ " output_dir_app / \"ai_usage_index_histogram_country_all.png\",\n",
524
+ " dpi=300,\n",
525
+ " bbox_inches=\"tight\",\n",
526
+ ")"
527
+ ]
528
+ },
529
+ {
530
+ "cell_type": "code",
531
+ "execution_count": null,
532
+ "metadata": {
533
+ "vscode": {
534
+ "languageId": "python"
535
+ }
536
+ },
537
+ "outputs": [],
538
+ "source": [
539
+ "# Create map showing share of usage\n",
540
+ "plot_variable_map(\n",
541
+ " df,\n",
542
+ " variable=\"usage_pct\",\n",
543
+ " geography=\"country\",\n",
544
+ " title=\"Share of global Claude usage by country\",\n",
545
+ " figsize=(14, 8),\n",
546
+ ")\n",
547
+ "plt.savefig(\n",
548
+ " output_dir_app / \"usage_pct_map_country_all.png\", dpi=300, bbox_inches=\"tight\"\n",
549
+ ")"
550
+ ]
551
+ },
552
+ {
553
+ "cell_type": "code",
554
+ "execution_count": null,
555
+ "metadata": {
556
+ "vscode": {
557
+ "languageId": "python"
558
+ }
559
+ },
560
+ "outputs": [],
561
+ "source": [
562
+ "# Create world map showing usage per capita\n",
563
+ "plot_variable_map(\n",
564
+ " df,\n",
565
+ " variable=\"usage_per_capita_index\",\n",
566
+ " geography=\"country\",\n",
567
+ " title=\"Anthropic AI Usage Index by country\",\n",
568
+ " center_at_one=True,\n",
569
+ " figsize=(14, 8),\n",
570
+ ")\n",
571
+ "plt.savefig(\n",
572
+ " output_dir_app / \"ai_usage_index_map_country_all.png\", dpi=300, bbox_inches=\"tight\"\n",
573
+ ")"
574
+ ]
575
+ },
576
+ {
577
+ "cell_type": "code",
578
+ "execution_count": null,
579
+ "metadata": {
580
+ "vscode": {
581
+ "languageId": "python"
582
+ }
583
+ },
584
+ "outputs": [],
585
+ "source": [
586
+ "# AUI for all countries\n",
587
+ "plot_usage_index_bars(\n",
588
+ " df,\n",
589
+ " geography=\"country\",\n",
590
+ " filtered_entities=filtered_countries,\n",
591
+ ")\n",
592
+ "plt.savefig(\n",
593
+ " output_dir_app / \"ai_usage_index_country_all.png\", dpi=300, bbox_inches=\"tight\"\n",
594
+ ")"
595
+ ]
596
+ },
597
+ {
598
+ "cell_type": "code",
599
+ "execution_count": null,
600
+ "metadata": {
601
+ "vscode": {
602
+ "languageId": "python"
603
+ }
604
+ },
605
+ "outputs": [],
606
+ "source": [
607
+ "# SOC distribution comparison for countries by usage tier\n",
608
+ "plot_soc_distribution(\n",
609
+ " df,\n",
610
+ " selected_countries,\n",
611
+ " \"country\",\n",
612
+ " title=\"Occupation groups by Claude task usage in the United States, Brazil, Vietnam and India\",\n",
613
+ ")\n",
614
+ "plt.savefig(\n",
615
+ " output_dir_app / \"soc_distribution_by_tier_country_selected4.png\",\n",
616
+ " dpi=300,\n",
617
+ " bbox_inches=\"tight\",\n",
618
+ ")"
619
+ ]
620
+ },
621
+ {
622
+ "cell_type": "code",
623
+ "execution_count": null,
624
+ "metadata": {
625
+ "vscode": {
626
+ "languageId": "python"
627
+ }
628
+ },
629
+ "outputs": [],
630
+ "source": [
631
+ "# Plot automation preference residuals after controlling for task mix\n",
632
+ "# This shows which countries prefer more automation vs augmentation\n",
633
+ "# than would be expected given their task composition\n",
634
+ "plot_automation_preference_residuals(df)\n",
635
+ "plt.savefig(\n",
636
+ " output_dir_app / \"automation_preference_residuals.png\", dpi=300, bbox_inches=\"tight\"\n",
637
+ ")"
638
+ ]
639
+ },
640
+ {
641
+ "cell_type": "markdown",
642
+ "metadata": {},
643
+ "source": [
644
+ "## United States"
645
+ ]
646
+ },
647
+ {
648
+ "cell_type": "code",
649
+ "execution_count": null,
650
+ "metadata": {
651
+ "vscode": {
652
+ "languageId": "python"
653
+ }
654
+ },
655
+ "outputs": [],
656
+ "source": [
657
+ "# Top countries by share of global usage\n",
658
+ "plot_usage_share_bars(\n",
659
+ " df,\n",
660
+ " geography=\"state_us\",\n",
661
+ " top_n=30,\n",
662
+ " title=\"Top 30 US states by share of US Claude usage\",\n",
663
+ ")\n",
664
+ "plt.savefig(\n",
665
+ " output_dir_app / \"usage_pct_bar_state_top30.png\", dpi=300, bbox_inches=\"tight\"\n",
666
+ ")"
667
+ ]
668
+ },
669
+ {
670
+ "cell_type": "code",
671
+ "execution_count": null,
672
+ "metadata": {
673
+ "vscode": {
674
+ "languageId": "python"
675
+ }
676
+ },
677
+ "outputs": [],
678
+ "source": [
679
+ "# Distribution histogram\n",
680
+ "plot_usage_index_histogram(\n",
681
+ " df, geography=\"state_us\", title=\"Distribution of Anthropic AI Usage Index\"\n",
682
+ ")\n",
683
+ "plt.savefig(\n",
684
+ " output_dir_app / \"ai_usage_index_histogram_state_all.png\",\n",
685
+ " dpi=300,\n",
686
+ " bbox_inches=\"tight\",\n",
687
+ ")"
688
+ ]
689
+ },
690
+ {
691
+ "cell_type": "code",
692
+ "execution_count": null,
693
+ "metadata": {
694
+ "vscode": {
695
+ "languageId": "python"
696
+ }
697
+ },
698
+ "outputs": [],
699
+ "source": [
700
+ "# Create map showing share of usage\n",
701
+ "plot_variable_map(\n",
702
+ " df,\n",
703
+ " variable=\"usage_pct\",\n",
704
+ " geography=\"state_us\",\n",
705
+ " title=\"Share of global Claude usage by US state\",\n",
706
+ " figsize=(14, 8),\n",
707
+ ")\n",
708
+ "plt.savefig(\n",
709
+ " output_dir_app / \"usage_pct_map_state_all.png\", dpi=300, bbox_inches=\"tight\"\n",
710
+ ")"
711
+ ]
712
+ },
713
+ {
714
+ "cell_type": "code",
715
+ "execution_count": null,
716
+ "metadata": {
717
+ "vscode": {
718
+ "languageId": "python"
719
+ }
720
+ },
721
+ "outputs": [],
722
+ "source": [
723
+ "# Create map showing per capita usage\n",
724
+ "plot_variable_map(\n",
725
+ " df,\n",
726
+ " variable=\"usage_per_capita_index\",\n",
727
+ " geography=\"state_us\",\n",
728
+ " title=\"Anthropic AI Usage Index by US state\",\n",
729
+ " center_at_one=True,\n",
730
+ " figsize=(14, 8),\n",
731
+ ")\n",
732
+ "plt.savefig(\n",
733
+ " output_dir_app / \"ai_usage_index_map_state_all.png\", dpi=300, bbox_inches=\"tight\"\n",
734
+ ")"
735
+ ]
736
+ },
737
+ {
738
+ "cell_type": "code",
739
+ "execution_count": null,
740
+ "metadata": {
741
+ "vscode": {
742
+ "languageId": "python"
743
+ }
744
+ },
745
+ "outputs": [],
746
+ "source": [
747
+ "plot_usage_index_bars(\n",
748
+ " df,\n",
749
+ " geography=\"state_us\",\n",
750
+ ")\n",
751
+ "plt.savefig(\n",
752
+ " output_dir_app / \"ai_usage_index_bar_state_all.png\", dpi=300, bbox_inches=\"tight\"\n",
753
+ ")"
754
+ ]
755
+ },
756
+ {
757
+ "cell_type": "code",
758
+ "execution_count": null,
759
+ "metadata": {
760
+ "vscode": {
761
+ "languageId": "python"
762
+ }
763
+ },
764
+ "outputs": [],
765
+ "source": [
766
+ "# GDP vs usage regression for US states\n",
767
+ "plot_gdp_scatter(df, geography=\"state_us\", filtered_entities=filtered_states)\n",
768
+ "plt.savefig(\n",
769
+ " output_dir_app / \"ai_usage_index_gdp_reg_state_min_obs.png\",\n",
770
+ " dpi=300,\n",
771
+ " bbox_inches=\"tight\",\n",
772
+ ")"
773
+ ]
774
+ },
775
+ {
776
+ "cell_type": "code",
777
+ "execution_count": null,
778
+ "metadata": {
779
+ "vscode": {
780
+ "languageId": "python"
781
+ }
782
+ },
783
+ "outputs": [],
784
+ "source": [
785
+ "# SOC distribution comparison for US states by usage tier\n",
786
+ "plot_soc_distribution(\n",
787
+ " df,\n",
788
+ " selected_states,\n",
789
+ " \"state_us\",\n",
790
+ " title=\"Occupation groups by Claude task usage in California, Texas, Florida and South Carolina\",\n",
791
+ ")\n",
792
+ "plt.savefig(\n",
793
+ " output_dir_app / \"soc_distribution_by_tier_state_selected4.png\",\n",
794
+ " dpi=300,\n",
795
+ " bbox_inches=\"tight\",\n",
796
+ ")"
797
+ ]
798
+ },
799
+ {
800
+ "cell_type": "code",
801
+ "execution_count": null,
802
+ "metadata": {
803
+ "vscode": {
804
+ "languageId": "python"
805
+ }
806
+ },
807
+ "outputs": [],
808
+ "source": [
809
+ "# Top SOC chart\n",
810
+ "plot_variable_bars(\n",
811
+ " df,\n",
812
+ " variable=\"soc_pct\",\n",
813
+ " geography=\"country\",\n",
814
+ " facet=\"soc_occupation\",\n",
815
+ " geo_id=\"USA\",\n",
816
+ " title=\"Occupation groups in the US by Claude use for associated tasks\",\n",
817
+ " xlabel=\"Share of total usage (%)\",\n",
818
+ " exclude_not_classified=True,\n",
819
+ ")\n",
820
+ "\n",
821
+ "# Save the figure\n",
822
+ "plt.savefig(output_dir_app / \"soc_bar_country_us.png\", dpi=300, bbox_inches=\"tight\")"
823
+ ]
824
+ },
825
+ {
826
+ "cell_type": "code",
827
+ "execution_count": null,
828
+ "metadata": {
829
+ "vscode": {
830
+ "languageId": "python"
831
+ }
832
+ },
833
+ "outputs": [],
834
+ "source": [
835
+ "# Create SOC diffusion scatter plot with top 4 classified SOC groups\n",
836
+ "plot_soc_usage_scatter(\n",
837
+ " df,\n",
838
+ " geography=\"state_us\",\n",
839
+ ")\n",
840
+ "plt.savefig(\n",
841
+ " output_dir_app / \"soc_usage_scatter_top4_state_min.png\",\n",
842
+ " dpi=300,\n",
843
+ " bbox_inches=\"tight\",\n",
844
+ ")"
845
+ ]
846
+ }
847
+ ],
848
+ "metadata": {
849
+ "kernelspec": {
850
+ "display_name": "Coconut",
851
+ "language": "coconut",
852
+ "name": "coconut"
853
+ },
854
+ "language_info": {
855
+ "codemirror_mode": {
856
+ "name": "python",
857
+ "version": 3
858
+ },
859
+ "file_extension": ".coco",
860
+ "mimetype": "text/x-python3",
861
+ "name": "coconut",
862
+ "pygments_lexer": "coconut",
863
+ "version": "3.0.2"
864
+ }
865
+ },
866
+ "nbformat": 4,
867
+ "nbformat_minor": 4
868
+ }
release_2025_09_15/code/aei_report_v3_change_over_time_claude_ai.py ADDED
@@ -0,0 +1,564 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Clean Economic Analysis Figure Generator
4
+ ======================================
5
+ Generates three key figures for V1→V2→V3 economic analysis:
6
+ 1. Usage Share Trends Across Economic Index Reports
7
+ 2. Notable Task Changes (Growing/Declining Tasks)
8
+ 3. Automation vs Augmentation Evolution
9
+
10
+ ASSUMPTIONS:
11
+ - V1/V2/V3 use same task taxonomy
12
+ - GLOBAL geo_id is representative
13
+ - Missing values = 0% usage
14
+ - Percentages don't need renormalization
15
+ """
16
+
17
+ import os
18
+ import warnings
19
+ from pathlib import Path
20
+
21
+ import matplotlib.pyplot as plt
22
+ import numpy as np
23
+ import pandas as pd
24
+ import seaborn as sns
25
+
26
+ # Use default matplotlib styling
27
+ plt.style.use("default")
28
+
29
+ # Configuration
30
+ FILES = {
31
+ "v1_tasks": "../data/input/task_pct_v1.csv",
32
+ "v2_tasks": "../data/input/task_pct_v2.csv",
33
+ "v3_data": "../data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv",
34
+ "v1_auto": "../data/input/automation_vs_augmentation_v1.csv",
35
+ "v2_auto": "../data/input/automation_vs_augmentation_v2.csv",
36
+ "onet": "../data/intermediate/onet_task_statements.csv",
37
+ "soc": "../data/intermediate/soc_structure.csv",
38
+ }
39
+
40
+ AUTOMATION_TYPES = ["directive", "feedback_loop"]
41
+ AUGMENTATION_TYPES = ["validation", "task_iteration", "learning"]
42
+ MIN_THRESHOLD = 1.0
43
+ COLORS = {
44
+ "increase": "#2E8B57",
45
+ "decrease": "#CD5C5C",
46
+ "automation": "#FF6B6B",
47
+ "augmentation": "#4ECDC4",
48
+ }
49
+
50
+ # ============================================================================
51
+ # DATA LOADING
52
+ # ============================================================================
53
+
54
+
55
+ def load_task_data(filepath, version_name):
56
+ """Load and validate task percentage data for any version."""
57
+ if not Path(filepath).exists():
58
+ raise FileNotFoundError(f"Missing {version_name} data: {filepath}")
59
+
60
+ df = pd.read_csv(filepath)
61
+
62
+ if version_name == "V3":
63
+ # Filter V3 data for global onet tasks
64
+ df = df[
65
+ (df["geo_id"] == "GLOBAL")
66
+ & (df["facet"] == "onet_task")
67
+ & (df["variable"] == "onet_task_pct")
68
+ ].copy()
69
+ df = df.rename(columns={"cluster_name": "task_name", "value": "pct"})
70
+
71
+ # Remove "not_classified" from V3 for fair comparison with V1/V2
72
+ # Keep "none" as it represents legitimate unclassifiable tasks across all versions
73
+ not_classified_pct = df[df["task_name"] == "not_classified"]["pct"].sum()
74
+ df = df[df["task_name"] != "not_classified"].copy()
75
+
76
+ # Renormalize V3 to 100% after removing not_classified
77
+ if not_classified_pct > 0:
78
+ remaining_total = df["pct"].sum()
79
+ normalization_factor = 100 / remaining_total
80
+ df["pct"] = df["pct"] * normalization_factor
81
+ print(
82
+ f" → Removed {not_classified_pct:.1f}% not_classified, renormalized by {normalization_factor:.3f}x"
83
+ )
84
+
85
+ # Validate structure
86
+ if "task_name" not in df.columns or "pct" not in df.columns:
87
+ raise ValueError(f"{version_name} data missing required columns")
88
+
89
+ # Normalize task names and validate totals
90
+ df["task_name"] = df["task_name"].str.lower().str.strip()
91
+ total = df["pct"].sum()
92
+
93
+ if not (80 <= total <= 120):
94
+ warnings.warn(
95
+ f"{version_name} percentages sum to {total:.1f}% (expected ~100%)",
96
+ stacklevel=2,
97
+ )
98
+
99
+ print(f"✓ {version_name}: {len(df)} tasks, {total:.1f}% coverage")
100
+ return df[["task_name", "pct"]]
101
+
102
+
103
+ def load_automation_data():
104
+ """Load automation/collaboration data for all versions."""
105
+ result = {}
106
+
107
+ # V1 and V2 - always renormalize to 100%
108
+ for version in ["v1", "v2"]:
109
+ df = pd.read_csv(FILES[f"{version}_auto"])
110
+
111
+ # Always renormalize to 100%
112
+ total = df["pct"].sum()
113
+ normalization_factor = 100 / total
114
+ df["pct"] = df["pct"] * normalization_factor
115
+ print(
116
+ f" → {version.upper()} automation: renormalized from {total:.1f}% to 100.0%"
117
+ )
118
+
119
+ result[version] = df
120
+
121
+ # V3 from processed data
122
+ df = pd.read_csv(FILES["v3_data"])
123
+ v3_collab = df[
124
+ (df["geo_id"] == "GLOBAL")
125
+ & (df["facet"] == "collaboration")
126
+ & (df["level"] == 0)
127
+ & (df["variable"] == "collaboration_pct")
128
+ ].copy()
129
+ v3_collab = v3_collab.rename(
130
+ columns={"cluster_name": "interaction_type", "value": "pct"}
131
+ )
132
+
133
+ # Remove "not_classified" from V3 collaboration data for fair comparison
134
+ not_classified_pct = v3_collab[v3_collab["interaction_type"] == "not_classified"][
135
+ "pct"
136
+ ].sum()
137
+ v3_collab = v3_collab[v3_collab["interaction_type"] != "not_classified"].copy()
138
+
139
+ # Renormalize V3 collaboration to 100% after removing not_classified
140
+ if not_classified_pct > 0:
141
+ remaining_total = v3_collab["pct"].sum()
142
+ normalization_factor = 100 / remaining_total
143
+ v3_collab["pct"] = v3_collab["pct"] * normalization_factor
144
+ print(
145
+ f" → V3 collaboration: removed {not_classified_pct:.1f}% not_classified, renormalized by {normalization_factor:.3f}x"
146
+ )
147
+
148
+ result["v3"] = v3_collab[["interaction_type", "pct"]]
149
+
150
+ print(f"✓ Automation data loaded for all versions")
151
+ return result
152
+
153
+
154
+ def load_occupational_mapping():
155
+ """Load O*NET to SOC mapping data."""
156
+ onet_df = pd.read_csv(FILES["onet"])
157
+ soc_df = pd.read_csv(FILES["soc"]).dropna(subset=["Major Group"])
158
+
159
+ onet_df["soc_major_group"] = onet_df["O*NET-SOC Code"].str[:2]
160
+ soc_df["soc_major_group"] = soc_df["Major Group"].str[:2]
161
+
162
+ merged = onet_df.merge(
163
+ soc_df[["soc_major_group", "SOC or O*NET-SOC 2019 Title"]], on="soc_major_group"
164
+ )
165
+ merged["task_normalized"] = merged["Task"].str.lower().str.strip()
166
+
167
+ print(f"✓ Occupational mapping: {merged['soc_major_group'].nunique()} SOC groups")
168
+ return merged
169
+
170
+
171
+ # ============================================================================
172
+ # ANALYSIS
173
+ # ============================================================================
174
+
175
+
176
+ def analyze_occupational_trends(task_data, onet_soc_data):
177
+ """Analyze occupational category trends across versions."""
178
+
179
+ def aggregate_by_occupation(df):
180
+ merged = df.merge(
181
+ onet_soc_data[
182
+ ["task_normalized", "SOC or O*NET-SOC 2019 Title"]
183
+ ].drop_duplicates(),
184
+ left_on="task_name",
185
+ right_on="task_normalized",
186
+ how="left",
187
+ )
188
+
189
+ unmapped = merged[merged["SOC or O*NET-SOC 2019 Title"].isna()]
190
+ # Only warn if there are real unmapped tasks (not just "none" and "not_classified")
191
+ real_unmapped = unmapped[
192
+ ~unmapped["task_name"].isin(["none", "not_classified"])
193
+ ]
194
+ if len(real_unmapped) > 0:
195
+ real_unmapped_pct = real_unmapped["pct"].sum()
196
+ warnings.warn(
197
+ f"{real_unmapped_pct:.1f}% of tasks unmapped to occupational categories",
198
+ stacklevel=2,
199
+ )
200
+
201
+ return merged.groupby("SOC or O*NET-SOC 2019 Title")["pct"].sum()
202
+
203
+ # Aggregate all versions
204
+ comparison_df = pd.DataFrame(
205
+ {
206
+ "v1": aggregate_by_occupation(task_data["v1"]),
207
+ "v2": aggregate_by_occupation(task_data["v2"]),
208
+ "v3": aggregate_by_occupation(task_data["v3"]),
209
+ }
210
+ ).fillna(0)
211
+
212
+ # Calculate changes and filter economically significant categories
213
+ comparison_df["v3_v1_diff"] = comparison_df["v3"] - comparison_df["v1"]
214
+ significant = comparison_df[
215
+ (comparison_df[["v1", "v2", "v3"]] >= MIN_THRESHOLD).any(axis=1)
216
+ ]
217
+
218
+ print(
219
+ f"✓ Occupational analysis: {len(significant)} economically significant categories"
220
+ )
221
+ return significant.sort_values("v1", ascending=False)
222
+
223
+
224
+ def analyze_task_changes(task_data, onet_soc_data, top_n=12):
225
+ """Identify most notable task changes V1→V3."""
226
+ v1, v3 = task_data["v1"], task_data["v3"]
227
+
228
+ # Compare changes
229
+ comparison = (
230
+ v1[["task_name", "pct"]]
231
+ .rename(columns={"pct": "v1_pct"})
232
+ .merge(
233
+ v3[["task_name", "pct"]].rename(columns={"pct": "v3_pct"}),
234
+ on="task_name",
235
+ how="outer",
236
+ )
237
+ .fillna(0)
238
+ )
239
+
240
+ comparison["change"] = comparison["v3_pct"] - comparison["v1_pct"]
241
+ comparison["rel_change"] = np.where(
242
+ comparison["v1_pct"] > 0,
243
+ (comparison["v3_pct"] - comparison["v1_pct"]) / comparison["v1_pct"] * 100,
244
+ np.inf,
245
+ )
246
+
247
+ # Add SOC context
248
+ with_context = comparison.merge(
249
+ onet_soc_data[
250
+ ["task_normalized", "SOC or O*NET-SOC 2019 Title"]
251
+ ].drop_duplicates(),
252
+ left_on="task_name",
253
+ right_on="task_normalized",
254
+ how="left",
255
+ )
256
+
257
+ # Get all tasks with economically significant changes (>= 0.2pp)
258
+ significant_changes = with_context[abs(with_context["change"]) >= 0.2].copy()
259
+
260
+ # Create category column with formatted relative percentage change
261
+ def format_rel_change(row):
262
+ if row["v1_pct"] > 0:
263
+ rel_change = (row["v3_pct"] - row["v1_pct"]) / row["v1_pct"] * 100
264
+ return f"{rel_change:+.0f}%"
265
+ else:
266
+ return "new"
267
+
268
+ significant_changes["category"] = significant_changes.apply(
269
+ format_rel_change, axis=1
270
+ )
271
+
272
+ # Rename column and sort by change descending
273
+ significant_changes = significant_changes.rename(
274
+ columns={"SOC or O*NET-SOC 2019 Title": "soc_group"}
275
+ )
276
+ significant_changes = significant_changes.sort_values("change", ascending=False)
277
+
278
+ # Round to 3 decimals
279
+ significant_changes[["v1_pct", "v3_pct", "change"]] = significant_changes[
280
+ ["v1_pct", "v3_pct", "change"]
281
+ ].round(3)
282
+
283
+ print(f"✓ Task changes: {len(significant_changes)} notable changes identified")
284
+ return significant_changes
285
+
286
+
287
+ def analyze_automation_trends(automation_data):
288
+ """Analyze automation vs augmentation trends across versions."""
289
+ # Standardize interaction names
290
+ for df in automation_data.values():
291
+ df["interaction_type"] = df["interaction_type"].replace(
292
+ {"task iteration": "task_iteration", "feedback loop": "feedback_loop"}
293
+ )
294
+
295
+ results = {}
296
+ for version, data in automation_data.items():
297
+ auto_total = data[data["interaction_type"].isin(AUTOMATION_TYPES)]["pct"].sum()
298
+ aug_total = data[data["interaction_type"].isin(AUGMENTATION_TYPES)]["pct"].sum()
299
+
300
+ interaction_dict = dict(zip(data["interaction_type"], data["pct"], strict=True))
301
+ results[version] = {
302
+ "automation_total": auto_total,
303
+ "augmentation_total": aug_total,
304
+ "directive": interaction_dict["directive"],
305
+ "feedback_loop": interaction_dict["feedback_loop"],
306
+ "validation": interaction_dict["validation"],
307
+ "task_iteration": interaction_dict["task_iteration"],
308
+ "learning": interaction_dict["learning"],
309
+ }
310
+
311
+ print("✓ Automation trends analysis complete")
312
+ return results
313
+
314
+
315
+ # ============================================================================
316
+ # VISUALIZATION
317
+ # ============================================================================
318
+
319
+
320
+ def setup_plot_style():
321
+ """Configure consistent plot styling."""
322
+ plt.rcParams.update({"font.size": 12, "axes.titlesize": 16, "axes.labelsize": 14})
323
+ sns.set_context("notebook", font_scale=1.1)
324
+
325
+
326
+ def create_usage_trends_figure(comparison_df):
327
+ """Create Usage Share Trends subplot figure."""
328
+ setup_plot_style()
329
+
330
+ # Get top categories
331
+ top_cats = comparison_df[
332
+ (comparison_df[["v1", "v2", "v3"]] >= MIN_THRESHOLD).any(axis=1)
333
+ ].head(8)
334
+ top_cats.index = top_cats.index.str.replace(" Occupations", "")
335
+
336
+ fig, axes = plt.subplots(2, 4, figsize=(20, 15))
337
+ axes = axes.flatten()
338
+
339
+ line_color = "#FF8E53"
340
+ fill_color = "#DEB887"
341
+
342
+ # Simplified date labels (actual periods: Dec 2024-Jan 2025, Feb-Mar 2025, Aug 2025)
343
+ versions, version_labels = [1, 2, 3], ["Jan 2025", "Mar 2025", "Aug 2025"]
344
+
345
+ for i, (category, data) in enumerate(top_cats.iterrows()):
346
+ if i >= len(axes):
347
+ break
348
+ ax = axes[i]
349
+ values = [data["v1"], data["v2"], data["v3"]]
350
+
351
+ ax.plot(
352
+ versions,
353
+ values,
354
+ "o-",
355
+ color=line_color,
356
+ linewidth=3,
357
+ markersize=8,
358
+ markerfacecolor=line_color,
359
+ markeredgecolor="white",
360
+ markeredgewidth=2,
361
+ )
362
+ ax.fill_between(versions, values, alpha=0.3, color=fill_color)
363
+
364
+ # Add value labels
365
+ for x, y in zip(versions, values, strict=True):
366
+ ax.text(
367
+ x,
368
+ y + max(values) * 0.02,
369
+ f"{y:.1f}%",
370
+ ha="center",
371
+ va="bottom",
372
+ fontsize=12,
373
+ fontweight="bold",
374
+ )
375
+
376
+ ax.set_title(category, fontsize=14, fontweight="bold", pad=10)
377
+ ax.set_xticks(versions)
378
+ ax.set_xticklabels(version_labels)
379
+ ax.set_ylabel("Percentage", fontsize=12)
380
+ ax.set_ylim(0, max(values) * 1.15)
381
+ ax.grid(True, alpha=0.3)
382
+ ax.spines["top"].set_visible(False)
383
+ ax.spines["right"].set_visible(False)
384
+
385
+ fig.suptitle(
386
+ "Usage share trends across economic index reports (V1 to V3)",
387
+ fontsize=18,
388
+ fontweight="bold",
389
+ y=0.98,
390
+ )
391
+ plt.tight_layout()
392
+ plt.subplots_adjust(top=0.88)
393
+ return fig
394
+
395
+
396
+ def create_automation_figure(trends):
397
+ """Create Automation vs Augmentation Evolution figure."""
398
+ setup_plot_style()
399
+
400
+ fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6))
401
+
402
+ # Simplified date labels (actual periods: Dec 2024-Jan 2025, Feb-Mar 2025, Aug 2025)
403
+ version_labels = ["Jan 2025", "Mar 2025", "Aug 2025"]
404
+ x_pos = [1, 2, 3]
405
+
406
+ # Left: Overall trends (no fill)
407
+ auto_vals = [trends[v]["automation_total"] for v in ["v1", "v2", "v3"]]
408
+ aug_vals = [trends[v]["augmentation_total"] for v in ["v1", "v2", "v3"]]
409
+
410
+ ax1.plot(
411
+ x_pos,
412
+ auto_vals,
413
+ "o-",
414
+ color=COLORS["automation"],
415
+ linewidth=3,
416
+ markersize=8,
417
+ label="Automation",
418
+ markeredgecolor="white",
419
+ markeredgewidth=2,
420
+ )
421
+ ax1.plot(
422
+ x_pos,
423
+ aug_vals,
424
+ "o-",
425
+ color=COLORS["augmentation"],
426
+ linewidth=3,
427
+ markersize=8,
428
+ label="Augmentation",
429
+ markeredgecolor="white",
430
+ markeredgewidth=2,
431
+ )
432
+
433
+ # Value labels with automation above and augmentation below dots
434
+ y_max = max(max(auto_vals), max(aug_vals))
435
+ for i, (auto, aug) in enumerate(zip(auto_vals, aug_vals, strict=True)):
436
+ # Red (automation) always above the dot
437
+ ax1.text(
438
+ x_pos[i],
439
+ auto + 1.2,
440
+ f"{auto:.1f}%",
441
+ ha="center",
442
+ va="bottom",
443
+ fontweight="bold",
444
+ color=COLORS["automation"],
445
+ )
446
+ # Blue (augmentation) always below the dot
447
+ ax1.text(
448
+ x_pos[i],
449
+ aug - 1.5,
450
+ f"{aug:.1f}%",
451
+ ha="center",
452
+ va="top",
453
+ fontweight="bold",
454
+ color=COLORS["augmentation"],
455
+ )
456
+
457
+ ax1.set_xticks(x_pos)
458
+ ax1.set_xticklabels(version_labels)
459
+ ax1.set_ylabel("Percentage")
460
+ ax1.set_title("Automation vs augmentation trends")
461
+ ax1.legend()
462
+ ax1.grid(True, alpha=0.3)
463
+ ax1.spines[["top", "right"]].set_visible(False)
464
+ ax1.set_ylim(0, y_max * 1.15)
465
+
466
+ # Right: Individual interaction types with color-coded groups
467
+ interactions = [
468
+ "directive",
469
+ "feedback_loop",
470
+ "validation",
471
+ "task_iteration",
472
+ "learning",
473
+ ]
474
+ # Automation = red shades, Augmentation = cool shades
475
+ colors_individual = ["#DC143C", "#FF6B6B", "#4682B4", "#5F9EA0", "#4169E1"]
476
+
477
+ for interaction, color in zip(interactions, colors_individual, strict=True):
478
+ values = [trends[v][interaction] for v in ["v1", "v2", "v3"]]
479
+ ax2.plot(
480
+ x_pos,
481
+ values,
482
+ "o-",
483
+ color=color,
484
+ linewidth=2.5,
485
+ markersize=6,
486
+ label=interaction.replace("_", " ").title(),
487
+ alpha=0.8,
488
+ )
489
+
490
+ ax2.set_xticks(x_pos)
491
+ ax2.set_xticklabels(version_labels)
492
+ ax2.set_ylabel("Percentage")
493
+ ax2.set_title("Individual interaction types")
494
+ ax2.legend(bbox_to_anchor=(1.05, 1), loc="upper left")
495
+ ax2.grid(True, alpha=0.3)
496
+ ax2.spines[["top", "right"]].set_visible(False)
497
+
498
+ plt.suptitle(
499
+ "Automation vs augmentation evolution (V1 to V3)",
500
+ fontsize=16,
501
+ fontweight="bold",
502
+ )
503
+ plt.tight_layout()
504
+ return fig
505
+
506
+
507
+ # ============================================================================
508
+ # MAIN
509
+ # ============================================================================
510
+
511
+
512
+ def main():
513
+ """Generate all three economic analysis figures."""
514
+ print("=" * 80)
515
+ print("ECONOMIC ANALYSIS FIGURE GENERATION")
516
+ print("=" * 80)
517
+
518
+ # Use consistent output directory for all economic research scripts
519
+ output_dir = "../data/output/figures"
520
+ os.makedirs(output_dir, exist_ok=True)
521
+
522
+ # Load all data
523
+ print("\nLoading data...")
524
+ task_data = {
525
+ "v1": load_task_data(FILES["v1_tasks"], "V1"),
526
+ "v2": load_task_data(FILES["v2_tasks"], "V2"),
527
+ "v3": load_task_data(FILES["v3_data"], "V3"),
528
+ }
529
+ automation_data = load_automation_data()
530
+ onet_soc_data = load_occupational_mapping()
531
+
532
+ # Analysis
533
+ print("\nAnalyzing trends...")
534
+ occupational_trends = analyze_occupational_trends(task_data, onet_soc_data)
535
+ task_changes = analyze_task_changes(task_data, onet_soc_data)
536
+ automation_trends = analyze_automation_trends(automation_data)
537
+
538
+ # Generate figures
539
+ print("\nGenerating figures...")
540
+
541
+ fig1 = create_usage_trends_figure(occupational_trends)
542
+ fig1.savefig(
543
+ f"{output_dir}/main_occupational_categories.png",
544
+ dpi=300,
545
+ bbox_inches="tight",
546
+ facecolor="white",
547
+ )
548
+ print("✓ Saved: main_occupational_categories.png")
549
+
550
+ fig3 = create_automation_figure(automation_trends)
551
+ fig3.savefig(
552
+ f"{output_dir}/automation_trends_v1_v2_v3.png",
553
+ dpi=300,
554
+ bbox_inches="tight",
555
+ facecolor="white",
556
+ )
557
+ print("✓ Saved: automation_trends_v1_v2_v3.png")
558
+
559
+ print(f"\n✅ All figures generated successfully!")
560
+ return occupational_trends, task_changes, automation_trends
561
+
562
+
563
+ if __name__ == "__main__":
564
+ results = main()
release_2025_09_15/code/aei_report_v3_preprocessing_claude_ai.ipynb ADDED
@@ -0,0 +1,1840 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# AEI Report v3 Claude.ai Preprocessing\n",
8
+ "\n",
9
+ "This notebook takes processed Clio data and enriches it with external sources:\n",
10
+ "1. Merges with population data for per capita calculations\n",
11
+ "2. Merges with GDP data for economic analysis\n",
12
+ "3. Merges with SOC/O*NET data for occupational analysis\n",
13
+ "4. Applies MIN_OBSERVATIONS filtering\n",
14
+ "5. Calculates derived metrics (per capita, indices, tiers)\n",
15
+ "6. Categorizes collaboration patterns\n",
16
+ "\n",
17
+ "**Input**: `aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv`\n",
18
+ "\n",
19
+ "**Output**: `aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv`"
20
+ ]
21
+ },
22
+ {
23
+ "cell_type": "markdown",
24
+ "metadata": {},
25
+ "source": [
26
+ "## Configuration and Setup"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": null,
32
+ "metadata": {},
33
+ "outputs": [],
34
+ "source": [
35
+ "from pathlib import Path\n",
36
+ "\n",
37
+ "import numpy as np\n",
38
+ "import pandas as pd"
39
+ ]
40
+ },
41
+ {
42
+ "cell_type": "code",
43
+ "execution_count": null,
44
+ "metadata": {},
45
+ "outputs": [],
46
+ "source": [
47
+ "# Year for external data\n",
48
+ "YEAR = 2024\n",
49
+ "\n",
50
+ "# Data paths - using local directories\n",
51
+ "DATA_INPUT_DIR = \"../data/input\" # Raw external data\n",
52
+ "DATA_INTERMEDIATE_DIR = (\n",
53
+ " \"../data/intermediate\" # Processed external data and Clio output\n",
54
+ ")\n",
55
+ "DATA_OUTPUT_DIR = \"../data/output\" # Final enriched data\n",
56
+ "\n",
57
+ "# Minimum observation thresholds\n",
58
+ "MIN_OBSERVATIONS_COUNTRY = 200 # Threshold for countries\n",
59
+ "MIN_OBSERVATIONS_US_STATE = 100 # Threshold for US states"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": null,
65
+ "metadata": {},
66
+ "outputs": [],
67
+ "source": [
68
+ "# Countries where Claude doesn't operate (23 countries)\n",
69
+ "EXCLUDED_COUNTRIES = [\n",
70
+ " \"AF\", # Afghanistan\n",
71
+ " \"BY\", # Belarus\n",
72
+ " \"CD\", # Democratic Republic of the Congo\n",
73
+ " \"CF\", # Central African Republic\n",
74
+ " \"CN\", # China\n",
75
+ " \"CU\", # Cuba\n",
76
+ " \"ER\", # Eritrea\n",
77
+ " \"ET\", # Ethiopia\n",
78
+ " \"HK\", # Hong Kong\n",
79
+ " \"IR\", # Iran\n",
80
+ " \"KP\", # North Korea\n",
81
+ " \"LY\", # Libya\n",
82
+ " \"ML\", # Mali\n",
83
+ " \"MM\", # Myanmar\n",
84
+ " \"MO\", # Macau\n",
85
+ " \"NI\", # Nicaragua\n",
86
+ " \"RU\", # Russia\n",
87
+ " \"SD\", # Sudan\n",
88
+ " \"SO\", # Somalia\n",
89
+ " \"SS\", # South Sudan\n",
90
+ " \"SY\", # Syria\n",
91
+ " \"VE\", # Venezuela\n",
92
+ " \"YE\", # Yemen\n",
93
+ "]"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "markdown",
98
+ "metadata": {},
99
+ "source": [
100
+ "## Data Loading Functions"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": null,
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": [
109
+ "def load_population_data():\n",
110
+ " \"\"\"\n",
111
+ " Load population data for countries and US states.\n",
112
+ "\n",
113
+ " Args:\n",
114
+ " verbose: Whether to print progress\n",
115
+ "\n",
116
+ " Returns:\n",
117
+ " Dict with country and state_us population dataframes\n",
118
+ " \"\"\"\n",
119
+ " pop_country_path = (\n",
120
+ " Path(DATA_INTERMEDIATE_DIR) / f\"working_age_pop_{YEAR}_country.csv\"\n",
121
+ " )\n",
122
+ " pop_state_path = (\n",
123
+ " Path(DATA_INTERMEDIATE_DIR) / f\"working_age_pop_{YEAR}_us_state.csv\"\n",
124
+ " )\n",
125
+ "\n",
126
+ " if not pop_country_path.exists() or not pop_state_path.exists():\n",
127
+ " raise FileNotFoundError(\n",
128
+ " f\"Population data is required but not found.\\n\"\n",
129
+ " f\" Expected files:\\n\"\n",
130
+ " f\" - {pop_country_path}\\n\"\n",
131
+ " f\" - {pop_state_path}\\n\"\n",
132
+ " f\" Run preprocess_population.py first to generate these files.\"\n",
133
+ " )\n",
134
+ "\n",
135
+ " # Use keep_default_na=False to preserve any \"NA\" values as strings\n",
136
+ " df_pop_country = pd.read_csv(\n",
137
+ " pop_country_path, keep_default_na=False, na_values=[\"\"]\n",
138
+ " )\n",
139
+ " df_pop_state = pd.read_csv(pop_state_path, keep_default_na=False, na_values=[\"\"])\n",
140
+ "\n",
141
+ " return {\"country\": df_pop_country, \"state_us\": df_pop_state}\n",
142
+ "\n",
143
+ "\n",
144
+ "def load_gdp_data():\n",
145
+ " \"\"\"\n",
146
+ " Load GDP data for countries and US states.\n",
147
+ "\n",
148
+ " Returns:\n",
149
+ " Dict with country and state_us GDP dataframes\n",
150
+ " \"\"\"\n",
151
+ " gdp_country_path = Path(DATA_INTERMEDIATE_DIR) / f\"gdp_{YEAR}_country.csv\"\n",
152
+ " gdp_state_path = Path(DATA_INTERMEDIATE_DIR) / f\"gdp_{YEAR}_us_state.csv\"\n",
153
+ "\n",
154
+ " if not gdp_country_path.exists() or not gdp_state_path.exists():\n",
155
+ " raise FileNotFoundError(\n",
156
+ " f\"GDP data is required but not found.\\n\"\n",
157
+ " f\" Expected files:\\n\"\n",
158
+ " f\" - {gdp_country_path}\\n\"\n",
159
+ " f\" - {gdp_state_path}\\n\"\n",
160
+ " f\" Run preprocess_gdp.py first to generate these files.\"\n",
161
+ " )\n",
162
+ "\n",
163
+ " # Use keep_default_na=False to preserve any \"NA\" values as strings\n",
164
+ " df_gdp_country = pd.read_csv(\n",
165
+ " gdp_country_path, keep_default_na=False, na_values=[\"\"]\n",
166
+ " )\n",
167
+ " df_gdp_state = pd.read_csv(gdp_state_path, keep_default_na=False, na_values=[\"\"])\n",
168
+ "\n",
169
+ " return {\"country\": df_gdp_country, \"state_us\": df_gdp_state}\n",
170
+ "\n",
171
+ "\n",
172
+ "def load_task_data():\n",
173
+ " \"\"\"\n",
174
+ " Load O*NET task statements with SOC codes.\n",
175
+ "\n",
176
+ " Returns:\n",
177
+ " DataFrame with O*NET tasks and SOC major groups\n",
178
+ " \"\"\"\n",
179
+ " onet_path = Path(DATA_INTERMEDIATE_DIR) / \"onet_task_statements.csv\"\n",
180
+ "\n",
181
+ " if not onet_path.exists():\n",
182
+ " raise FileNotFoundError(\n",
183
+ " f\"O*NET data is required but not found.\\n\"\n",
184
+ " f\" Expected file:\\n\"\n",
185
+ " f\" - {onet_path}\\n\"\n",
186
+ " f\" Run preprocess_onet.py first to generate this file.\"\n",
187
+ " )\n",
188
+ "\n",
189
+ " # Use keep_default_na=False to preserve any \"NA\" values as strings\n",
190
+ " df_onet = pd.read_csv(onet_path, keep_default_na=False, na_values=[\"\"])\n",
191
+ "\n",
192
+ " # Normalize task names for matching with Clio data\n",
193
+ " df_onet[\"task_normalized\"] = df_onet[\"Task\"].str.lower().str.strip()\n",
194
+ "\n",
195
+ " return df_onet\n",
196
+ "\n",
197
+ "\n",
198
+ "def load_soc_data():\n",
199
+ " \"\"\"\n",
200
+ " Load SOC structure data for occupation names.\n",
201
+ "\n",
202
+ " Returns:\n",
203
+ " DataFrame with SOC major groups and their titles\n",
204
+ " \"\"\"\n",
205
+ " soc_path = Path(DATA_INTERMEDIATE_DIR) / \"soc_structure.csv\"\n",
206
+ "\n",
207
+ " if not soc_path.exists():\n",
208
+ " raise FileNotFoundError(\n",
209
+ " f\"SOC structure data is required but not found.\\n\"\n",
210
+ " f\" Expected file:\\n\"\n",
211
+ " f\" - {soc_path}\\n\"\n",
212
+ " f\" Run preprocess_onet.py first to generate this file.\"\n",
213
+ " )\n",
214
+ "\n",
215
+ " # Use keep_default_na=False to preserve any \"NA\" values as strings\n",
216
+ " df_soc = pd.read_csv(soc_path, keep_default_na=False, na_values=[\"\"])\n",
217
+ "\n",
218
+ " # Get unique major groups with their titles for SOC name mapping\n",
219
+ " df_major_groups = df_soc[df_soc[\"soc_major_group\"].notna()][\n",
220
+ " [\"soc_major_group\", \"SOC or O*NET-SOC 2019 Title\"]\n",
221
+ " ].drop_duplicates(subset=[\"soc_major_group\"])\n",
222
+ "\n",
223
+ " return df_major_groups\n",
224
+ "\n",
225
+ "\n",
226
+ "def load_external_data():\n",
227
+ " \"\"\"\n",
228
+ " Load all external data sources from local files.\n",
229
+ "\n",
230
+ " Returns:\n",
231
+ " Dict with population, gdp, task_statements, and soc_structure dataframes\n",
232
+ " \"\"\"\n",
233
+ "\n",
234
+ " external_data = {}\n",
235
+ "\n",
236
+ " # Load each data source with its specific function\n",
237
+ " external_data[\"population\"] = load_population_data()\n",
238
+ " external_data[\"gdp\"] = load_gdp_data()\n",
239
+ " external_data[\"task_statements\"] = load_task_data()\n",
240
+ " external_data[\"soc_structure\"] = load_soc_data()\n",
241
+ "\n",
242
+ " return external_data"
243
+ ]
244
+ },
245
+ {
246
+ "cell_type": "markdown",
247
+ "metadata": {},
248
+ "source": [
249
+ "## Filtering Functions"
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "code",
254
+ "execution_count": null,
255
+ "metadata": {},
256
+ "outputs": [],
257
+ "source": [
258
+ "def get_filtered_geographies(df):\n",
259
+ " \"\"\"\n",
260
+ " Get lists of countries and states that meet MIN_OBSERVATIONS thresholds.\n",
261
+ "\n",
262
+ " This function does NOT filter the dataframe - it only identifies which\n",
263
+ " geographies meet the thresholds. The full dataframe is preserved\n",
264
+ " so we can still report statistics for all geographies.\n",
265
+ "\n",
266
+ " Args:\n",
267
+ " df: Input dataframe\n",
268
+ "\n",
269
+ " Returns:\n",
270
+ " Tuple of (filtered_countries list, filtered_states list)\n",
271
+ " \"\"\"\n",
272
+ " # Get country usage counts\n",
273
+ " country_usage = df[\n",
274
+ " (df[\"facet\"] == \"country\") & (df[\"variable\"] == \"usage_count\")\n",
275
+ " ].set_index(\"geo_id\")[\"value\"]\n",
276
+ "\n",
277
+ " # Get state usage counts\n",
278
+ " state_usage = df[\n",
279
+ " (df[\"facet\"] == \"state_us\") & (df[\"variable\"] == \"usage_count\")\n",
280
+ " ].set_index(\"geo_id\")[\"value\"]\n",
281
+ "\n",
282
+ " # Get countries that meet MIN_OBSERVATIONS threshold\n",
283
+ " filtered_countries = country_usage[\n",
284
+ " country_usage >= MIN_OBSERVATIONS_COUNTRY\n",
285
+ " ].index.tolist()\n",
286
+ "\n",
287
+ " # Get states that meet MIN_OBSERVATIONS threshold\n",
288
+ " filtered_states = state_usage[\n",
289
+ " state_usage >= MIN_OBSERVATIONS_US_STATE\n",
290
+ " ].index.tolist()\n",
291
+ "\n",
292
+ " return filtered_countries, filtered_states"
293
+ ]
294
+ },
295
+ {
296
+ "cell_type": "markdown",
297
+ "metadata": {},
298
+ "source": [
299
+ "## Data Merge Functions"
300
+ ]
301
+ },
302
+ {
303
+ "cell_type": "code",
304
+ "execution_count": null,
305
+ "metadata": {},
306
+ "outputs": [],
307
+ "source": [
308
+ "def merge_population_data(df, population_data):\n",
309
+ " \"\"\"\n",
310
+ " Merge population data in long format.\n",
311
+ "\n",
312
+ " This function:\n",
313
+ " 1. Adds countries/states that have population but no usage (with 0 usage values)\n",
314
+ " 2. Adds population as new rows with variable=\"working_age_pop\"\n",
315
+ "\n",
316
+ " Args:\n",
317
+ " df: Input dataframe in long format\n",
318
+ " population_data: Dict with country and state_us population dataframes\n",
319
+ "\n",
320
+ " Returns:\n",
321
+ " Dataframe with all geographies and population added as rows\n",
322
+ " \"\"\"\n",
323
+ " df_result = df.copy()\n",
324
+ " new_rows = []\n",
325
+ "\n",
326
+ " # Get unique date/platform combinations to replicate for new data\n",
327
+ " date_platform_combos = df_result[\n",
328
+ " [\"date_start\", \"date_end\", \"platform_and_product\"]\n",
329
+ " ].drop_duplicates()\n",
330
+ "\n",
331
+ " # Process countries\n",
332
+ " if \"country\" in population_data and not population_data[\"country\"].empty:\n",
333
+ " pop_country = population_data[\"country\"]\n",
334
+ "\n",
335
+ " # Get existing countries in our data\n",
336
+ " existing_countries = df_result[\n",
337
+ " (df_result[\"geography\"] == \"country\")\n",
338
+ " & (df_result[\"variable\"] == \"usage_count\")\n",
339
+ " ][\"geo_id\"].unique()\n",
340
+ "\n",
341
+ " # Add missing countries with 0 usage (excluding excluded countries)\n",
342
+ " missing_countries = (\n",
343
+ " set(pop_country[\"country_code\"])\n",
344
+ " - set(existing_countries)\n",
345
+ " - set(EXCLUDED_COUNTRIES)\n",
346
+ " )\n",
347
+ "\n",
348
+ " for _, combo in date_platform_combos.iterrows():\n",
349
+ " # Add missing countries with 0 usage (both count and percentage)\n",
350
+ " for country_code in missing_countries:\n",
351
+ " # Add usage_count = 0\n",
352
+ " new_rows.append(\n",
353
+ " {\n",
354
+ " \"geo_id\": country_code,\n",
355
+ " \"geography\": \"country\",\n",
356
+ " \"date_start\": combo[\"date_start\"],\n",
357
+ " \"date_end\": combo[\"date_end\"],\n",
358
+ " \"platform_and_product\": combo[\"platform_and_product\"],\n",
359
+ " \"facet\": \"country\",\n",
360
+ " \"level\": 0,\n",
361
+ " \"variable\": \"usage_count\",\n",
362
+ " \"cluster_name\": \"\",\n",
363
+ " \"value\": 0.0,\n",
364
+ " }\n",
365
+ " )\n",
366
+ " # Add usage_pct = 0\n",
367
+ " new_rows.append(\n",
368
+ " {\n",
369
+ " \"geo_id\": country_code,\n",
370
+ " \"geography\": \"country\",\n",
371
+ " \"date_start\": combo[\"date_start\"],\n",
372
+ " \"date_end\": combo[\"date_end\"],\n",
373
+ " \"platform_and_product\": combo[\"platform_and_product\"],\n",
374
+ " \"facet\": \"country\",\n",
375
+ " \"level\": 0,\n",
376
+ " \"variable\": \"usage_pct\",\n",
377
+ " \"cluster_name\": \"\",\n",
378
+ " \"value\": 0.0,\n",
379
+ " }\n",
380
+ " )\n",
381
+ "\n",
382
+ " # Add population data for all countries (that are not excluded)\n",
383
+ " for _, pop_row in pop_country.iterrows():\n",
384
+ " new_rows.append(\n",
385
+ " {\n",
386
+ " \"geo_id\": pop_row[\"country_code\"],\n",
387
+ " \"geography\": \"country\",\n",
388
+ " \"date_start\": combo[\"date_start\"],\n",
389
+ " \"date_end\": combo[\"date_end\"],\n",
390
+ " \"platform_and_product\": combo[\"platform_and_product\"],\n",
391
+ " \"facet\": \"country\",\n",
392
+ " \"level\": 0,\n",
393
+ " \"variable\": \"working_age_pop\",\n",
394
+ " \"cluster_name\": \"\",\n",
395
+ " \"value\": float(pop_row[\"working_age_pop\"]),\n",
396
+ " }\n",
397
+ " )\n",
398
+ "\n",
399
+ " # Process US states\n",
400
+ " if \"state_us\" in population_data and not population_data[\"state_us\"].empty:\n",
401
+ " pop_state = population_data[\"state_us\"]\n",
402
+ "\n",
403
+ " # Get existing states in our data\n",
404
+ " existing_states = df_result[\n",
405
+ " (df_result[\"geography\"] == \"state_us\")\n",
406
+ " & (df_result[\"variable\"] == \"usage_count\")\n",
407
+ " ][\"geo_id\"].unique()\n",
408
+ "\n",
409
+ " # Add missing states with 0 usage\n",
410
+ " missing_states = set(pop_state[\"state_code\"]) - set(existing_states)\n",
411
+ "\n",
412
+ " for _, combo in date_platform_combos.iterrows():\n",
413
+ " # Add missing states with 0 usage (both count and percentage)\n",
414
+ " for state_code in missing_states:\n",
415
+ " # Add usage_count = 0\n",
416
+ " new_rows.append(\n",
417
+ " {\n",
418
+ " \"geo_id\": state_code,\n",
419
+ " \"geography\": \"state_us\",\n",
420
+ " \"date_start\": combo[\"date_start\"],\n",
421
+ " \"date_end\": combo[\"date_end\"],\n",
422
+ " \"platform_and_product\": combo[\"platform_and_product\"],\n",
423
+ " \"facet\": \"state_us\",\n",
424
+ " \"level\": 0,\n",
425
+ " \"variable\": \"usage_count\",\n",
426
+ " \"cluster_name\": \"\",\n",
427
+ " \"value\": 0.0,\n",
428
+ " }\n",
429
+ " )\n",
430
+ " # Add usage_pct = 0\n",
431
+ " new_rows.append(\n",
432
+ " {\n",
433
+ " \"geo_id\": state_code,\n",
434
+ " \"geography\": \"state_us\",\n",
435
+ " \"date_start\": combo[\"date_start\"],\n",
436
+ " \"date_end\": combo[\"date_end\"],\n",
437
+ " \"platform_and_product\": combo[\"platform_and_product\"],\n",
438
+ " \"facet\": \"state_us\",\n",
439
+ " \"level\": 0,\n",
440
+ " \"variable\": \"usage_pct\",\n",
441
+ " \"cluster_name\": \"\",\n",
442
+ " \"value\": 0.0,\n",
443
+ " }\n",
444
+ " )\n",
445
+ "\n",
446
+ " # Add population data for all states\n",
447
+ " for _, pop_row in pop_state.iterrows():\n",
448
+ " new_rows.append(\n",
449
+ " {\n",
450
+ " \"geo_id\": pop_row[\"state_code\"],\n",
451
+ " \"geography\": \"state_us\",\n",
452
+ " \"date_start\": combo[\"date_start\"],\n",
453
+ " \"date_end\": combo[\"date_end\"],\n",
454
+ " \"platform_and_product\": combo[\"platform_and_product\"],\n",
455
+ " \"facet\": \"state_us\",\n",
456
+ " \"level\": 0,\n",
457
+ " \"variable\": \"working_age_pop\",\n",
458
+ " \"cluster_name\": \"\",\n",
459
+ " \"value\": float(pop_row[\"working_age_pop\"]),\n",
460
+ " }\n",
461
+ " )\n",
462
+ "\n",
463
+ " # Add all new rows to the dataframe\n",
464
+ " if new_rows:\n",
465
+ " df_new = pd.DataFrame(new_rows)\n",
466
+ " df_result = pd.concat([df_result, df_new], ignore_index=True)\n",
467
+ "\n",
468
+ " return df_result\n",
469
+ "\n",
470
+ "\n",
471
+ "def merge_gdp_data(df, gdp_data, population_data):\n",
472
+ " \"\"\"\n",
473
+ " Merge GDP data and calculate GDP per working age capita.\n",
474
+ "\n",
475
+ " Since we have total GDP in actual dollars, we divide by population to get per capita.\n",
476
+ "\n",
477
+ " Args:\n",
478
+ " df: Input dataframe in long format\n",
479
+ " gdp_data: Dict with country and state_us GDP dataframes (total GDP in dollars)\n",
480
+ " population_data: Dict with country and state_us population dataframes\n",
481
+ "\n",
482
+ " Returns:\n",
483
+ " Dataframe with GDP per capita data added as rows\n",
484
+ " \"\"\"\n",
485
+ " df_result = df.copy()\n",
486
+ " new_rows = []\n",
487
+ "\n",
488
+ " # Get unique date/platform combinations\n",
489
+ " date_platform_combos = df_result[\n",
490
+ " [\"date_start\", \"date_end\", \"platform_and_product\"]\n",
491
+ " ].drop_duplicates()\n",
492
+ "\n",
493
+ " # Process country GDP\n",
494
+ " if \"country\" in gdp_data and \"country\" in population_data:\n",
495
+ " gdp_country = gdp_data[\"country\"]\n",
496
+ " pop_country = population_data[\"country\"]\n",
497
+ "\n",
498
+ " # Merge GDP with population to calculate per capita\n",
499
+ " gdp_pop = gdp_country.merge(pop_country, on=\"iso_alpha_3\", how=\"inner\")\n",
500
+ "\n",
501
+ " # Calculate GDP per working age capita\n",
502
+ " gdp_pop[\"gdp_per_working_age_capita\"] = (\n",
503
+ " gdp_pop[\"gdp_total\"] / gdp_pop[\"working_age_pop\"]\n",
504
+ " )\n",
505
+ "\n",
506
+ " for _, combo in date_platform_combos.iterrows():\n",
507
+ " for _, gdp_row in gdp_pop.iterrows():\n",
508
+ " new_rows.append(\n",
509
+ " {\n",
510
+ " \"geo_id\": gdp_row[\"country_code\"], # Use 2-letter code\n",
511
+ " \"geography\": \"country\",\n",
512
+ " \"date_start\": combo[\"date_start\"],\n",
513
+ " \"date_end\": combo[\"date_end\"],\n",
514
+ " \"platform_and_product\": combo[\"platform_and_product\"],\n",
515
+ " \"facet\": \"country\",\n",
516
+ " \"level\": 0,\n",
517
+ " \"variable\": \"gdp_per_working_age_capita\",\n",
518
+ " \"cluster_name\": \"\",\n",
519
+ " \"value\": float(gdp_row[\"gdp_per_working_age_capita\"]),\n",
520
+ " }\n",
521
+ " )\n",
522
+ "\n",
523
+ " # Process state GDP\n",
524
+ " if \"state_us\" in gdp_data and \"state_us\" in population_data:\n",
525
+ " gdp_state = gdp_data[\"state_us\"]\n",
526
+ " pop_state = population_data[\"state_us\"]\n",
527
+ "\n",
528
+ " # Merge GDP with population\n",
529
+ " # Column names from preprocess_gdp.py: state_code, gdp_total (in actual dollars)\n",
530
+ " gdp_pop = gdp_state.merge(pop_state, on=\"state_code\", how=\"inner\")\n",
531
+ "\n",
532
+ " # Calculate GDP per working age capita\n",
533
+ " gdp_pop[\"gdp_per_working_age_capita\"] = (\n",
534
+ " gdp_pop[\"gdp_total\"] / gdp_pop[\"working_age_pop\"]\n",
535
+ " )\n",
536
+ "\n",
537
+ " for _, combo in date_platform_combos.iterrows():\n",
538
+ " for _, gdp_row in gdp_pop.iterrows():\n",
539
+ " new_rows.append(\n",
540
+ " {\n",
541
+ " \"geo_id\": gdp_row[\"state_code\"],\n",
542
+ " \"geography\": \"state_us\",\n",
543
+ " \"date_start\": combo[\"date_start\"],\n",
544
+ " \"date_end\": combo[\"date_end\"],\n",
545
+ " \"platform_and_product\": combo[\"platform_and_product\"],\n",
546
+ " \"facet\": \"state_us\",\n",
547
+ " \"level\": 0,\n",
548
+ " \"variable\": \"gdp_per_working_age_capita\",\n",
549
+ " \"cluster_name\": \"\",\n",
550
+ " \"value\": float(gdp_row[\"gdp_per_working_age_capita\"]),\n",
551
+ " }\n",
552
+ " )\n",
553
+ "\n",
554
+ " # Add all new rows to the dataframe\n",
555
+ " if new_rows:\n",
556
+ " df_new = pd.DataFrame(new_rows)\n",
557
+ " df_result = pd.concat([df_result, df_new], ignore_index=True)\n",
558
+ "\n",
559
+ " return df_result\n",
560
+ "\n",
561
+ "\n",
562
+ "def calculate_soc_distribution(\n",
563
+ " df, df_onet, df_soc_structure, filtered_countries=None, filtered_states=None\n",
564
+ "):\n",
565
+ " \"\"\"\n",
566
+ " Calculate SOC occupation distribution from O*NET task usage.\n",
567
+ "\n",
568
+ " This uses the following approach:\n",
569
+ " 1. Map tasks directly to SOC major groups (with minimal double counting)\n",
570
+ " 2. Combine \"none\" and \"not_classified\" tasks into a single \"not_classified\" SOC group\n",
571
+ " 3. Sum percentages by SOC group\n",
572
+ " 4. Normalize to 100% for each geography\n",
573
+ " 5. Calculate for countries, US states, and global that meet MIN_OBSERVATIONS threshold\n",
574
+ "\n",
575
+ " NOTE: For US states, only ~449 O*NET tasks have state-level data (those with sufficient\n",
576
+ " observations), but these tasks still map to SOC groups the same way as for countries.\n",
577
+ "\n",
578
+ " Args:\n",
579
+ " df: DataFrame with O*NET task percentages\n",
580
+ " df_onet: O*NET task data with SOC codes\n",
581
+ " df_soc_structure: SOC structure with major group names\n",
582
+ " filtered_countries: List of countries that meet MIN_OBSERVATIONS (optional)\n",
583
+ " filtered_states: List of states that meet MIN_OBSERVATIONS (optional)\n",
584
+ "\n",
585
+ " Returns:\n",
586
+ " DataFrame with SOC distribution rows added\n",
587
+ " \"\"\"\n",
588
+ " df_result = df.copy()\n",
589
+ " soc_rows = []\n",
590
+ "\n",
591
+ " # Get all O*NET task percentage data (including not_classified and \"none\")\n",
592
+ " df_task_pct_all = df_result[\n",
593
+ " (df_result[\"facet\"] == \"onet_task\") & (df_result[\"variable\"] == \"onet_task_pct\")\n",
594
+ " ].copy()\n",
595
+ "\n",
596
+ " if df_task_pct_all.empty:\n",
597
+ " return df_result\n",
598
+ "\n",
599
+ " # Build masks for each geography type\n",
600
+ " # Always include global\n",
601
+ " global_mask = df_task_pct_all[\"geography\"] == \"global\"\n",
602
+ "\n",
603
+ " # Apply filtering for countries\n",
604
+ " if filtered_countries is not None:\n",
605
+ " country_mask = (df_task_pct_all[\"geography\"] == \"country\") & (\n",
606
+ " df_task_pct_all[\"geo_id\"].isin(filtered_countries)\n",
607
+ " )\n",
608
+ " else:\n",
609
+ " # If no filter, keep all countries\n",
610
+ " country_mask = df_task_pct_all[\"geography\"] == \"country\"\n",
611
+ "\n",
612
+ " # Apply filtering for states\n",
613
+ " if filtered_states is not None:\n",
614
+ " state_mask = (df_task_pct_all[\"geography\"] == \"state_us\") & (\n",
615
+ " df_task_pct_all[\"geo_id\"].isin(filtered_states)\n",
616
+ " )\n",
617
+ " else:\n",
618
+ " # If no filter, keep all states\n",
619
+ " state_mask = df_task_pct_all[\"geography\"] == \"state_us\"\n",
620
+ "\n",
621
+ " # Combine masks to keep relevant geographies\n",
622
+ " combined_mask = global_mask | country_mask | state_mask\n",
623
+ " df_task_pct_all = df_task_pct_all[combined_mask].copy()\n",
624
+ "\n",
625
+ " if df_task_pct_all.empty:\n",
626
+ " return df_result\n",
627
+ "\n",
628
+ " # Separate not_classified and none tasks from real O*NET tasks\n",
629
+ " df_not_classified = df_task_pct_all[\n",
630
+ " (df_task_pct_all[\"cluster_name\"].str.contains(\"not_classified\", na=False))\n",
631
+ " | (df_task_pct_all[\"cluster_name\"] == \"none\")\n",
632
+ " ].copy()\n",
633
+ "\n",
634
+ " # Get real O*NET tasks (excluding not_classified and none)\n",
635
+ " df_task_pct = df_task_pct_all[\n",
636
+ " (~df_task_pct_all[\"cluster_name\"].str.contains(\"not_classified\", na=False))\n",
637
+ " & (df_task_pct_all[\"cluster_name\"] != \"none\")\n",
638
+ " ].copy()\n",
639
+ "\n",
640
+ " # Normalize task names for matching\n",
641
+ " df_task_pct[\"task_normalized\"] = df_task_pct[\"cluster_name\"].str.lower().str.strip()\n",
642
+ "\n",
643
+ " # Get unique task-SOC pairs from O*NET data\n",
644
+ " # This keeps tasks that map to multiple SOC groups (different rows)\n",
645
+ " df_task_soc = df_onet[[\"task_normalized\", \"soc_major_group\"]].drop_duplicates()\n",
646
+ "\n",
647
+ " # Merge tasks with their SOC codes\n",
648
+ " df_with_soc = df_task_pct.merge(df_task_soc, on=\"task_normalized\", how=\"left\")\n",
649
+ "\n",
650
+ " # Check for unmapped tasks and raise error if found (same as for countries)\n",
651
+ " unmapped_tasks = df_with_soc[df_with_soc[\"soc_major_group\"].isna()]\n",
652
+ " if not unmapped_tasks.empty:\n",
653
+ " unmapped_list = unmapped_tasks[\"cluster_name\"].unique()[:10] # Show first 10\n",
654
+ " n_unmapped = len(unmapped_tasks[\"cluster_name\"].unique())\n",
655
+ "\n",
656
+ " # Check which geographies have unmapped tasks\n",
657
+ " unmapped_geos = unmapped_tasks[\"geography\"].unique()\n",
658
+ "\n",
659
+ " raise ValueError(\n",
660
+ " f\"Found {n_unmapped} O*NET tasks that could not be mapped to SOC codes.\\n\"\n",
661
+ " f\"Geographies with unmapped tasks: {unmapped_geos.tolist()}\\n\"\n",
662
+ " f\"First 10 unmapped tasks:\\n\"\n",
663
+ " + \"\\n\".join(f\" - {task}\" for task in unmapped_list)\n",
664
+ " + f\"\\n\\nThis likely means the O*NET data is out of sync with the Clio task data.\\n\"\n",
665
+ " f\"Please verify that preprocess_onet.py has been run with the correct O*NET version.\"\n",
666
+ " )\n",
667
+ "\n",
668
+ " # Create SOC name mapping if SOC structure is available\n",
669
+ " soc_names = {}\n",
670
+ " if not df_soc_structure.empty:\n",
671
+ " for _, row in df_soc_structure.iterrows():\n",
672
+ " soc_code = row[\"soc_major_group\"]\n",
673
+ " title = row[\"SOC or O*NET-SOC 2019 Title\"]\n",
674
+ " # Clean up title (remove \"Occupations\" suffix)\n",
675
+ " clean_title = title.replace(\" Occupations\", \"\").replace(\" Occupation\", \"\")\n",
676
+ " soc_names[soc_code] = clean_title\n",
677
+ "\n",
678
+ " # Group by geography and process each group\n",
679
+ " geo_groups = df_with_soc.groupby(\n",
680
+ " [\"geo_id\", \"geography\", \"date_start\", \"date_end\", \"platform_and_product\"]\n",
681
+ " )\n",
682
+ "\n",
683
+ " # Also group not_classified data by geography\n",
684
+ " not_classified_groups = df_not_classified.groupby(\n",
685
+ " [\"geo_id\", \"geography\", \"date_start\", \"date_end\", \"platform_and_product\"]\n",
686
+ " )\n",
687
+ "\n",
688
+ " # Track statistics\n",
689
+ " states_with_soc = set()\n",
690
+ " countries_with_soc = set()\n",
691
+ "\n",
692
+ " # Process all geographies\n",
693
+ " all_geos = set()\n",
694
+ " for (geo_id, geography, date_start, date_end, platform), _ in geo_groups:\n",
695
+ " all_geos.add((geo_id, geography, date_start, date_end, platform))\n",
696
+ " for (geo_id, geography, date_start, date_end, platform), _ in not_classified_groups:\n",
697
+ " all_geos.add((geo_id, geography, date_start, date_end, platform))\n",
698
+ "\n",
699
+ " for geo_id, geography, date_start, date_end, platform in all_geos:\n",
700
+ " # Get mapped SOC data for this geography\n",
701
+ " try:\n",
702
+ " geo_data = geo_groups.get_group(\n",
703
+ " (geo_id, geography, date_start, date_end, platform)\n",
704
+ " )\n",
705
+ " # Sum percentages by SOC major group\n",
706
+ " # If a task maps to multiple SOC groups, its percentage is added to each\n",
707
+ " soc_totals = geo_data.groupby(\"soc_major_group\")[\"value\"].sum()\n",
708
+ " except KeyError:\n",
709
+ " # No mapped tasks for this geography\n",
710
+ " soc_totals = pd.Series(dtype=float)\n",
711
+ "\n",
712
+ " # Get not_classified/none data for this geography\n",
713
+ " try:\n",
714
+ " not_classified_data = not_classified_groups.get_group(\n",
715
+ " (geo_id, geography, date_start, date_end, platform)\n",
716
+ " )\n",
717
+ " # Sum all not_classified and none percentages\n",
718
+ " not_classified_total = not_classified_data[\"value\"].sum()\n",
719
+ " except KeyError:\n",
720
+ " # No not_classified/none for this geography\n",
721
+ " not_classified_total = 0\n",
722
+ "\n",
723
+ " # Combine and normalize to 100%\n",
724
+ " total_pct = soc_totals.sum() + not_classified_total\n",
725
+ "\n",
726
+ " if total_pct > 0:\n",
727
+ " # Normalize mapped SOC groups\n",
728
+ " if len(soc_totals) > 0:\n",
729
+ " soc_normalized = (soc_totals / total_pct) * 100\n",
730
+ " else:\n",
731
+ " soc_normalized = pd.Series(dtype=float)\n",
732
+ "\n",
733
+ " # Calculate normalized not_classified percentage\n",
734
+ " not_classified_normalized = (not_classified_total / total_pct) * 100\n",
735
+ "\n",
736
+ " # Track geographies that have SOC data\n",
737
+ " if geography == \"state_us\":\n",
738
+ " states_with_soc.add(geo_id)\n",
739
+ " elif geography == \"country\":\n",
740
+ " countries_with_soc.add(geo_id)\n",
741
+ "\n",
742
+ " # Create rows for each SOC group\n",
743
+ " for soc_group, pct_value in soc_normalized.items():\n",
744
+ " # Get SOC name if available, otherwise use code\n",
745
+ " soc_name = soc_names.get(soc_group, f\"SOC {soc_group}\")\n",
746
+ "\n",
747
+ " soc_row = {\n",
748
+ " \"geo_id\": geo_id,\n",
749
+ " \"geography\": geography,\n",
750
+ " \"date_start\": date_start,\n",
751
+ " \"date_end\": date_end,\n",
752
+ " \"platform_and_product\": platform,\n",
753
+ " \"facet\": \"soc_occupation\",\n",
754
+ " \"level\": 0,\n",
755
+ " \"variable\": \"soc_pct\",\n",
756
+ " \"cluster_name\": soc_name,\n",
757
+ " \"value\": pct_value,\n",
758
+ " }\n",
759
+ " soc_rows.append(soc_row)\n",
760
+ "\n",
761
+ " # Add not_classified SOC row if there's any not_classified/none percentage\n",
762
+ " if not_classified_normalized > 0:\n",
763
+ " soc_row = {\n",
764
+ " \"geo_id\": geo_id,\n",
765
+ " \"geography\": geography,\n",
766
+ " \"date_start\": date_start,\n",
767
+ " \"date_end\": date_end,\n",
768
+ " \"platform_and_product\": platform,\n",
769
+ " \"facet\": \"soc_occupation\",\n",
770
+ " \"level\": 0,\n",
771
+ " \"variable\": \"soc_pct\",\n",
772
+ " \"cluster_name\": \"not_classified\",\n",
773
+ " \"value\": not_classified_normalized,\n",
774
+ " }\n",
775
+ " soc_rows.append(soc_row)\n",
776
+ "\n",
777
+ " # Print summary\n",
778
+ " if countries_with_soc:\n",
779
+ " print(\n",
780
+ " f\"Calculated SOC distributions for {len(countries_with_soc)} countries + global\"\n",
781
+ " )\n",
782
+ " if states_with_soc:\n",
783
+ " print(f\"Calculated SOC distributions for {len(states_with_soc)} US states\")\n",
784
+ "\n",
785
+ " # Add all SOC rows to result\n",
786
+ " if soc_rows:\n",
787
+ " df_soc = pd.DataFrame(soc_rows)\n",
788
+ " df_result = pd.concat([df_result, df_soc], ignore_index=True)\n",
789
+ "\n",
790
+ " return df_result"
791
+ ]
792
+ },
793
+ {
794
+ "cell_type": "markdown",
795
+ "metadata": {},
796
+ "source": [
797
+ "## Metric Calculation Functions"
798
+ ]
799
+ },
800
+ {
801
+ "cell_type": "code",
802
+ "execution_count": null,
803
+ "metadata": {},
804
+ "outputs": [],
805
+ "source": [
806
+ "def calculate_per_capita_metrics(df):\n",
807
+ " \"\"\"\n",
808
+ " Calculate per capita metrics by joining usage and population data.\n",
809
+ "\n",
810
+ " Since data is in long format, this function:\n",
811
+ " 1. Extracts usage count rows\n",
812
+ " 2. Extracts population rows\n",
813
+ " 3. Joins them and calculates per capita\n",
814
+ " 4. Adds results as new rows\n",
815
+ "\n",
816
+ " Args:\n",
817
+ " df: Dataframe in long format with usage and population as rows\n",
818
+ "\n",
819
+ " Returns:\n",
820
+ " Dataframe with per capita metrics added as new rows\n",
821
+ " \"\"\"\n",
822
+ " df_result = df.copy()\n",
823
+ "\n",
824
+ " # Define which metrics should have per capita calculations\n",
825
+ " count_metrics = [\"usage_count\"]\n",
826
+ "\n",
827
+ " # Get population data\n",
828
+ " df_pop = df_result[df_result[\"variable\"] == \"working_age_pop\"][\n",
829
+ " [\n",
830
+ " \"geo_id\",\n",
831
+ " \"geography\",\n",
832
+ " \"date_start\",\n",
833
+ " \"date_end\",\n",
834
+ " \"platform_and_product\",\n",
835
+ " \"value\",\n",
836
+ " ]\n",
837
+ " ].rename(columns={\"value\": \"population\"})\n",
838
+ "\n",
839
+ " # Calculate per capita for each count metric\n",
840
+ " per_capita_rows = []\n",
841
+ "\n",
842
+ " for metric in count_metrics:\n",
843
+ " # Get the count data for this metric\n",
844
+ " df_metric = df_result[df_result[\"variable\"] == metric].copy()\n",
845
+ "\n",
846
+ " # Join with population data\n",
847
+ " df_joined = df_metric.merge(\n",
848
+ " df_pop,\n",
849
+ " on=[\n",
850
+ " \"geo_id\",\n",
851
+ " \"geography\",\n",
852
+ " \"date_start\",\n",
853
+ " \"date_end\",\n",
854
+ " \"platform_and_product\",\n",
855
+ " ],\n",
856
+ " how=\"left\",\n",
857
+ " )\n",
858
+ "\n",
859
+ " # Calculate per capita where population exists and is > 0\n",
860
+ " df_joined = df_joined[\n",
861
+ " df_joined[\"population\"].notna() & (df_joined[\"population\"] > 0)\n",
862
+ " ]\n",
863
+ "\n",
864
+ " if not df_joined.empty:\n",
865
+ " # Create per capita rows\n",
866
+ " for _, row in df_joined.iterrows():\n",
867
+ " per_capita_row = {\n",
868
+ " \"geo_id\": row[\"geo_id\"],\n",
869
+ " \"geography\": row[\"geography\"],\n",
870
+ " \"date_start\": row[\"date_start\"],\n",
871
+ " \"date_end\": row[\"date_end\"],\n",
872
+ " \"platform_and_product\": row[\"platform_and_product\"],\n",
873
+ " \"facet\": row[\"facet\"],\n",
874
+ " \"level\": row[\"level\"],\n",
875
+ " \"variable\": metric.replace(\"_count\", \"_per_capita\"),\n",
876
+ " \"cluster_name\": row[\"cluster_name\"],\n",
877
+ " \"value\": row[\"value\"] / row[\"population\"],\n",
878
+ " }\n",
879
+ " per_capita_rows.append(per_capita_row)\n",
880
+ "\n",
881
+ " # Add all per capita rows to the result\n",
882
+ " if per_capita_rows:\n",
883
+ " df_per_capita = pd.DataFrame(per_capita_rows)\n",
884
+ " df_result = pd.concat([df_result, df_per_capita], ignore_index=True)\n",
885
+ "\n",
886
+ " return df_result\n",
887
+ "\n",
888
+ "\n",
889
+ "def calculate_usage_per_capita_index(df, filtered_countries=None, filtered_states=None):\n",
890
+ " \"\"\"\n",
891
+ " Calculate usage concentration index: (% of usage) / (% of population).\n",
892
+ "\n",
893
+ " This shows whether a geography has more or less usage than expected based on its population.\n",
894
+ " - Index = 1.0: Usage proportional to population\n",
895
+ " - Index > 1.0: Over-representation (more usage than expected)\n",
896
+ " - Index < 1.0: Under-representation (less usage than expected)\n",
897
+ " - Index = 0.0: No usage at all\n",
898
+ "\n",
899
+ " The function calculates the index for all countries/states that have usage data.\n",
900
+ " Excluded countries don't have usage data, so they're automatically excluded.\n",
901
+ " Countries with zero usage get index=0 naturally from the calculation.\n",
902
+ "\n",
903
+ " Args:\n",
904
+ " df: Dataframe with usage and population data\n",
905
+ " filtered_countries: List of countries that meet MIN_OBSERVATIONS threshold (used for baseline calculation)\n",
906
+ " filtered_states: List of states that meet MIN_OBSERVATIONS threshold (used for baseline calculation)\n",
907
+ "\n",
908
+ " Returns:\n",
909
+ " Dataframe with usage concentration index added as new rows\n",
910
+ " \"\"\"\n",
911
+ " df_result = df.copy()\n",
912
+ "\n",
913
+ " index_rows = []\n",
914
+ "\n",
915
+ " # Process countries\n",
916
+ " # Get all countries with usage data (excluded countries won't be here)\n",
917
+ " df_usage_country = df_result[\n",
918
+ " (df_result[\"geography\"] == \"country\") & (df_result[\"variable\"] == \"usage_count\")\n",
919
+ " ].copy()\n",
920
+ "\n",
921
+ " # Get population data for the same countries\n",
922
+ " df_pop_country = df_result[\n",
923
+ " (df_result[\"geography\"] == \"country\")\n",
924
+ " & (df_result[\"variable\"] == \"working_age_pop\")\n",
925
+ " ].copy()\n",
926
+ "\n",
927
+ " if not df_usage_country.empty and not df_pop_country.empty:\n",
928
+ " # For baseline calculation, use filtered countries if provided, otherwise use all\n",
929
+ " if filtered_countries is not None:\n",
930
+ " # Calculate totals using only filtered countries for the baseline\n",
931
+ " usage_for_baseline = df_usage_country[\n",
932
+ " df_usage_country[\"geo_id\"].isin(filtered_countries)\n",
933
+ " ]\n",
934
+ " pop_for_baseline = df_pop_country[\n",
935
+ " df_pop_country[\"geo_id\"].isin(filtered_countries)\n",
936
+ " ]\n",
937
+ " total_usage = usage_for_baseline[\"value\"].sum()\n",
938
+ " total_pop = pop_for_baseline[\"value\"].sum()\n",
939
+ " else:\n",
940
+ " # Use all countries for baseline\n",
941
+ " total_usage = df_usage_country[\"value\"].sum()\n",
942
+ " total_pop = df_pop_country[\"value\"].sum()\n",
943
+ "\n",
944
+ " if total_usage > 0 and total_pop > 0:\n",
945
+ " # Calculate index for all countries (not just filtered)\n",
946
+ " for _, usage_row in df_usage_country.iterrows():\n",
947
+ " # Find corresponding population\n",
948
+ " pop_value = df_pop_country[\n",
949
+ " df_pop_country[\"geo_id\"] == usage_row[\"geo_id\"]\n",
950
+ " ][\"value\"].values\n",
951
+ "\n",
952
+ " if len(pop_value) > 0 and pop_value[0] > 0:\n",
953
+ " # Calculate shares\n",
954
+ " usage_share = (\n",
955
+ " usage_row[\"value\"] / total_usage\n",
956
+ " if usage_row[\"value\"] > 0\n",
957
+ " else 0\n",
958
+ " )\n",
959
+ " pop_share = pop_value[0] / total_pop\n",
960
+ "\n",
961
+ " # Calculate index (will be 0 if usage is 0)\n",
962
+ " index_value = usage_share / pop_share if pop_share > 0 else 0\n",
963
+ "\n",
964
+ " index_row = {\n",
965
+ " \"geo_id\": usage_row[\"geo_id\"],\n",
966
+ " \"geography\": usage_row[\"geography\"],\n",
967
+ " \"date_start\": usage_row[\"date_start\"],\n",
968
+ " \"date_end\": usage_row[\"date_end\"],\n",
969
+ " \"platform_and_product\": usage_row[\"platform_and_product\"],\n",
970
+ " \"facet\": usage_row[\"facet\"],\n",
971
+ " \"level\": usage_row[\"level\"],\n",
972
+ " \"variable\": \"usage_per_capita_index\",\n",
973
+ " \"cluster_name\": usage_row[\"cluster_name\"],\n",
974
+ " \"value\": index_value,\n",
975
+ " }\n",
976
+ " index_rows.append(index_row)\n",
977
+ "\n",
978
+ " # Process states\n",
979
+ " # Get all states with usage data\n",
980
+ " df_usage_state = df_result[\n",
981
+ " (df_result[\"geography\"] == \"state_us\")\n",
982
+ " & (df_result[\"variable\"] == \"usage_count\")\n",
983
+ " ].copy()\n",
984
+ "\n",
985
+ " # Get population data for the same states\n",
986
+ " df_pop_state = df_result[\n",
987
+ " (df_result[\"geography\"] == \"state_us\")\n",
988
+ " & (df_result[\"variable\"] == \"working_age_pop\")\n",
989
+ " ].copy()\n",
990
+ "\n",
991
+ " if not df_usage_state.empty and not df_pop_state.empty:\n",
992
+ " # For baseline calculation, use filtered states if provided, otherwise use all\n",
993
+ " if filtered_states is not None:\n",
994
+ " # Calculate totals using only filtered states for the baseline\n",
995
+ " usage_for_baseline = df_usage_state[\n",
996
+ " df_usage_state[\"geo_id\"].isin(filtered_states)\n",
997
+ " ]\n",
998
+ " pop_for_baseline = df_pop_state[\n",
999
+ " df_pop_state[\"geo_id\"].isin(filtered_states)\n",
1000
+ " ]\n",
1001
+ " total_usage = usage_for_baseline[\"value\"].sum()\n",
1002
+ " total_pop = pop_for_baseline[\"value\"].sum()\n",
1003
+ " else:\n",
1004
+ " # Use all states for baseline\n",
1005
+ " total_usage = df_usage_state[\"value\"].sum()\n",
1006
+ " total_pop = df_pop_state[\"value\"].sum()\n",
1007
+ "\n",
1008
+ " if total_usage > 0 and total_pop > 0:\n",
1009
+ " # Calculate index for all states (not just filtered)\n",
1010
+ " for _, usage_row in df_usage_state.iterrows():\n",
1011
+ " # Find corresponding population\n",
1012
+ " pop_value = df_pop_state[df_pop_state[\"geo_id\"] == usage_row[\"geo_id\"]][\n",
1013
+ " \"value\"\n",
1014
+ " ].values\n",
1015
+ "\n",
1016
+ " if len(pop_value) > 0 and pop_value[0] > 0:\n",
1017
+ " # Calculate shares\n",
1018
+ " usage_share = (\n",
1019
+ " usage_row[\"value\"] / total_usage\n",
1020
+ " if usage_row[\"value\"] > 0\n",
1021
+ " else 0\n",
1022
+ " )\n",
1023
+ " pop_share = pop_value[0] / total_pop\n",
1024
+ "\n",
1025
+ " # Calculate index (will be 0 if usage is 0)\n",
1026
+ " index_value = usage_share / pop_share if pop_share > 0 else 0\n",
1027
+ "\n",
1028
+ " index_row = {\n",
1029
+ " \"geo_id\": usage_row[\"geo_id\"],\n",
1030
+ " \"geography\": usage_row[\"geography\"],\n",
1031
+ " \"date_start\": usage_row[\"date_start\"],\n",
1032
+ " \"date_end\": usage_row[\"date_end\"],\n",
1033
+ " \"platform_and_product\": usage_row[\"platform_and_product\"],\n",
1034
+ " \"facet\": usage_row[\"facet\"],\n",
1035
+ " \"level\": usage_row[\"level\"],\n",
1036
+ " \"variable\": \"usage_per_capita_index\",\n",
1037
+ " \"cluster_name\": usage_row[\"cluster_name\"],\n",
1038
+ " \"value\": index_value,\n",
1039
+ " }\n",
1040
+ " index_rows.append(index_row)\n",
1041
+ "\n",
1042
+ " # Add all index rows to result\n",
1043
+ " if index_rows:\n",
1044
+ " df_index = pd.DataFrame(index_rows)\n",
1045
+ " df_result = pd.concat([df_result, df_index], ignore_index=True)\n",
1046
+ "\n",
1047
+ " return df_result\n",
1048
+ "\n",
1049
+ "\n",
1050
+ "def calculate_category_percentage_index(\n",
1051
+ " df, filtered_countries=None, filtered_states=None\n",
1052
+ "):\n",
1053
+ " \"\"\"\n",
1054
+ " Calculate category percentage index for facet specialization.\n",
1055
+ "\n",
1056
+ " For countries: Compare to global percentage for that cluster\n",
1057
+ " For US states: Compare to US country percentage for that cluster\n",
1058
+ "\n",
1059
+ " Only calculates for countries/states that meet MIN_OBSERVATIONS.\n",
1060
+ " Excludes \"not_classified\" and \"none\" categories as these are catch-alls.\n",
1061
+ "\n",
1062
+ " Args:\n",
1063
+ " df: Dataframe with percentage metrics as rows\n",
1064
+ " filtered_countries: List of countries that meet MIN_OBSERVATIONS threshold\n",
1065
+ " filtered_states: List of states that meet MIN_OBSERVATIONS threshold\n",
1066
+ "\n",
1067
+ " Returns:\n",
1068
+ " Dataframe with category percentage index added as new rows (only for filtered geographies)\n",
1069
+ " \"\"\"\n",
1070
+ " df_result = df.copy()\n",
1071
+ "\n",
1072
+ " # Process percentage metrics for content facets\n",
1073
+ " pct_vars = [\"onet_task_pct\", \"collaboration_pct\", \"request_pct\"]\n",
1074
+ "\n",
1075
+ " index_rows = []\n",
1076
+ "\n",
1077
+ " for pct_var in pct_vars:\n",
1078
+ " # Get the base facet name\n",
1079
+ " facet_name = pct_var.replace(\"_pct\", \"\")\n",
1080
+ "\n",
1081
+ " # Get percentage data for this variable\n",
1082
+ " df_pct = df_result[\n",
1083
+ " (df_result[\"variable\"] == pct_var) & (df_result[\"facet\"] == facet_name)\n",
1084
+ " ].copy()\n",
1085
+ "\n",
1086
+ " # Exclude not_classified and none categories from index calculation\n",
1087
+ " # These are catch-all/no-pattern categories that don't provide meaningful comparisons\n",
1088
+ " df_pct = df_pct[~df_pct[\"cluster_name\"].isin([\"not_classified\", \"none\"])]\n",
1089
+ "\n",
1090
+ " if not df_pct.empty and \"cluster_name\" in df_pct.columns:\n",
1091
+ " # Check if this facet has levels (like request)\n",
1092
+ " has_levels = df_pct[\"level\"].notna().any() and (df_pct[\"level\"] != 0).any()\n",
1093
+ "\n",
1094
+ " if has_levels:\n",
1095
+ " # Process each level separately\n",
1096
+ " levels = df_pct[\"level\"].dropna().unique()\n",
1097
+ "\n",
1098
+ " for level in levels:\n",
1099
+ " df_level = df_pct[df_pct[\"level\"] == level].copy()\n",
1100
+ "\n",
1101
+ " # Get global baselines for this level\n",
1102
+ " global_baselines = (\n",
1103
+ " df_level[\n",
1104
+ " (df_level[\"geography\"] == \"global\")\n",
1105
+ " & (df_level[\"geo_id\"] == \"GLOBAL\")\n",
1106
+ " ]\n",
1107
+ " .set_index(\"cluster_name\")[\"value\"]\n",
1108
+ " .to_dict()\n",
1109
+ " )\n",
1110
+ "\n",
1111
+ " # Get US baselines for this level\n",
1112
+ " us_baselines = (\n",
1113
+ " df_level[\n",
1114
+ " (df_level[\"geography\"] == \"country\")\n",
1115
+ " & (df_level[\"geo_id\"] == \"US\")\n",
1116
+ " ]\n",
1117
+ " .set_index(\"cluster_name\")[\"value\"]\n",
1118
+ " .to_dict()\n",
1119
+ " )\n",
1120
+ "\n",
1121
+ " # Process countries for this level\n",
1122
+ " if filtered_countries is not None and global_baselines:\n",
1123
+ " df_countries = df_level[\n",
1124
+ " (df_level[\"geography\"] == \"country\")\n",
1125
+ " & (df_level[\"geo_id\"].isin(filtered_countries))\n",
1126
+ " ].copy()\n",
1127
+ "\n",
1128
+ " for _, row in df_countries.iterrows():\n",
1129
+ " baseline = global_baselines.get(row[\"cluster_name\"])\n",
1130
+ "\n",
1131
+ " if baseline and baseline > 0:\n",
1132
+ " index_row = {\n",
1133
+ " \"geo_id\": row[\"geo_id\"],\n",
1134
+ " \"geography\": row[\"geography\"],\n",
1135
+ " \"date_start\": row[\"date_start\"],\n",
1136
+ " \"date_end\": row[\"date_end\"],\n",
1137
+ " \"platform_and_product\": row[\"platform_and_product\"],\n",
1138
+ " \"facet\": row[\"facet\"],\n",
1139
+ " \"level\": row[\"level\"],\n",
1140
+ " \"variable\": f\"{facet_name}_pct_index\",\n",
1141
+ " \"cluster_name\": row[\"cluster_name\"],\n",
1142
+ " \"value\": row[\"value\"] / baseline,\n",
1143
+ " }\n",
1144
+ " index_rows.append(index_row)\n",
1145
+ "\n",
1146
+ " # Process states for this level\n",
1147
+ " if filtered_states is not None and us_baselines:\n",
1148
+ " df_states = df_level[\n",
1149
+ " (df_level[\"geography\"] == \"state_us\")\n",
1150
+ " & (df_level[\"geo_id\"].isin(filtered_states))\n",
1151
+ " ].copy()\n",
1152
+ "\n",
1153
+ " for _, row in df_states.iterrows():\n",
1154
+ " baseline = us_baselines.get(row[\"cluster_name\"])\n",
1155
+ "\n",
1156
+ " if baseline and baseline > 0:\n",
1157
+ " index_row = {\n",
1158
+ " \"geo_id\": row[\"geo_id\"],\n",
1159
+ " \"geography\": row[\"geography\"],\n",
1160
+ " \"date_start\": row[\"date_start\"],\n",
1161
+ " \"date_end\": row[\"date_end\"],\n",
1162
+ " \"platform_and_product\": row[\"platform_and_product\"],\n",
1163
+ " \"facet\": row[\"facet\"],\n",
1164
+ " \"level\": row[\"level\"],\n",
1165
+ " \"variable\": f\"{facet_name}_pct_index\",\n",
1166
+ " \"cluster_name\": row[\"cluster_name\"],\n",
1167
+ " \"value\": row[\"value\"] / baseline,\n",
1168
+ " }\n",
1169
+ " index_rows.append(index_row)\n",
1170
+ " else:\n",
1171
+ " # No levels (onet_task, collaboration)\n",
1172
+ " # Get global baselines\n",
1173
+ " global_baselines = (\n",
1174
+ " df_pct[\n",
1175
+ " (df_pct[\"geography\"] == \"global\")\n",
1176
+ " & (df_pct[\"geo_id\"] == \"GLOBAL\")\n",
1177
+ " ]\n",
1178
+ " .set_index(\"cluster_name\")[\"value\"]\n",
1179
+ " .to_dict()\n",
1180
+ " )\n",
1181
+ "\n",
1182
+ " # Get US baselines\n",
1183
+ " us_baselines = (\n",
1184
+ " df_pct[\n",
1185
+ " (df_pct[\"geography\"] == \"country\") & (df_pct[\"geo_id\"] == \"US\")\n",
1186
+ " ]\n",
1187
+ " .set_index(\"cluster_name\")[\"value\"]\n",
1188
+ " .to_dict()\n",
1189
+ " )\n",
1190
+ "\n",
1191
+ " # Process countries\n",
1192
+ " if filtered_countries is not None and global_baselines:\n",
1193
+ " df_countries = df_pct[\n",
1194
+ " (df_pct[\"geography\"] == \"country\")\n",
1195
+ " & (df_pct[\"geo_id\"].isin(filtered_countries))\n",
1196
+ " ].copy()\n",
1197
+ "\n",
1198
+ " for _, row in df_countries.iterrows():\n",
1199
+ " baseline = global_baselines.get(row[\"cluster_name\"])\n",
1200
+ "\n",
1201
+ " if baseline and baseline > 0:\n",
1202
+ " index_row = {\n",
1203
+ " \"geo_id\": row[\"geo_id\"],\n",
1204
+ " \"geography\": row[\"geography\"],\n",
1205
+ " \"date_start\": row[\"date_start\"],\n",
1206
+ " \"date_end\": row[\"date_end\"],\n",
1207
+ " \"platform_and_product\": row[\"platform_and_product\"],\n",
1208
+ " \"facet\": row[\"facet\"],\n",
1209
+ " \"level\": row[\"level\"],\n",
1210
+ " \"variable\": f\"{facet_name}_pct_index\",\n",
1211
+ " \"cluster_name\": row[\"cluster_name\"],\n",
1212
+ " \"value\": row[\"value\"] / baseline,\n",
1213
+ " }\n",
1214
+ " index_rows.append(index_row)\n",
1215
+ "\n",
1216
+ " # Process states\n",
1217
+ " if filtered_states is not None and us_baselines:\n",
1218
+ " df_states = df_pct[\n",
1219
+ " (df_pct[\"geography\"] == \"state_us\")\n",
1220
+ " & (df_pct[\"geo_id\"].isin(filtered_states))\n",
1221
+ " ].copy()\n",
1222
+ "\n",
1223
+ " for _, row in df_states.iterrows():\n",
1224
+ " baseline = us_baselines.get(row[\"cluster_name\"])\n",
1225
+ "\n",
1226
+ " if baseline and baseline > 0:\n",
1227
+ " index_row = {\n",
1228
+ " \"geo_id\": row[\"geo_id\"],\n",
1229
+ " \"geography\": row[\"geography\"],\n",
1230
+ " \"date_start\": row[\"date_start\"],\n",
1231
+ " \"date_end\": row[\"date_end\"],\n",
1232
+ " \"platform_and_product\": row[\"platform_and_product\"],\n",
1233
+ " \"facet\": row[\"facet\"],\n",
1234
+ " \"level\": row[\"level\"],\n",
1235
+ " \"variable\": f\"{facet_name}_pct_index\",\n",
1236
+ " \"cluster_name\": row[\"cluster_name\"],\n",
1237
+ " \"value\": row[\"value\"] / baseline,\n",
1238
+ " }\n",
1239
+ " index_rows.append(index_row)\n",
1240
+ "\n",
1241
+ " # Add all index rows to result\n",
1242
+ " if index_rows:\n",
1243
+ " df_index = pd.DataFrame(index_rows)\n",
1244
+ " df_result = pd.concat([df_result, df_index], ignore_index=True)\n",
1245
+ "\n",
1246
+ " return df_result"
1247
+ ]
1248
+ },
1249
+ {
1250
+ "cell_type": "code",
1251
+ "execution_count": null,
1252
+ "metadata": {},
1253
+ "outputs": [],
1254
+ "source": [
1255
+ "def calculate_usage_tiers(df, n_tiers=4, filtered_countries=None, filtered_states=None):\n",
1256
+ " \"\"\"\n",
1257
+ " Calculate usage tiers based on indexed per capita usage.\n",
1258
+ " - Tier 0: Zero adoption (index = 0)\n",
1259
+ " - Tiers 1-4: Quartiles based on thresholds from filtered countries/states\n",
1260
+ "\n",
1261
+ " Quartile thresholds are calculated using only countries/states with ≥MIN_OBSERVATIONS,\n",
1262
+ " but applied to all countries/states to ensure complete visualization.\n",
1263
+ "\n",
1264
+ " Note: Tier assignments for countries/states with <MIN_OBSERVATIONS should be\n",
1265
+ " interpreted with caution due to sample size limitations.\n",
1266
+ "\n",
1267
+ " Args:\n",
1268
+ " df: Input dataframe\n",
1269
+ " n_tiers: Number of quartiles to create for non-zero usage (default 4)\n",
1270
+ " filtered_countries: List of countries that meet MIN_OBSERVATIONS threshold\n",
1271
+ " filtered_states: List of states that meet MIN_OBSERVATIONS threshold\n",
1272
+ "\n",
1273
+ " Returns:\n",
1274
+ " Dataframe with usage tier rows added\n",
1275
+ " \"\"\"\n",
1276
+ " df_result = df.copy()\n",
1277
+ "\n",
1278
+ " # Calculate tiers for indexed per capita metrics\n",
1279
+ " if \"variable\" in df_result.columns and \"value\" in df_result.columns:\n",
1280
+ " index_vars = [\"usage_per_capita_index\"]\n",
1281
+ "\n",
1282
+ " quartile_labels = [\n",
1283
+ " \"Emerging (bottom 25%)\",\n",
1284
+ " \"Lower middle (25-50%)\",\n",
1285
+ " \"Upper middle (50-75%)\",\n",
1286
+ " \"Leading (top 25%)\",\n",
1287
+ " ]\n",
1288
+ "\n",
1289
+ " tier_rows = []\n",
1290
+ "\n",
1291
+ " for var in index_vars:\n",
1292
+ " # Process countries\n",
1293
+ " # Get all countries with the index variable\n",
1294
+ " all_country_data = df_result[\n",
1295
+ " (df_result[\"variable\"] == var) & (df_result[\"geography\"] == \"country\")\n",
1296
+ " ].copy()\n",
1297
+ "\n",
1298
+ " if not all_country_data.empty:\n",
1299
+ " # Separate zero and non-zero usage\n",
1300
+ " zero_usage = all_country_data[all_country_data[\"value\"] == 0].copy()\n",
1301
+ " nonzero_usage = all_country_data[all_country_data[\"value\"] > 0].copy()\n",
1302
+ "\n",
1303
+ " # Calculate quartile thresholds using ONLY filtered countries\n",
1304
+ " if filtered_countries is not None and not nonzero_usage.empty:\n",
1305
+ " # Get only filtered countries for quartile calculation\n",
1306
+ " filtered_for_quartiles = nonzero_usage[\n",
1307
+ " nonzero_usage[\"geo_id\"].isin(filtered_countries)\n",
1308
+ " ].copy()\n",
1309
+ "\n",
1310
+ " if not filtered_for_quartiles.empty:\n",
1311
+ " # Calculate quartile thresholds from filtered countries\n",
1312
+ " quartiles = (\n",
1313
+ " filtered_for_quartiles[\"value\"]\n",
1314
+ " .quantile([0.25, 0.5, 0.75])\n",
1315
+ " .values\n",
1316
+ " )\n",
1317
+ "\n",
1318
+ " # Apply thresholds to all non-zero countries\n",
1319
+ " for _, row in nonzero_usage.iterrows():\n",
1320
+ " value = row[\"value\"]\n",
1321
+ "\n",
1322
+ " # Assign tier based on thresholds\n",
1323
+ " if value <= quartiles[0]:\n",
1324
+ " tier_label = quartile_labels[0] # Bottom 25%\n",
1325
+ " tier_value = 1\n",
1326
+ " elif value <= quartiles[1]:\n",
1327
+ " tier_label = quartile_labels[1] # 25-50%\n",
1328
+ " tier_value = 2\n",
1329
+ " elif value <= quartiles[2]:\n",
1330
+ " tier_label = quartile_labels[2] # 50-75%\n",
1331
+ " tier_value = 3\n",
1332
+ " else:\n",
1333
+ " tier_label = quartile_labels[3] # Top 25%\n",
1334
+ " tier_value = 4\n",
1335
+ "\n",
1336
+ " tier_row = {\n",
1337
+ " \"geo_id\": row[\"geo_id\"],\n",
1338
+ " \"geography\": row[\"geography\"],\n",
1339
+ " \"date_start\": row[\"date_start\"],\n",
1340
+ " \"date_end\": row[\"date_end\"],\n",
1341
+ " \"platform_and_product\": row[\"platform_and_product\"],\n",
1342
+ " \"facet\": row[\"facet\"],\n",
1343
+ " \"level\": row[\"level\"],\n",
1344
+ " \"variable\": \"usage_tier\",\n",
1345
+ " \"cluster_name\": tier_label,\n",
1346
+ " \"value\": tier_value,\n",
1347
+ " }\n",
1348
+ " tier_rows.append(tier_row)\n",
1349
+ "\n",
1350
+ " # Add tier 0 for all zero usage countries\n",
1351
+ " for _, row in zero_usage.iterrows():\n",
1352
+ " tier_row = {\n",
1353
+ " \"geo_id\": row[\"geo_id\"],\n",
1354
+ " \"geography\": row[\"geography\"],\n",
1355
+ " \"date_start\": row[\"date_start\"],\n",
1356
+ " \"date_end\": row[\"date_end\"],\n",
1357
+ " \"platform_and_product\": row[\"platform_and_product\"],\n",
1358
+ " \"facet\": row[\"facet\"],\n",
1359
+ " \"level\": row[\"level\"],\n",
1360
+ " \"variable\": \"usage_tier\",\n",
1361
+ " \"cluster_name\": \"Minimal\",\n",
1362
+ " \"value\": 0,\n",
1363
+ " }\n",
1364
+ " tier_rows.append(tier_row)\n",
1365
+ "\n",
1366
+ " # Process states\n",
1367
+ " # Get all states with the index variable\n",
1368
+ " all_state_data = df_result[\n",
1369
+ " (df_result[\"variable\"] == var) & (df_result[\"geography\"] == \"state_us\")\n",
1370
+ " ].copy()\n",
1371
+ "\n",
1372
+ " if not all_state_data.empty:\n",
1373
+ " # Separate zero and non-zero usage\n",
1374
+ " zero_usage = all_state_data[all_state_data[\"value\"] == 0].copy()\n",
1375
+ " nonzero_usage = all_state_data[all_state_data[\"value\"] > 0].copy()\n",
1376
+ "\n",
1377
+ " # Calculate quartile thresholds using ONLY filtered states\n",
1378
+ " if filtered_states is not None and not nonzero_usage.empty:\n",
1379
+ " # Get only filtered states for quartile calculation\n",
1380
+ " filtered_for_quartiles = nonzero_usage[\n",
1381
+ " nonzero_usage[\"geo_id\"].isin(filtered_states)\n",
1382
+ " ].copy()\n",
1383
+ "\n",
1384
+ " if not filtered_for_quartiles.empty:\n",
1385
+ " # Calculate quartile thresholds from filtered states\n",
1386
+ " quartiles = (\n",
1387
+ " filtered_for_quartiles[\"value\"]\n",
1388
+ " .quantile([0.25, 0.5, 0.75])\n",
1389
+ " .values\n",
1390
+ " )\n",
1391
+ "\n",
1392
+ " # Apply thresholds to all non-zero states\n",
1393
+ " for _, row in nonzero_usage.iterrows():\n",
1394
+ " value = row[\"value\"]\n",
1395
+ "\n",
1396
+ " # Assign tier based on thresholds\n",
1397
+ " if value <= quartiles[0]:\n",
1398
+ " tier_label = quartile_labels[0] # Bottom 25%\n",
1399
+ " tier_value = 1\n",
1400
+ " elif value <= quartiles[1]:\n",
1401
+ " tier_label = quartile_labels[1] # 25-50%\n",
1402
+ " tier_value = 2\n",
1403
+ " elif value <= quartiles[2]:\n",
1404
+ " tier_label = quartile_labels[2] # 50-75%\n",
1405
+ " tier_value = 3\n",
1406
+ " else:\n",
1407
+ " tier_label = quartile_labels[3] # Top 25%\n",
1408
+ " tier_value = 4\n",
1409
+ "\n",
1410
+ " tier_row = {\n",
1411
+ " \"geo_id\": row[\"geo_id\"],\n",
1412
+ " \"geography\": row[\"geography\"],\n",
1413
+ " \"date_start\": row[\"date_start\"],\n",
1414
+ " \"date_end\": row[\"date_end\"],\n",
1415
+ " \"platform_and_product\": row[\"platform_and_product\"],\n",
1416
+ " \"facet\": row[\"facet\"],\n",
1417
+ " \"level\": row[\"level\"],\n",
1418
+ " \"variable\": \"usage_tier\",\n",
1419
+ " \"cluster_name\": tier_label,\n",
1420
+ " \"value\": tier_value,\n",
1421
+ " }\n",
1422
+ " tier_rows.append(tier_row)\n",
1423
+ "\n",
1424
+ " # Add tier 0 for all zero usage states\n",
1425
+ " for _, row in zero_usage.iterrows():\n",
1426
+ " tier_row = {\n",
1427
+ " \"geo_id\": row[\"geo_id\"],\n",
1428
+ " \"geography\": row[\"geography\"],\n",
1429
+ " \"date_start\": row[\"date_start\"],\n",
1430
+ " \"date_end\": row[\"date_end\"],\n",
1431
+ " \"platform_and_product\": row[\"platform_and_product\"],\n",
1432
+ " \"facet\": row[\"facet\"],\n",
1433
+ " \"level\": row[\"level\"],\n",
1434
+ " \"variable\": \"usage_tier\",\n",
1435
+ " \"cluster_name\": \"Minimal\",\n",
1436
+ " \"value\": 0,\n",
1437
+ " }\n",
1438
+ " tier_rows.append(tier_row)\n",
1439
+ "\n",
1440
+ " if tier_rows:\n",
1441
+ " df_result = pd.concat(\n",
1442
+ " [df_result, pd.DataFrame(tier_rows)], ignore_index=True\n",
1443
+ " )\n",
1444
+ "\n",
1445
+ " return df_result"
1446
+ ]
1447
+ },
1448
+ {
1449
+ "cell_type": "code",
1450
+ "execution_count": null,
1451
+ "metadata": {},
1452
+ "outputs": [],
1453
+ "source": [
1454
+ "def calculate_automation_augmentation_metrics(\n",
1455
+ " df, filtered_countries=None, filtered_states=None\n",
1456
+ "):\n",
1457
+ " \"\"\"\n",
1458
+ " Calculate automation vs augmentation percentages for collaboration patterns.\n",
1459
+ "\n",
1460
+ " This function:\n",
1461
+ " 1. Categorizes collaboration patterns as automation or augmentation\n",
1462
+ " 2. Calculates percentages excluding 'none' and 'not_classified'\n",
1463
+ " 3. Only calculates for filtered geographies at country/state level\n",
1464
+ "\n",
1465
+ " Categorization:\n",
1466
+ " - Automation: directive, feedback loop (AI-centric patterns)\n",
1467
+ " - Augmentation: validation, task iteration, learning (human-centric patterns)\n",
1468
+ " - Excluded: none (no collaboration), not_classified (unknown)\n",
1469
+ "\n",
1470
+ " Args:\n",
1471
+ " df: Dataframe with collaboration data\n",
1472
+ " filtered_countries: List of countries that meet MIN_OBSERVATIONS\n",
1473
+ " filtered_states: List of states that meet MIN_OBSERVATIONS\n",
1474
+ "\n",
1475
+ " Returns:\n",
1476
+ " Dataframe with automation/augmentation percentage rows added\n",
1477
+ " \"\"\"\n",
1478
+ " if \"facet\" not in df.columns or \"cluster_name\" not in df.columns:\n",
1479
+ " return df\n",
1480
+ "\n",
1481
+ " df_result = df.copy()\n",
1482
+ "\n",
1483
+ " # Get collaboration data\n",
1484
+ " collab_data = df_result[\n",
1485
+ " (df_result[\"facet\"] == \"collaboration\")\n",
1486
+ " & (df_result[\"variable\"] == \"collaboration_count\")\n",
1487
+ " ].copy()\n",
1488
+ "\n",
1489
+ " if collab_data.empty:\n",
1490
+ " return df_result\n",
1491
+ "\n",
1492
+ " # Define pattern categorization\n",
1493
+ " def categorize_pattern(pattern_name):\n",
1494
+ " if pd.isna(pattern_name):\n",
1495
+ " return None\n",
1496
+ "\n",
1497
+ " pattern_clean = pattern_name.lower().replace(\"_\", \" \").replace(\"-\", \" \")\n",
1498
+ "\n",
1499
+ " # Augmentation patterns (human-centric)\n",
1500
+ " if \"validation\" in pattern_clean:\n",
1501
+ " return \"augmentation\"\n",
1502
+ " elif \"task iteration\" in pattern_clean or \"task_iteration\" in pattern_clean:\n",
1503
+ " return \"augmentation\"\n",
1504
+ " elif \"learning\" in pattern_clean:\n",
1505
+ " return \"augmentation\"\n",
1506
+ " # Automation patterns (AI-centric)\n",
1507
+ " elif \"directive\" in pattern_clean:\n",
1508
+ " return \"automation\"\n",
1509
+ " elif \"feedback loop\" in pattern_clean or \"feedback_loop\" in pattern_clean:\n",
1510
+ " return \"automation\"\n",
1511
+ " # Excluded patterns - return None to exclude from calculations\n",
1512
+ " elif \"none\" in pattern_clean or \"not_classified\" in pattern_clean:\n",
1513
+ " return None\n",
1514
+ " else:\n",
1515
+ " return None # Unknown patterns also excluded\n",
1516
+ "\n",
1517
+ " # Add category column\n",
1518
+ " collab_data[\"category\"] = collab_data[\"cluster_name\"].apply(categorize_pattern)\n",
1519
+ "\n",
1520
+ " # Filter to only patterns that have a category (excludes none, not_classified, etc.)\n",
1521
+ " collab_categorized = collab_data[collab_data[\"category\"].notna()].copy()\n",
1522
+ "\n",
1523
+ " if collab_categorized.empty:\n",
1524
+ " return df_result\n",
1525
+ "\n",
1526
+ " # Process by geography\n",
1527
+ " new_rows = []\n",
1528
+ "\n",
1529
+ " # Group by geography and geo_id\n",
1530
+ " for (geography, geo_id), geo_data in collab_categorized.groupby(\n",
1531
+ " [\"geography\", \"geo_id\"]\n",
1532
+ " ):\n",
1533
+ " # Apply filtering based on geography level\n",
1534
+ " if geography == \"country\" and filtered_countries is not None:\n",
1535
+ " if geo_id not in filtered_countries:\n",
1536
+ " continue # Skip countries that don't meet threshold\n",
1537
+ " elif geography == \"state_us\" and filtered_states is not None:\n",
1538
+ " if geo_id not in filtered_states:\n",
1539
+ " continue # Skip states that don't meet threshold\n",
1540
+ " # global is always included (no filtering)\n",
1541
+ "\n",
1542
+ " # Calculate totals by category\n",
1543
+ " automation_total = geo_data[geo_data[\"category\"] == \"automation\"][\"value\"].sum()\n",
1544
+ " augmentation_total = geo_data[geo_data[\"category\"] == \"augmentation\"][\n",
1545
+ " \"value\"\n",
1546
+ " ].sum()\n",
1547
+ "\n",
1548
+ " # Total of categorized patterns (excluding none and not_classified)\n",
1549
+ " total_categorized = automation_total + augmentation_total\n",
1550
+ "\n",
1551
+ " if total_categorized > 0:\n",
1552
+ " # Get a sample row for metadata\n",
1553
+ " sample_row = geo_data.iloc[0]\n",
1554
+ "\n",
1555
+ " # Create automation percentage row\n",
1556
+ " automation_row = {\n",
1557
+ " \"geo_id\": geo_id,\n",
1558
+ " \"geography\": geography,\n",
1559
+ " \"date_start\": sample_row[\"date_start\"],\n",
1560
+ " \"date_end\": sample_row[\"date_end\"],\n",
1561
+ " \"platform_and_product\": sample_row[\"platform_and_product\"],\n",
1562
+ " \"facet\": \"collaboration_automation_augmentation\",\n",
1563
+ " \"level\": 0,\n",
1564
+ " \"variable\": \"automation_pct\",\n",
1565
+ " \"cluster_name\": \"automation\",\n",
1566
+ " \"value\": (automation_total / total_categorized) * 100,\n",
1567
+ " }\n",
1568
+ " new_rows.append(automation_row)\n",
1569
+ "\n",
1570
+ " # Create augmentation percentage row\n",
1571
+ " augmentation_row = {\n",
1572
+ " \"geo_id\": geo_id,\n",
1573
+ " \"geography\": geography,\n",
1574
+ " \"date_start\": sample_row[\"date_start\"],\n",
1575
+ " \"date_end\": sample_row[\"date_end\"],\n",
1576
+ " \"platform_and_product\": sample_row[\"platform_and_product\"],\n",
1577
+ " \"facet\": \"collaboration_automation_augmentation\",\n",
1578
+ " \"level\": 0,\n",
1579
+ " \"variable\": \"augmentation_pct\",\n",
1580
+ " \"cluster_name\": \"augmentation\",\n",
1581
+ " \"value\": (augmentation_total / total_categorized) * 100,\n",
1582
+ " }\n",
1583
+ " new_rows.append(augmentation_row)\n",
1584
+ "\n",
1585
+ " # Add all new rows to result\n",
1586
+ " if new_rows:\n",
1587
+ " df_new = pd.DataFrame(new_rows)\n",
1588
+ " df_result = pd.concat([df_result, df_new], ignore_index=True)\n",
1589
+ "\n",
1590
+ " return df_result"
1591
+ ]
1592
+ },
1593
+ {
1594
+ "cell_type": "code",
1595
+ "execution_count": null,
1596
+ "metadata": {},
1597
+ "outputs": [],
1598
+ "source": [
1599
+ "def add_iso3_and_names(df):\n",
1600
+ " \"\"\"\n",
1601
+ " Replace ISO-2 codes with ISO-3 codes and add geographic names.\n",
1602
+ "\n",
1603
+ " This function:\n",
1604
+ " 1. Replaces geo_id from ISO-2 to ISO-3 for countries\n",
1605
+ " 2. Adds geo_name column with human-readable names for all geographies\n",
1606
+ " 3. Preserves special geo_ids (like 'not_classified') that aren't in ISO mapping\n",
1607
+ "\n",
1608
+ " Args:\n",
1609
+ " df: Enriched dataframe with geo_id (ISO-2 for countries, state codes for US states)\n",
1610
+ "\n",
1611
+ " Returns:\n",
1612
+ " Dataframe with ISO-3 codes in geo_id and geo_name column added\n",
1613
+ " \"\"\"\n",
1614
+ " df_result = df.copy()\n",
1615
+ "\n",
1616
+ " # Initialize geo_name column\n",
1617
+ " df_result[\"geo_name\"] = \"\"\n",
1618
+ "\n",
1619
+ " # Load ISO mapping data for countries\n",
1620
+ " iso_path = Path(DATA_INTERMEDIATE_DIR) / \"iso_country_codes.csv\"\n",
1621
+ " if iso_path.exists():\n",
1622
+ " df_iso = pd.read_csv(iso_path, keep_default_na=False, na_values=[\"\"])\n",
1623
+ "\n",
1624
+ " # Create ISO-2 to ISO-3 mapping\n",
1625
+ " iso2_to_iso3 = dict(zip(df_iso[\"iso_alpha_2\"], df_iso[\"iso_alpha_3\"]))\n",
1626
+ "\n",
1627
+ " # Create ISO-2 to country name mapping\n",
1628
+ " iso2_to_name = dict(zip(df_iso[\"iso_alpha_2\"], df_iso[\"country_name\"]))\n",
1629
+ "\n",
1630
+ " # For all rows where geography is 'country', add country names and convert codes\n",
1631
+ " # This includes content facets that are broken down by country\n",
1632
+ " country_mask = df_result[\"geography\"] == \"country\"\n",
1633
+ "\n",
1634
+ " # First, identify which geo_ids don't have ISO mappings\n",
1635
+ " country_geo_ids = df_result.loc[country_mask, \"geo_id\"].unique()\n",
1636
+ " unmapped_geo_ids = [\n",
1637
+ " g for g in country_geo_ids if g not in iso2_to_iso3 and pd.notna(g)\n",
1638
+ " ]\n",
1639
+ "\n",
1640
+ " if unmapped_geo_ids:\n",
1641
+ " print(\n",
1642
+ " f\"\\nWarning: The following geo_ids are not in ISO-2 mapping and will be kept as-is:\"\n",
1643
+ " )\n",
1644
+ " for geo_id in unmapped_geo_ids:\n",
1645
+ " # Count rows and usage for this geo_id\n",
1646
+ " geo_mask = (df_result[\"geography\"] == \"country\") & (\n",
1647
+ " df_result[\"geo_id\"] == geo_id\n",
1648
+ " )\n",
1649
+ " row_count = geo_mask.sum()\n",
1650
+ " usage_mask = geo_mask & (df_result[\"variable\"] == \"usage_count\")\n",
1651
+ " usage_sum = (\n",
1652
+ " df_result.loc[usage_mask, \"value\"].sum() if usage_mask.any() else 0\n",
1653
+ " )\n",
1654
+ " print(f\" - '{geo_id}': {row_count} rows, {usage_sum:,.0f} usage count\")\n",
1655
+ "\n",
1656
+ " # Check for geo_ids without country names\n",
1657
+ " unmapped_names = [g for g in unmapped_geo_ids if g not in iso2_to_name]\n",
1658
+ " if unmapped_names:\n",
1659
+ " print(\n",
1660
+ " f\"\\nWarning: The following geo_ids don't have country names and will use geo_id as name:\"\n",
1661
+ " )\n",
1662
+ " for geo_id in unmapped_names:\n",
1663
+ " print(f\" - '{geo_id}'\")\n",
1664
+ "\n",
1665
+ " # Apply country names BEFORE converting ISO-2 to ISO-3\n",
1666
+ " # The iso2_to_name dictionary uses ISO-2 codes as keys\n",
1667
+ " df_result.loc[country_mask, \"geo_name\"] = (\n",
1668
+ " df_result.loc[country_mask, \"geo_id\"]\n",
1669
+ " .map(iso2_to_name)\n",
1670
+ " .fillna(df_result.loc[country_mask, \"geo_id\"])\n",
1671
+ " )\n",
1672
+ "\n",
1673
+ " # Convert ISO-2 to ISO-3 codes\n",
1674
+ " df_result.loc[country_mask, \"geo_id\"] = (\n",
1675
+ " df_result.loc[country_mask, \"geo_id\"]\n",
1676
+ " .map(iso2_to_iso3)\n",
1677
+ " .fillna(df_result.loc[country_mask, \"geo_id\"])\n",
1678
+ " )\n",
1679
+ " else:\n",
1680
+ " print(f\"Warning: ISO mapping file not found at {iso_path}\")\n",
1681
+ "\n",
1682
+ " # Load state names from census data\n",
1683
+ " state_codes_path = Path(DATA_INPUT_DIR) / \"census_state_codes.txt\"\n",
1684
+ " if state_codes_path.exists():\n",
1685
+ " df_state_codes = pd.read_csv(state_codes_path, sep=\"|\")\n",
1686
+ " # Create state code to name mapping (STUSAB is the 2-letter code, STATE_NAME is the full name)\n",
1687
+ " state_code_to_name = dict(\n",
1688
+ " zip(df_state_codes[\"STUSAB\"], df_state_codes[\"STATE_NAME\"])\n",
1689
+ " )\n",
1690
+ "\n",
1691
+ " # For all rows where geography is 'state_us', add state names\n",
1692
+ " state_mask = df_result[\"geography\"] == \"state_us\"\n",
1693
+ " df_result.loc[state_mask, \"geo_name\"] = df_result.loc[state_mask, \"geo_id\"].map(\n",
1694
+ " state_code_to_name\n",
1695
+ " )\n",
1696
+ " else:\n",
1697
+ " print(f\"Warning: State census file not found at {state_codes_path}\")\n",
1698
+ "\n",
1699
+ " # For global entries\n",
1700
+ " global_mask = df_result[\"geography\"] == \"global\"\n",
1701
+ " df_result.loc[global_mask, \"geo_name\"] = \"global\"\n",
1702
+ "\n",
1703
+ " # Fill any missing geo_names with geo_id as fallback\n",
1704
+ " df_result.loc[df_result[\"geo_name\"] == \"\", \"geo_name\"] = df_result.loc[\n",
1705
+ " df_result[\"geo_name\"] == \"\", \"geo_id\"\n",
1706
+ " ]\n",
1707
+ " df_result[\"geo_name\"] = df_result[\"geo_name\"].fillna(df_result[\"geo_id\"])\n",
1708
+ "\n",
1709
+ " return df_result"
1710
+ ]
1711
+ },
1712
+ {
1713
+ "cell_type": "markdown",
1714
+ "metadata": {},
1715
+ "source": [
1716
+ "## Main Processing Function"
1717
+ ]
1718
+ },
1719
+ {
1720
+ "cell_type": "code",
1721
+ "execution_count": null,
1722
+ "metadata": {},
1723
+ "outputs": [],
1724
+ "source": [
1725
+ "def enrich_clio_data(input_path, output_path, external_data=None):\n",
1726
+ " \"\"\"\n",
1727
+ " Enrich processed Clio data with external sources.\n",
1728
+ "\n",
1729
+ " Args:\n",
1730
+ " input_path: Path to processed Clio data\n",
1731
+ " output_path: Path for enriched CSV output\n",
1732
+ " external_data: Pre-loaded external data (optional)\n",
1733
+ "\n",
1734
+ " Returns:\n",
1735
+ " Path to enriched data file\n",
1736
+ " \"\"\"\n",
1737
+ " # Load processed Clio data - use keep_default_na=False to preserve \"NA\" (Namibia)\n",
1738
+ " df = pd.read_csv(input_path, keep_default_na=False, na_values=[\"\"])\n",
1739
+ "\n",
1740
+ " # Load external data if not provided\n",
1741
+ " if external_data is None:\n",
1742
+ " external_data = load_external_data()\n",
1743
+ "\n",
1744
+ " # Get filtered geographies (but keep all data in the dataframe)\n",
1745
+ " filtered_countries, filtered_states = get_filtered_geographies(df)\n",
1746
+ "\n",
1747
+ " # Merge with population data\n",
1748
+ " df = merge_population_data(df, external_data[\"population\"])\n",
1749
+ "\n",
1750
+ " # Merge with GDP data (pass population data for per capita calculation)\n",
1751
+ " df = merge_gdp_data(df, external_data[\"gdp\"], external_data[\"population\"])\n",
1752
+ "\n",
1753
+ " # Calculate SOC occupation distribution from O*NET tasks\n",
1754
+ " # Only for geographies that meet MIN_OBSERVATIONS threshold\n",
1755
+ " df = calculate_soc_distribution(\n",
1756
+ " df,\n",
1757
+ " external_data[\"task_statements\"],\n",
1758
+ " external_data[\"soc_structure\"],\n",
1759
+ " filtered_countries=filtered_countries,\n",
1760
+ " filtered_states=filtered_states,\n",
1761
+ " )\n",
1762
+ "\n",
1763
+ " # Calculate per capita metrics\n",
1764
+ " df = calculate_per_capita_metrics(df)\n",
1765
+ "\n",
1766
+ " # Calculate usage index - pass filtered countries/states to only use them for baseline\n",
1767
+ " df = calculate_usage_per_capita_index(\n",
1768
+ " df, filtered_countries=filtered_countries, filtered_states=filtered_states\n",
1769
+ " )\n",
1770
+ "\n",
1771
+ " # Calculate category percentage index - pass filtered countries/states\n",
1772
+ " df = calculate_category_percentage_index(\n",
1773
+ " df, filtered_countries=filtered_countries, filtered_states=filtered_states\n",
1774
+ " )\n",
1775
+ "\n",
1776
+ " # Calculate usage tiers - pass filtered countries/states to only use them\n",
1777
+ " df = calculate_usage_tiers(\n",
1778
+ " df, filtered_countries=filtered_countries, filtered_states=filtered_states\n",
1779
+ " )\n",
1780
+ "\n",
1781
+ " # Add collaboration categorization\n",
1782
+ " df = calculate_automation_augmentation_metrics(df)\n",
1783
+ "\n",
1784
+ " # Add ISO-3 codes and geographic names\n",
1785
+ " df = add_iso3_and_names(df)\n",
1786
+ "\n",
1787
+ " # Sort for consistent output ordering\n",
1788
+ " df = df.sort_values(\n",
1789
+ " [\"geography\", \"geo_id\", \"facet\", \"level\", \"cluster_name\", \"variable\"]\n",
1790
+ " )\n",
1791
+ "\n",
1792
+ " # Save enriched data as CSV\n",
1793
+ " df.to_csv(output_path, index=False)\n",
1794
+ "\n",
1795
+ " return str(output_path)"
1796
+ ]
1797
+ },
1798
+ {
1799
+ "cell_type": "markdown",
1800
+ "metadata": {},
1801
+ "source": [
1802
+ "## Merge External Data"
1803
+ ]
1804
+ },
1805
+ {
1806
+ "cell_type": "code",
1807
+ "execution_count": null,
1808
+ "metadata": {},
1809
+ "outputs": [],
1810
+ "source": [
1811
+ "input_path = \"../data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv\"\n",
1812
+ "output_path = \"../data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv\"\n",
1813
+ "\n",
1814
+ "enrich_clio_data(input_path, output_path)\n",
1815
+ "print(f\"\\n✅ Enrichment complete! Output: {output_path}\")"
1816
+ ]
1817
+ }
1818
+ ],
1819
+ "metadata": {
1820
+ "kernelspec": {
1821
+ "display_name": "py311",
1822
+ "language": "python",
1823
+ "name": "python3"
1824
+ },
1825
+ "language_info": {
1826
+ "codemirror_mode": {
1827
+ "name": "ipython",
1828
+ "version": 3
1829
+ },
1830
+ "file_extension": ".py",
1831
+ "mimetype": "text/x-python",
1832
+ "name": "python",
1833
+ "nbconvert_exporter": "python",
1834
+ "pygments_lexer": "ipython3",
1835
+ "version": "3.11.13"
1836
+ }
1837
+ },
1838
+ "nbformat": 4,
1839
+ "nbformat_minor": 4
1840
+ }
release_2025_09_15/code/preprocess_gdp.py ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Preprocess GDP data for economic analysis.
3
+
4
+ This script downloads and processes GDP data from:
5
+ 1. IMF API for country-level GDP data
6
+ 2. BEA (Bureau of Economic Analysis) for US state-level GDP data
7
+
8
+ Output files:
9
+ - gdp_YYYY_country.csv (e.g., gdp_2024_country.csv): Country-level total GDP
10
+ - gdp_YYYY_us_state.csv (e.g., gdp_2024_us_state.csv): US state-level total GDP
11
+ """
12
+
13
+ import io
14
+ import json
15
+ import warnings
16
+ from pathlib import Path
17
+
18
+ import httpx
19
+ import pandas as pd
20
+
21
+ # Global configuration
22
+ YEAR = 2024
23
+ DATA_INPUT_DIR = Path("../data/input")
24
+ DATA_INTERMEDIATE_DIR = Path("../data/intermediate")
25
+
26
+
27
+ # Countries where Claude AI service is not available
28
+ # These will be excluded from all GDP data
29
+ EXCLUDED_COUNTRIES = [
30
+ "AFG",
31
+ "BLR",
32
+ "COD",
33
+ "CAF",
34
+ "CHN",
35
+ "CUB",
36
+ "ERI",
37
+ "ETH",
38
+ "HKG",
39
+ "IRN",
40
+ "PRK",
41
+ "LBY",
42
+ "MLI",
43
+ "MMR",
44
+ "MAC",
45
+ "NIC",
46
+ "RUS",
47
+ "SDN",
48
+ "SOM",
49
+ "SSD",
50
+ "SYR",
51
+ "VEN",
52
+ "YEM",
53
+ ]
54
+
55
+
56
+ def check_existing_files():
57
+ """Check if processed GDP files already exist."""
58
+ gdp_country_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_country.csv"
59
+ gdp_state_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_us_state.csv"
60
+
61
+ if gdp_country_path.exists() and gdp_state_path.exists():
62
+ print("✅ GDP files already exist:")
63
+ print(f" - {gdp_country_path}")
64
+ print(f" - {gdp_state_path}")
65
+ print("Skipping GDP preprocessing. Delete these files if you want to re-run.")
66
+ return True
67
+ return False
68
+
69
+
70
+ def load_country_gdp_data():
71
+ """
72
+ Load country-level GDP data from cache or IMF API.
73
+
74
+ Returns:
75
+ dict: Raw GDP data from IMF API, or None if fetch fails
76
+ """
77
+ # Check if raw data already exists
78
+ raw_gdp_path = DATA_INPUT_DIR / f"imf_gdp_raw_{YEAR}.json"
79
+ if raw_gdp_path.exists():
80
+ print("Loading cached IMF GDP data...")
81
+ with open(raw_gdp_path) as f:
82
+ return json.load(f)
83
+
84
+ # Download if not cached
85
+ imf_total_gdp_url = "https://www.imf.org/external/datamapper/api/v1/NGDPD" # IMF returns GDP in billions USD
86
+
87
+ print("Fetching GDP data from IMF API...")
88
+ try:
89
+ with httpx.Client() as client:
90
+ response = client.get(imf_total_gdp_url, timeout=30)
91
+ response.raise_for_status()
92
+ gdp_data = response.json()
93
+ print("✓ Successfully fetched total GDP data from IMF API")
94
+
95
+ # Save raw data for future use
96
+ with open(raw_gdp_path, "w") as f:
97
+ json.dump(gdp_data, f, indent=2)
98
+ print(f"✓ Saved raw GDP data to {raw_gdp_path}")
99
+
100
+ return gdp_data
101
+ except Exception as e:
102
+ raise ConnectionError(f"Failed to fetch data from IMF API: {e}") from e
103
+
104
+
105
+ def process_country_gdp_data(gdp_data):
106
+ """
107
+ Process IMF GDP data into standardized format.
108
+
109
+ Args:
110
+ gdp_data: Raw IMF API response
111
+
112
+ Returns:
113
+ pd.DataFrame: Processed country GDP data (excluding countries where service is not available)
114
+ """
115
+ # Extract GDP data for target year
116
+ # Structure: {"values": {"NGDPD": {"countryiso3code": {"year": value}}}}
117
+ gdp_values = gdp_data.get("values", {}).get("NGDPD", {})
118
+
119
+ # Build records for target year data only
120
+ gdp_records = []
121
+ target_year = str(YEAR)
122
+ missing_countries = []
123
+
124
+ for countryiso3code, years_data in gdp_values.items():
125
+ if isinstance(years_data, dict):
126
+ if target_year in years_data and years_data[target_year]:
127
+ gdp_value = years_data[target_year]
128
+ # Convert from billions to actual dollars
129
+ gdp_records.append(
130
+ {
131
+ "iso_alpha_3": countryiso3code,
132
+ "gdp_total": float(gdp_value)
133
+ * 1e9, # Convert billions to dollars
134
+ "year": YEAR,
135
+ }
136
+ )
137
+ else:
138
+ missing_countries.append(countryiso3code)
139
+
140
+ if missing_countries:
141
+ warnings.warn(
142
+ f"{len(missing_countries)} countries missing {YEAR} GDP data. "
143
+ f"Examples: {missing_countries[:5]}",
144
+ UserWarning,
145
+ stacklevel=2,
146
+ )
147
+
148
+ df_gdp = pd.DataFrame(gdp_records)
149
+
150
+ if df_gdp.empty:
151
+ raise ValueError(f"No GDP data available for year {YEAR}")
152
+
153
+ # Apply country code mappings for mismatches between IMF and ISO3
154
+ country_code_mappings = {
155
+ "UVK": "XKX", # Kosovo
156
+ # Add more mappings as needed
157
+ }
158
+
159
+ for imf_code, iso3_code in country_code_mappings.items():
160
+ df_gdp.loc[df_gdp["iso_alpha_3"] == imf_code, "iso_alpha_3"] = iso3_code
161
+
162
+ # Filter to only keep countries with valid ISO-3 codes
163
+ # This removes regional aggregates like ADVEC, AFQ, etc.
164
+ iso_codes_path = DATA_INTERMEDIATE_DIR / "iso_country_codes.csv"
165
+ df_iso = pd.read_csv(iso_codes_path, keep_default_na=False, na_values=[""])
166
+ valid_iso3_codes = set(df_iso["iso_alpha_3"].unique())
167
+
168
+ initial_aggregate_count = len(df_gdp)
169
+ df_gdp = df_gdp[df_gdp["iso_alpha_3"].isin(valid_iso3_codes)]
170
+ filtered_aggregates = initial_aggregate_count - len(df_gdp)
171
+
172
+ if filtered_aggregates > 0:
173
+ print(
174
+ f" Filtered out {filtered_aggregates} non-country codes (regional aggregates)"
175
+ )
176
+
177
+ # Filter out excluded countries (now using 3-letter codes directly)
178
+ initial_count = len(df_gdp)
179
+ df_gdp = df_gdp[~df_gdp["iso_alpha_3"].isin(EXCLUDED_COUNTRIES)]
180
+ excluded_count = initial_count - len(df_gdp)
181
+
182
+ if excluded_count > 0:
183
+ print(f" Excluded {excluded_count} countries where service is not available")
184
+
185
+ # Save processed GDP data
186
+ processed_gdp_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_country.csv"
187
+ df_gdp.to_csv(processed_gdp_path, index=False)
188
+
189
+ print(f"✓ Saved processed GDP data to {processed_gdp_path}")
190
+ print(f" Countries with {YEAR} GDP data: {len(df_gdp)}")
191
+ print(f" Countries excluded (service not available): {len(EXCLUDED_COUNTRIES)}")
192
+ print(f" Total global GDP: ${df_gdp['gdp_total'].sum() / 1e12:.2f} trillion")
193
+
194
+ return df_gdp
195
+
196
+
197
+ def load_state_gdp_data():
198
+ """
199
+ Load US state GDP data from BEA file.
200
+
201
+ Returns:
202
+ pd.DataFrame: Raw state GDP data, or None if file not found
203
+ """
204
+ state_gdp_raw_path = DATA_INPUT_DIR / f"bea_us_state_gdp_{YEAR}.csv"
205
+
206
+ if not state_gdp_raw_path.exists():
207
+ error_msg = f"""
208
+ State GDP data not found at: {state_gdp_raw_path}
209
+
210
+ To obtain this data:
211
+ 1. Go to: https://apps.bea.gov/itable/?ReqID=70&step=1
212
+ 2. Select: SASUMMARY State annual summary statistics (area = "United States", statistic = Gross domestic product (GDP), unit of measure = "Levels")
213
+ 3. Download the CSV file for year {YEAR}
214
+ 4. Save it as: bea_us_state_gdp_{YEAR}.csv
215
+ 5. Place it in your data input directory
216
+ """
217
+ raise FileNotFoundError(error_msg)
218
+
219
+ print("Loading US state GDP data...")
220
+ # Parse CSV skipping the first 3 rows (BEA metadata)
221
+ df_state_gdp_raw = pd.read_csv(state_gdp_raw_path, skiprows=3)
222
+ df_state_gdp_raw.columns = ["GeoFips", "State", f"gdp_{YEAR}_millions"]
223
+
224
+ return df_state_gdp_raw
225
+
226
+
227
+ def process_state_gdp_data(df_state_gdp_raw):
228
+ """
229
+ Process BEA state GDP data into standardized format.
230
+
231
+ Args:
232
+ df_state_gdp_raw: Raw BEA data
233
+
234
+ Returns:
235
+ pd.DataFrame: Processed state GDP data
236
+ """
237
+
238
+ # Remove the US total row (GeoFips = "00000")
239
+ df_state_gdp = df_state_gdp_raw[df_state_gdp_raw["GeoFips"] != "00000"].copy()
240
+
241
+ # Remove all rows starting from empty line before "Legend/Footnotes" marker
242
+ # BEA files have footer information after the data, with an empty line before
243
+ legend_index = (
244
+ df_state_gdp[
245
+ df_state_gdp["GeoFips"].str.contains("Legend", case=False, na=False)
246
+ ].index[0]
247
+ - 1
248
+ )
249
+ df_state_gdp = df_state_gdp.iloc[:legend_index].copy()
250
+ print(f" Removed footer rows starting from 'Legend/Footnotes'")
251
+
252
+ # Convert GDP from millions to actual dollars
253
+ df_state_gdp["gdp_total"] = df_state_gdp[f"gdp_{YEAR}_millions"] * 1e6
254
+
255
+ # Clean state names
256
+ df_state_gdp["State"] = df_state_gdp["State"].str.strip()
257
+
258
+ # Get state codes
259
+ state_code_dict = get_state_codes()
260
+ df_state_gdp["state_code"] = df_state_gdp["State"].map(state_code_dict)
261
+
262
+ # Check for missing state codes
263
+ missing_codes = df_state_gdp[df_state_gdp["state_code"].isna()]
264
+ if not missing_codes.empty:
265
+ raise ValueError(
266
+ f"Could not find state codes for: {missing_codes['State'].tolist()}\n"
267
+ f"All BEA state names should match Census state codes after filtering."
268
+ )
269
+
270
+ # Select and rename columns
271
+ df_state_gdp_final = df_state_gdp[
272
+ ["state_code", "State", "gdp_total", f"gdp_{YEAR}_millions"]
273
+ ].copy()
274
+ df_state_gdp_final.columns = [
275
+ "state_code",
276
+ "state_name",
277
+ "gdp_total",
278
+ "gdp_millions",
279
+ ]
280
+ df_state_gdp_final["year"] = YEAR
281
+
282
+ # Save processed state GDP data
283
+ processed_state_gdp_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_us_state.csv"
284
+ df_state_gdp_final.to_csv(processed_state_gdp_path, index=False)
285
+
286
+ print(
287
+ f"✓ Processed state GDP data for {len(df_state_gdp_final)} states/territories"
288
+ )
289
+ print(
290
+ f" Total US GDP: ${df_state_gdp_final['gdp_total'].sum() / 1e12:.2f} trillion"
291
+ )
292
+ print(f"✓ Saved to {processed_state_gdp_path}")
293
+
294
+ return df_state_gdp_final
295
+
296
+
297
+ def get_state_codes():
298
+ """
299
+ Get US state codes from Census Bureau.
300
+
301
+ Returns:
302
+ dict: Mapping of state names to abbreviations
303
+ """
304
+ state_codes_path = DATA_INPUT_DIR / "census_state_codes.txt"
305
+
306
+ if state_codes_path.exists():
307
+ print(" Loading cached state codes...")
308
+ df_state_codes = pd.read_csv(state_codes_path, sep="|")
309
+ else:
310
+ print(" Downloading state codes from Census Bureau...")
311
+ response = httpx.get("https://www2.census.gov/geo/docs/reference/state.txt")
312
+ response.raise_for_status()
313
+
314
+ # Save for future use
315
+ with open(state_codes_path, "w") as f:
316
+ f.write(response.text)
317
+ print(f" Cached state codes to {state_codes_path}")
318
+
319
+ df_state_codes = pd.read_csv(io.StringIO(response.text), sep="|")
320
+
321
+ # Create mapping dictionary
322
+ state_code_dict = dict(
323
+ zip(df_state_codes["STATE_NAME"], df_state_codes["STUSAB"], strict=True)
324
+ )
325
+
326
+ return state_code_dict
327
+
328
+
329
+ def main():
330
+ """Main function to run GDP preprocessing."""
331
+ # Check if files already exist
332
+ if check_existing_files():
333
+ return
334
+
335
+ print("=" * 60)
336
+ print(f"PROCESSING {YEAR} GDP DATA")
337
+ print("=" * 60)
338
+
339
+ # Process country-level GDP from IMF
340
+ print(f"\n=== Country-Level GDP (IMF) - Year {YEAR} ===")
341
+ gdp_data = load_country_gdp_data()
342
+ df_gdp_country = process_country_gdp_data(gdp_data)
343
+
344
+ # Process US state-level GDP from BEA
345
+ print(f"\n=== US State-Level GDP (BEA) - Year {YEAR} ===")
346
+ df_state_gdp_raw = load_state_gdp_data()
347
+ df_gdp_state = process_state_gdp_data(df_state_gdp_raw)
348
+
349
+ # Final status
350
+ print(f"\n✅ {YEAR} GDP data preprocessing complete!")
351
+ print("\n=== Summary Statistics ===")
352
+ if df_gdp_country is not None:
353
+ print(f"Countries processed: {len(df_gdp_country)}")
354
+ print(f"Countries excluded (service not available): {len(EXCLUDED_COUNTRIES)}")
355
+ print(
356
+ f"Total global GDP: ${df_gdp_country['gdp_total'].sum() / 1e12:.2f} trillion"
357
+ )
358
+ if df_gdp_state is not None:
359
+ print(f"US states processed: {len(df_gdp_state)}")
360
+ print(f"Total US GDP: ${df_gdp_state['gdp_total'].sum() / 1e12:.2f} trillion")
361
+
362
+
363
+ if __name__ == "__main__":
364
+ main()
release_2025_09_15/code/preprocess_iso_codes.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Fetch ISO country code mappings from GeoNames.
3
+
4
+ This script fetches comprehensive country data from GeoNames countryInfo.txt
5
+ and saves it as a CSV file for use in data preprocessing pipelines.
6
+ """
7
+
8
+ import io
9
+ from pathlib import Path
10
+
11
+ import httpx
12
+ import pandas as pd
13
+
14
+
15
+ def fetch_country_mappings(save_raw=True):
16
+ """
17
+ Fetch country code mappings from GeoNames.
18
+
19
+ Args:
20
+ save_raw: Whether to save raw data file to data/input
21
+
22
+ Returns:
23
+ pd.DataFrame: DataFrame with country information from GeoNames
24
+ """
25
+ # Fetch countryInfo.txt from GeoNames
26
+ geonames_url = "https://download.geonames.org/export/dump/countryInfo.txt"
27
+
28
+ with httpx.Client() as client:
29
+ response = client.get(geonames_url)
30
+ response.raise_for_status()
31
+ content = response.text
32
+
33
+ # Save raw file to data/input for reference
34
+ if save_raw:
35
+ input_dir = Path("../data/input")
36
+ input_dir.mkdir(parents=True, exist_ok=True)
37
+
38
+ raw_path = input_dir / "geonames_countryInfo.txt"
39
+ with open(raw_path, "w", encoding="utf-8") as f:
40
+ f.write(content)
41
+
42
+ # Extract column names from the last comment line
43
+ lines = content.split("\n")
44
+ header_line = [line for line in lines if line.startswith("#")][-1]
45
+ column_names = header_line[1:].split("\t") # Remove # and split by tab
46
+
47
+ # Parse the tab-separated file
48
+ # keep_default_na=False to prevent "NA" (Namibia) from becoming NaN
49
+ df = pd.read_csv(
50
+ io.StringIO(content),
51
+ sep="\t",
52
+ comment="#",
53
+ header=None, # No header row in the data
54
+ keep_default_na=False, # Don't interpret "NA" as NaN (needed for Namibia)
55
+ na_values=[""], # Only treat empty strings as NaN
56
+ names=column_names, # Use the column names from the comment
57
+ )
58
+
59
+ # Rename columns to our standard format
60
+ df = df.rename(
61
+ columns={"ISO": "iso_alpha_2", "ISO3": "iso_alpha_3", "Country": "country_name"}
62
+ )
63
+
64
+ return df
65
+
66
+
67
+ def create_country_dataframe(geonames_df):
68
+ """
69
+ Create a cleaned DataFrame with country codes and names.
70
+
71
+ Args:
72
+ geonames_df: DataFrame from GeoNames with all country information
73
+
74
+ Returns:
75
+ pd.DataFrame: DataFrame with columns [iso_alpha_2, iso_alpha_3, country_name]
76
+ """
77
+ # Select only the columns we need
78
+ df = geonames_df[["iso_alpha_2", "iso_alpha_3", "country_name"]].copy()
79
+
80
+ # Sort by country name for consistency
81
+ df = df.sort_values("country_name").reset_index(drop=True)
82
+
83
+ return df
84
+
85
+
86
+ def save_country_codes(output_path="../data/intermediate/iso_country_codes.csv"):
87
+ """
88
+ Fetch country codes from GeoNames and save to CSV.
89
+
90
+ Args:
91
+ output_path: Path to save the CSV file
92
+ """
93
+ # Fetch full GeoNames data
94
+ geonames_df = fetch_country_mappings()
95
+
96
+ # Create cleaned DataFrame with just the columns we need
97
+ df = create_country_dataframe(geonames_df)
98
+
99
+ # Ensure output directory exists
100
+ output_file = Path(output_path)
101
+ output_file.parent.mkdir(parents=True, exist_ok=True)
102
+
103
+ # Save to CSV
104
+ df.to_csv(output_file, index=False)
105
+
106
+ return df
107
+
108
+
109
+ if __name__ == "__main__":
110
+ # Fetch and save country codes
111
+ df = save_country_codes()
release_2025_09_15/code/preprocess_onet.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Preprocess O*NET and SOC data for economic analysis.
3
+
4
+ This script downloads and processes occupational data from:
5
+ 1. O*NET Resource Center for task statements
6
+ 2. O*NET Resource Center for SOC structure
7
+
8
+ Output files:
9
+ - onet_task_statements.csv: O*NET task statements with SOC major groups
10
+ - soc_structure.csv: SOC occupational classification structure
11
+ """
12
+
13
+ import io
14
+ import os
15
+ import tempfile
16
+ from pathlib import Path
17
+
18
+ import httpx
19
+ import pandas as pd
20
+
21
+ # Global configuration
22
+ DATA_INPUT_DIR = Path("../data/input")
23
+ DATA_INTERMEDIATE_DIR = Path("../data/intermediate")
24
+
25
+
26
+ def check_existing_files():
27
+ """Check if processed O*NET/SOC files already exist."""
28
+ onet_task_statements_path = DATA_INTERMEDIATE_DIR / "onet_task_statements.csv"
29
+ soc_structure_path = DATA_INTERMEDIATE_DIR / "soc_structure.csv"
30
+
31
+ if onet_task_statements_path.exists() and soc_structure_path.exists():
32
+ print("✅ SOC/O*NET files already exist:")
33
+ print(f" - {onet_task_statements_path}")
34
+ print(f" - {soc_structure_path}")
35
+ print("Skipping SOC preprocessing. Delete these files if you want to re-run.")
36
+ return True
37
+ return False
38
+
39
+
40
+ def load_task_data():
41
+ """
42
+ Load O*NET Task Statements from cache or O*NET Resource Center.
43
+
44
+ Returns:
45
+ pd.DataFrame: O*NET task statements data
46
+ """
47
+ # Check if raw data already exists
48
+ raw_onet_path = DATA_INPUT_DIR / "onet_task_statements_raw.xlsx"
49
+ if raw_onet_path.exists():
50
+ df_onet = pd.read_excel(raw_onet_path)
51
+ return df_onet
52
+
53
+ # Download if not cached
54
+ # O*NET Database version 20.1
55
+ onet_url = "https://www.onetcenter.org/dl_files/database/db_20_1_excel/Task%20Statements.xlsx"
56
+
57
+ print("Downloading O*NET task statements...")
58
+ try:
59
+ with httpx.Client(follow_redirects=True) as client:
60
+ response = client.get(onet_url, timeout=60)
61
+ response.raise_for_status()
62
+ excel_content = response.content
63
+ # Save raw data for future use
64
+ with open(raw_onet_path, "wb") as f:
65
+ f.write(excel_content)
66
+
67
+ # Save to temporary file for pandas to read
68
+ with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp_file:
69
+ tmp_file.write(excel_content)
70
+ tmp_path = tmp_file.name
71
+
72
+ try:
73
+ df_onet = pd.read_excel(tmp_path)
74
+ return df_onet
75
+ finally:
76
+ os.unlink(tmp_path)
77
+
78
+ except Exception as e:
79
+ raise ConnectionError(f"Failed to download O*NET data: {e}") from e
80
+
81
+
82
+ def process_task_data(df_tasks):
83
+ """
84
+ Process task statements data.
85
+
86
+ Args:
87
+ df_tasks: Raw task data
88
+
89
+ Returns:
90
+ pd.DataFrame: Processed O*NET data with SOC major groups
91
+ """
92
+ # Extract SOC major group from O*NET-SOC Code (first 2 digits)
93
+ df_tasks["soc_major_group"] = df_tasks["O*NET-SOC Code"].str[:2]
94
+
95
+ # Save processed task data
96
+ processed_tasks_path = DATA_INTERMEDIATE_DIR / "onet_task_statements.csv"
97
+ df_tasks.to_csv(processed_tasks_path, index=False)
98
+
99
+ print(
100
+ f"✓ Processed {len(df_tasks):,} task statements from {df_tasks['O*NET-SOC Code'].nunique()} occupations"
101
+ )
102
+
103
+ return df_tasks
104
+
105
+
106
+ def load_soc_data():
107
+ """
108
+ Load SOC Structure from cache or O*NET Resource Center.
109
+
110
+ Returns:
111
+ pd.DataFrame: SOC structure data
112
+ """
113
+ # Check if raw data already exists
114
+ raw_soc_path = DATA_INPUT_DIR / "soc_structure_raw.csv"
115
+ if raw_soc_path.exists():
116
+ return pd.read_csv(raw_soc_path)
117
+
118
+ # Download if not cached
119
+ soc_url = "https://www.onetcenter.org/taxonomy/2019/structure/?fmt=csv"
120
+
121
+ print("Downloading SOC structure...")
122
+ try:
123
+ with httpx.Client(follow_redirects=True) as client:
124
+ response = client.get(soc_url, timeout=30)
125
+ response.raise_for_status()
126
+ soc_content = response.text
127
+ # Save raw data for future use
128
+ with open(raw_soc_path, "w") as f:
129
+ f.write(soc_content)
130
+
131
+ # Parse the CSV
132
+ df_soc = pd.read_csv(io.StringIO(soc_content))
133
+ return df_soc
134
+
135
+ except Exception as e:
136
+ raise ConnectionError(f"Failed to download SOC structure: {e}") from e
137
+
138
+
139
+ def process_soc_data(df_soc):
140
+ """
141
+ Process SOC structure data.
142
+
143
+ Args:
144
+ df_soc: Raw SOC structure data
145
+
146
+ Returns:
147
+ pd.DataFrame: Processed SOC structure
148
+ """
149
+ # Extract the 2-digit code from Major Group (e.g., "11-0000" -> "11")
150
+ df_soc["soc_major_group"] = df_soc["Major Group"].str[:2]
151
+
152
+ # Save processed SOC structure
153
+ processed_soc_path = DATA_INTERMEDIATE_DIR / "soc_structure.csv"
154
+ df_soc.to_csv(processed_soc_path, index=False)
155
+
156
+ print(f"✓ Processed {len(df_soc):,} SOC entries")
157
+
158
+ return df_soc
159
+
160
+
161
+ def main():
162
+ """Main function to run O*NET/SOC preprocessing."""
163
+ # Check if files already exist
164
+ if check_existing_files():
165
+ return
166
+
167
+ # Process Task Statements
168
+ df_tasks_raw = load_task_data()
169
+ process_task_data(df_tasks_raw)
170
+
171
+ # Process SOC Structure
172
+ df_soc_raw = load_soc_data()
173
+ process_soc_data(df_soc_raw)
174
+
175
+ print("\n✅ O*NET/SOC data preprocessing complete!")
176
+
177
+
178
+ if __name__ == "__main__":
179
+ main()
release_2025_09_15/code/preprocess_population.py ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Preprocess population data for economic analysis.
3
+
4
+ This script downloads and processes working-age population data (ages 15-64) from:
5
+ 1. World Bank API for country-level data
6
+ 2. Taiwan National Development Council for Taiwan data (not in World Bank)
7
+ 3. US Census Bureau for US state-level data
8
+
9
+ Output files:
10
+ - working_age_pop_YYYY_country.csv (e.g., working_age_pop_2024_country.csv): Country-level working age population
11
+ - working_age_pop_YYYY_us_state.csv (e.g., working_age_pop_2024_us_state.csv): US state-level working age population
12
+ """
13
+
14
+ import io
15
+ import warnings
16
+ from pathlib import Path
17
+
18
+ import httpx
19
+ import pandas as pd
20
+
21
+ # Global configuration
22
+ YEAR = 2024
23
+ DATA_INPUT_DIR = Path("../data/input")
24
+ DATA_INTERMEDIATE_DIR = Path("../data/intermediate")
25
+
26
+ # Countries where Claude AI service is not available
27
+ # These will be excluded from all population data
28
+ EXCLUDED_COUNTRIES = [
29
+ "AF", # Afghanistan
30
+ "BY", # Belarus
31
+ "CD", # Democratic Republic of the Congo
32
+ "CF", # Central African Republic
33
+ "CN", # China
34
+ "CU", # Cuba
35
+ "ER", # Eritrea
36
+ "ET", # Ethiopia
37
+ "HK", # Hong Kong
38
+ "IR", # Iran
39
+ "KP", # North Korea
40
+ "LY", # Libya
41
+ "ML", # Mali
42
+ "MM", # Myanmar
43
+ "MO", # Macau
44
+ "NI", # Nicaragua
45
+ "RU", # Russia
46
+ "SD", # Sudan
47
+ "SO", # Somalia
48
+ "SS", # South Sudan
49
+ "SY", # Syria
50
+ "VE", # Venezuela
51
+ "YE", # Yemen
52
+ ]
53
+
54
+
55
+ def check_existing_files():
56
+ """Check if processed population files already exist."""
57
+ processed_country_pop_path = (
58
+ DATA_INTERMEDIATE_DIR / f"working_age_pop_{YEAR}_country.csv"
59
+ )
60
+ processed_state_pop_path = (
61
+ DATA_INTERMEDIATE_DIR / f"working_age_pop_{YEAR}_us_state.csv"
62
+ )
63
+
64
+ if processed_country_pop_path.exists() and processed_state_pop_path.exists():
65
+ print("✅ Population files already exist:")
66
+ print(f" - {processed_country_pop_path}")
67
+ print(f" - {processed_state_pop_path}")
68
+ print(
69
+ "Skipping population preprocessing. Delete these files if you want to re-run."
70
+ )
71
+ return True
72
+ return False
73
+
74
+
75
+ def load_world_bank_population_data():
76
+ """
77
+ Load country-level working age population data from cache or World Bank API.
78
+
79
+ Returns:
80
+ pd.DataFrame: Raw population data from World Bank
81
+ """
82
+ # Check if raw data already exists
83
+ raw_country_pop_path = DATA_INPUT_DIR / f"working_age_pop_{YEAR}_country_raw.csv"
84
+ if raw_country_pop_path.exists():
85
+ print("Loading cached country population data...")
86
+ return pd.read_csv(raw_country_pop_path, keep_default_na=False, na_values=[""])
87
+
88
+ # Download if not cached
89
+ url = "https://api.worldbank.org/v2/country/all/indicator/SP.POP.1564.TO"
90
+ params = {"format": "json", "date": str(YEAR), "per_page": "1000"}
91
+
92
+ print("Downloading country population data from World Bank API...")
93
+ response = httpx.get(url, params=params)
94
+ response.raise_for_status()
95
+
96
+ # World Bank API returns [metadata, data] structure
97
+ data = response.json()[1]
98
+ df_raw = pd.json_normalize(data)
99
+
100
+ return df_raw
101
+
102
+
103
+ def filter_to_country_level_data(df_raw):
104
+ """
105
+ Filter World Bank data to exclude regional aggregates and keep only countries.
106
+
107
+ The World Bank data starts with regional aggregates (Arab World, Caribbean small states, etc.)
108
+ followed by actual countries starting with Afghanistan (AFG).
109
+
110
+ Args:
111
+ df_raw: Raw World Bank data
112
+
113
+ Returns:
114
+ pd.DataFrame: Filtered data with only country-level records
115
+ """
116
+ # Find Afghanistan (AFG) - the first real country after aggregates
117
+ afg_index = df_raw[df_raw["countryiso3code"] == "AFG"].index[0]
118
+
119
+ # Keep everything from AFG onwards
120
+ df_filtered = df_raw.iloc[afg_index:].copy()
121
+ print(f"Filtered to {len(df_filtered)} countries (excluding regional aggregates)")
122
+
123
+ return df_filtered
124
+
125
+
126
+ def process_country_population_data(df_raw):
127
+ """
128
+ Process raw World Bank population data.
129
+
130
+ Args:
131
+ df_raw: Raw data from World Bank API
132
+
133
+ Returns:
134
+ pd.DataFrame: Processed country population data (excluding countries where service is not available)
135
+ """
136
+ # Filter to country level only
137
+ df_country = filter_to_country_level_data(df_raw)
138
+
139
+ # Select and rename columns
140
+ df_processed = df_country[
141
+ ["countryiso3code", "date", "value", "country.id", "country.value"]
142
+ ].copy()
143
+
144
+ df_processed.columns = [
145
+ "iso_alpha_3",
146
+ "year",
147
+ "working_age_pop",
148
+ "country_code",
149
+ "country_name",
150
+ ]
151
+
152
+ # Convert year to int
153
+ df_processed["year"] = pd.to_numeric(df_processed["year"])
154
+ df_processed = df_processed.dropna(subset=["working_age_pop"])
155
+
156
+ # Remove Channel Islands entry with invalid JG code
157
+ channel_islands_mask = df_processed["country_code"] == "JG"
158
+ if channel_islands_mask.any():
159
+ print(f"Removing Channel Islands entry with invalid code 'JG'")
160
+ df_processed = df_processed[~channel_islands_mask].copy()
161
+
162
+ # Exclude countries where service is not available
163
+ initial_count = len(df_processed)
164
+ df_processed = df_processed[~df_processed["country_code"].isin(EXCLUDED_COUNTRIES)]
165
+ excluded_count = initial_count - len(df_processed)
166
+
167
+ if excluded_count > 0:
168
+ print(f"Excluded {excluded_count} countries where service is not available")
169
+
170
+ return df_processed
171
+
172
+
173
+ def add_taiwan_population(df_country):
174
+ """
175
+ Add Taiwan population data from National Development Council.
176
+
177
+ The World Bank API excludes Taiwan, so we use data directly from Taiwan's NDC.
178
+ Source: https://pop-proj.ndc.gov.tw/main_en/Custom_Detail_Statistics_Search.aspx
179
+
180
+ Args:
181
+ df_country: Country population dataframe
182
+
183
+ Returns:
184
+ pd.DataFrame: Country data with Taiwan added
185
+ """
186
+ taiwan_file = DATA_INPUT_DIR / "Population by single age _20250903072924.csv"
187
+
188
+ if not taiwan_file.exists():
189
+ error_msg = f"""
190
+ Taiwan population data not found at: {taiwan_file}
191
+
192
+ To obtain this data:
193
+ 1. Go to: https://pop-proj.ndc.gov.tw/main_en/Custom_Detail_Statistics_Search.aspx?n=175&_Query=258170a1-1394-49fe-8d21-dc80562b72fb&amp;page=1&amp;PageSize=10&amp;ToggleType=
194
+ 2. The following options should have been selected:
195
+ - Estimate type: Medium variant
196
+ - Gender: Total
197
+ - Year: {YEAR}
198
+ - Age: Single age (ages 15-64)
199
+ - Data attribute: data value
200
+ 3. Download the CSV file
201
+ 4. Save it as: "Population by single age _20250903072924.csv"
202
+ 5. Place it in your data input directory
203
+
204
+ Note: Taiwan data is not available from World Bank API and must be obtained separately.
205
+ """
206
+ raise FileNotFoundError(error_msg)
207
+
208
+ print("Adding Taiwan population data from NDC...")
209
+
210
+ # Load the NDC data (skip metadata rows)
211
+ df_taiwan = pd.read_csv(taiwan_file, skiprows=10)
212
+
213
+ # Clean the age column and sum population
214
+ df_taiwan["Age"] = df_taiwan["Age"].str.replace("'", "")
215
+ df_taiwan["Age"] = pd.to_numeric(df_taiwan["Age"])
216
+
217
+ # The data is pre-filtered to ages 15-64, so sum all values
218
+ taiwan_working_age_pop = df_taiwan["Data value (persons)"].sum()
219
+
220
+ # Create Taiwan row
221
+ taiwan_row = pd.DataFrame(
222
+ {
223
+ "iso_alpha_3": ["TWN"],
224
+ "year": [YEAR],
225
+ "working_age_pop": [taiwan_working_age_pop],
226
+ "country_code": ["TW"],
227
+ "country_name": ["Taiwan"],
228
+ }
229
+ )
230
+
231
+ # Add Taiwan to the country data
232
+ df_with_taiwan = pd.concat([df_country, taiwan_row], ignore_index=True)
233
+ print(f"Added Taiwan: {taiwan_working_age_pop:,.0f} working age population")
234
+
235
+ return df_with_taiwan
236
+
237
+
238
+ def load_us_state_population_data():
239
+ """
240
+ Load US state population data from cache or Census Bureau.
241
+
242
+ Returns:
243
+ pd.DataFrame: Raw US state population data
244
+ """
245
+ # Check if raw data already exists
246
+ raw_state_pop_path = DATA_INPUT_DIR / f"sc-est{YEAR}-agesex-civ.csv"
247
+ if raw_state_pop_path.exists():
248
+ print("Loading cached state population data...")
249
+ return pd.read_csv(raw_state_pop_path)
250
+
251
+ # Download if not cached
252
+ url = f"https://www2.census.gov/programs-surveys/popest/datasets/2020-{YEAR}/state/asrh/sc-est{YEAR}-agesex-civ.csv"
253
+
254
+ print("Downloading US state population data from Census Bureau...")
255
+ response = httpx.get(url)
256
+ response.raise_for_status()
257
+
258
+ df_raw = pd.read_csv(io.StringIO(response.text))
259
+ return df_raw
260
+
261
+
262
+ def process_state_population_data(df_raw):
263
+ """
264
+ Process US state population data to get working age population.
265
+
266
+ Args:
267
+ df_raw: Raw Census Bureau data
268
+
269
+ Returns:
270
+ pd.DataFrame: Processed state population data with state codes
271
+ """
272
+ # Filter for working age (15-64) and sum by state
273
+ # SEX=0 means "Both sexes" to avoid double counting
274
+ df_working_age = df_raw[
275
+ (df_raw["AGE"] >= 15) & (df_raw["AGE"] <= 64) & (df_raw["SEX"] == 0)
276
+ ]
277
+
278
+ # Sum by state
279
+ working_age_by_state = (
280
+ df_working_age.groupby("NAME")[f"POPEST{YEAR}_CIV"].sum().reset_index()
281
+ )
282
+ working_age_by_state.columns = ["state", "working_age_pop"]
283
+
284
+ # Get state codes
285
+ state_code_dict = get_state_codes()
286
+
287
+ # Filter out "United States" row (national total, not a state)
288
+ working_age_by_state = working_age_by_state[
289
+ working_age_by_state["state"] != "United States"
290
+ ]
291
+
292
+ # Map state names to abbreviations
293
+ working_age_by_state["state_code"] = working_age_by_state["state"].map(
294
+ state_code_dict
295
+ )
296
+
297
+ # Check for missing state codes (should be none after filtering United States)
298
+ missing_codes = working_age_by_state[working_age_by_state["state_code"].isna()]
299
+ if not missing_codes.empty:
300
+ warnings.warn(
301
+ f"Could not find state codes for: {missing_codes['state'].tolist()}",
302
+ UserWarning,
303
+ stacklevel=2,
304
+ )
305
+
306
+ return working_age_by_state
307
+
308
+
309
+ def get_state_codes():
310
+ """
311
+ Get US state codes from Census Bureau.
312
+
313
+ Returns:
314
+ dict: Mapping of state names to abbreviations
315
+ """
316
+ state_codes_path = DATA_INPUT_DIR / "census_state_codes.txt"
317
+
318
+ if state_codes_path.exists():
319
+ print("Loading cached state codes...")
320
+ df_state_codes = pd.read_csv(state_codes_path, sep="|")
321
+ else:
322
+ print("Downloading state codes from Census Bureau...")
323
+ response = httpx.get("https://www2.census.gov/geo/docs/reference/state.txt")
324
+ response.raise_for_status()
325
+
326
+ # Save for future use
327
+ with open(state_codes_path, "w") as f:
328
+ f.write(response.text)
329
+ print(f"Cached state codes to {state_codes_path}")
330
+
331
+ df_state_codes = pd.read_csv(io.StringIO(response.text), sep="|")
332
+
333
+ # Create mapping dictionary
334
+ state_code_dict = dict(
335
+ zip(df_state_codes["STATE_NAME"], df_state_codes["STUSAB"], strict=True)
336
+ )
337
+
338
+ return state_code_dict
339
+
340
+
341
+ def save_data(df_country, df_state, df_world_bank_raw, df_state_raw):
342
+ """
343
+ Save raw and processed population data.
344
+
345
+ Args:
346
+ df_country: Processed country population data
347
+ df_state: Processed state population data
348
+ df_world_bank_raw: Raw World Bank data
349
+ df_state_raw: Raw Census Bureau data
350
+ """
351
+ # Save raw data (only if doesn't exist)
352
+ raw_country_pop_path = DATA_INPUT_DIR / f"working_age_pop_{YEAR}_country_raw.csv"
353
+ if not raw_country_pop_path.exists():
354
+ df_world_bank_raw.to_csv(raw_country_pop_path, index=False)
355
+ print(f"Saved raw country data to {raw_country_pop_path}")
356
+
357
+ raw_state_pop_path = DATA_INPUT_DIR / f"sc-est{YEAR}-agesex-civ.csv"
358
+ if not raw_state_pop_path.exists():
359
+ df_state_raw.to_csv(raw_state_pop_path, index=False)
360
+ print(f"Saved raw state data to {raw_state_pop_path}")
361
+
362
+ # Save processed data
363
+ country_output_path = DATA_INTERMEDIATE_DIR / f"working_age_pop_{YEAR}_country.csv"
364
+ df_country.to_csv(country_output_path, index=False)
365
+ print(f"Saved processed country population data to {country_output_path}")
366
+
367
+ state_output_path = DATA_INTERMEDIATE_DIR / f"working_age_pop_{YEAR}_us_state.csv"
368
+ df_state.to_csv(state_output_path, index=False)
369
+ print(f"Saved processed US state population data to {state_output_path}")
370
+
371
+
372
+ def main():
373
+ """Main function to run population preprocessing."""
374
+ # Check if files already exist
375
+ if check_existing_files():
376
+ return
377
+
378
+ # Process country-level data
379
+ print("\n=== Processing Country-Level Population Data ===")
380
+ df_world_bank_raw = load_world_bank_population_data()
381
+ df_country = process_country_population_data(df_world_bank_raw)
382
+ df_country = add_taiwan_population(df_country)
383
+
384
+ # Process US state-level data
385
+ print("\n=== Processing US State-Level Population Data ===")
386
+ df_state_raw = load_us_state_population_data()
387
+ df_state = process_state_population_data(df_state_raw)
388
+
389
+ # Save all data (raw and processed)
390
+ print("\n=== Saving Data ===")
391
+ save_data(df_country, df_state, df_world_bank_raw, df_state_raw)
392
+
393
+ print("\n✅ Population data preprocessing complete!")
394
+
395
+ # Print summary statistics
396
+ print("\n=== Summary Statistics ===")
397
+ print(f"Countries processed: {len(df_country)}")
398
+ print(f"Countries excluded (service not available): {len(EXCLUDED_COUNTRIES)}")
399
+ print(
400
+ f"Total global working age population: {df_country['working_age_pop'].sum():,.0f}"
401
+ )
402
+ print(f"US states processed: {len(df_state)}")
403
+ print(f"Total US working age population: {df_state['working_age_pop'].sum():,.0f}")
404
+
405
+
406
+ if __name__ == "__main__":
407
+ main()
release_2025_09_15/data/input/BTOS_National.xlsx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c55e2fc6892941a1a536e87445de0bee8ea327526081389b93b85c54a8d69761
3
+ size 63052
release_2025_09_15/data/input/Population by single age _20250903072924.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89c1e953dbab481760a966c40bdb121ed4e301b4cd0cbaea8a44990caa91ce8e
3
+ size 2176
release_2025_09_15/data/input/automation_vs_augmentation_v1.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1e264882b17618db4f4a00b6f87f48134222bc5c15eefb3d46aae9519e89d11
3
+ size 197
release_2025_09_15/data/input/automation_vs_augmentation_v2.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d7d8b1666f3d942d728f9b2177681ca6756edfe01fb8fc130e29264d41a391e
3
+ size 198
release_2025_09_15/data/input/bea_us_state_gdp_2024.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:913bc0d017570e711c71bc838016b3b52cbf49e717d0cabc4cc2d70306acfa5a
3
+ size 1663
release_2025_09_15/data/input/census_state_codes.txt ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ STATE|STUSAB|STATE_NAME|STATENS
2
+ 01|AL|Alabama|01779775
3
+ 02|AK|Alaska|01785533
4
+ 04|AZ|Arizona|01779777
5
+ 05|AR|Arkansas|00068085
6
+ 06|CA|California|01779778
7
+ 08|CO|Colorado|01779779
8
+ 09|CT|Connecticut|01779780
9
+ 10|DE|Delaware|01779781
10
+ 11|DC|District of Columbia|01702382
11
+ 12|FL|Florida|00294478
12
+ 13|GA|Georgia|01705317
13
+ 15|HI|Hawaii|01779782
14
+ 16|ID|Idaho|01779783
15
+ 17|IL|Illinois|01779784
16
+ 18|IN|Indiana|00448508
17
+ 19|IA|Iowa|01779785
18
+ 20|KS|Kansas|00481813
19
+ 21|KY|Kentucky|01779786
20
+ 22|LA|Louisiana|01629543
21
+ 23|ME|Maine|01779787
22
+ 24|MD|Maryland|01714934
23
+ 25|MA|Massachusetts|00606926
24
+ 26|MI|Michigan|01779789
25
+ 27|MN|Minnesota|00662849
26
+ 28|MS|Mississippi|01779790
27
+ 29|MO|Missouri|01779791
28
+ 30|MT|Montana|00767982
29
+ 31|NE|Nebraska|01779792
30
+ 32|NV|Nevada|01779793
31
+ 33|NH|New Hampshire|01779794
32
+ 34|NJ|New Jersey|01779795
33
+ 35|NM|New Mexico|00897535
34
+ 36|NY|New York|01779796
35
+ 37|NC|North Carolina|01027616
36
+ 38|ND|North Dakota|01779797
37
+ 39|OH|Ohio|01085497
38
+ 40|OK|Oklahoma|01102857
39
+ 41|OR|Oregon|01155107
40
+ 42|PA|Pennsylvania|01779798
41
+ 44|RI|Rhode Island|01219835
42
+ 45|SC|South Carolina|01779799
43
+ 46|SD|South Dakota|01785534
44
+ 47|TN|Tennessee|01325873
45
+ 48|TX|Texas|01779801
46
+ 49|UT|Utah|01455989
47
+ 50|VT|Vermont|01779802
48
+ 51|VA|Virginia|01779803
49
+ 53|WA|Washington|01779804
50
+ 54|WV|West Virginia|01779805
51
+ 55|WI|Wisconsin|01779806
52
+ 56|WY|Wyoming|01779807
53
+ 60|AS|American Samoa|01802701
54
+ 66|GU|Guam|01802705
55
+ 69|MP|Northern Mariana Islands|01779809
56
+ 72|PR|Puerto Rico|01779808
57
+ 74|UM|U.S. Minor Outlying Islands|01878752
58
+ 78|VI|U.S. Virgin Islands|01802710
release_2025_09_15/data/input/geonames_countryInfo.txt ADDED
@@ -0,0 +1,302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ================================
2
+ #
3
+ #
4
+ # CountryCodes:
5
+ # ============
6
+ #
7
+ # The official ISO country code for the United Kingdom is 'GB'. The code 'UK' is reserved.
8
+ #
9
+ # A list of dependent countries is available here:
10
+ # https://spreadsheets.google.com/ccc?key=pJpyPy-J5JSNhe7F_KxwiCA&hl=en
11
+ #
12
+ #
13
+ # The countrycode XK temporarily stands for Kosvo:
14
+ # http://geonames.wordpress.com/2010/03/08/xk-country-code-for-kosovo/
15
+ #
16
+ #
17
+ # CS (Serbia and Montenegro) with geonameId = 8505033 no longer exists.
18
+ # AN (the Netherlands Antilles) with geonameId = 8505032 was dissolved on 10 October 2010.
19
+ #
20
+ #
21
+ # Currencies :
22
+ # ============
23
+ #
24
+ # A number of territories are not included in ISO 4217, because their currencies are not per se an independent currency,
25
+ # but a variant of another currency. These currencies are:
26
+ #
27
+ # 1. FO : Faroese krona (1:1 pegged to the Danish krone)
28
+ # 2. GG : Guernsey pound (1:1 pegged to the pound sterling)
29
+ # 3. JE : Jersey pound (1:1 pegged to the pound sterling)
30
+ # 4. IM : Isle of Man pound (1:1 pegged to the pound sterling)
31
+ # 5. TV : Tuvaluan dollar (1:1 pegged to the Australian dollar).
32
+ # 6. CK : Cook Islands dollar (1:1 pegged to the New Zealand dollar).
33
+ #
34
+ # The following non-ISO codes are, however, sometimes used: GGP for the Guernsey pound,
35
+ # JEP for the Jersey pound and IMP for the Isle of Man pound (http://en.wikipedia.org/wiki/ISO_4217)
36
+ #
37
+ #
38
+ # A list of currency symbols is available here : http://forum.geonames.org/gforum/posts/list/437.page
39
+ # another list with fractional units is here: http://forum.geonames.org/gforum/posts/list/1961.page
40
+ #
41
+ #
42
+ # Languages :
43
+ # ===========
44
+ #
45
+ # The column 'languages' lists the languages spoken in a country ordered by the number of speakers. The language code is a 'locale'
46
+ # where any two-letter primary-tag is an ISO-639 language abbreviation and any two-letter initial subtag is an ISO-3166 country code.
47
+ #
48
+ # Example : es-AR is the Spanish variant spoken in Argentina.
49
+ #
50
+ #ISO ISO3 ISO-Numeric fips Country Capital Area(in sq km) Population Continent tld CurrencyCode CurrencyName Phone Postal Code Format Postal Code Regex Languages geonameid neighbours EquivalentFipsCode
51
+ AD AND 020 AN Andorra Andorra la Vella 468 77006 EU .ad EUR Euro 376 AD### ^(?:AD)*(\d{3})$ ca 3041565 ES,FR
52
+ AE ARE 784 AE United Arab Emirates Abu Dhabi 82880 9630959 AS .ae AED Dirham 971 ##### ##### ^\d{5}-\d{5}$ ar-AE,fa,en,hi,ur 290557 SA,OM
53
+ AF AFG 004 AF Afghanistan Kabul 647500 37172386 AS .af AFN Afghani 93 fa-AF,ps,uz-AF,tk 1149361 TM,CN,IR,TJ,PK,UZ
54
+ AG ATG 028 AC Antigua and Barbuda St. John's 443 96286 NA .ag XCD Dollar +1-268 en-AG 3576396
55
+ AI AIA 660 AV Anguilla The Valley 102 13254 NA .ai XCD Dollar +1-264 AI-#### ^(?:AZ)*(\d{4})$ en-AI 3573511
56
+ AL ALB 008 AL Albania Tirana 28748 2866376 EU .al ALL Lek 355 #### ^(\d{4})$ sq,el 783754 MK,GR,ME,RS,XK
57
+ AM ARM 051 AM Armenia Yerevan 29800 3076200 AS .am AMD Dram 374 ###### ^(\d{6})$ hy 174982 GE,IR,AZ,TR
58
+ AO AGO 024 AO Angola Luanda 1246700 30809762 AF .ao AOA Kwanza 244 pt-AO 3351879 CD,NA,ZM,CG
59
+ AQ ATA 010 AY Antarctica 14000000 0 AN .aq 6697173
60
+ AR ARG 032 AR Argentina Buenos Aires 2766890 44494502 SA .ar ARS Peso 54 @####@@@ ^[A-Z]?\d{4}[A-Z]{0,3}$ es-AR,en,it,de,fr,gn 3865483 CL,BO,UY,PY,BR
61
+ AS ASM 016 AQ American Samoa Pago Pago 199 55465 OC .as USD Dollar +1-684 #####-#### 96799 en-AS,sm,to 5880801
62
+ AT AUT 040 AU Austria Vienna 83858 8847037 EU .at EUR Euro 43 #### ^(\d{4})$ de-AT,hr,hu,sl 2782113 CH,DE,HU,SK,CZ,IT,SI,LI
63
+ AU AUS 036 AS Australia Canberra 7686850 24992369 OC .au AUD Dollar 61 #### ^(\d{4})$ en-AU 2077456
64
+ AW ABW 533 AA Aruba Oranjestad 193 105845 NA .aw AWG Guilder 297 nl-AW,pap,es,en 3577279
65
+ AX ALA 248 Aland Islands Mariehamn 1580 26711 EU .ax EUR Euro +358-18 ##### ^(?:FI)*(\d{5})$ sv-AX 661882 FI
66
+ AZ AZE 031 AJ Azerbaijan Baku 86600 9942334 AS .az AZN Manat 994 AZ #### ^(?:AZ )*(\d{4})$ az,ru,hy 587116 GE,IR,AM,TR,RU
67
+ BA BIH 070 BK Bosnia and Herzegovina Sarajevo 51129 3323929 EU .ba BAM Marka 387 ##### ^(\d{5})$ bs,hr-BA,sr-BA 3277605 HR,ME,RS
68
+ BB BRB 052 BB Barbados Bridgetown 431 286641 NA .bb BBD Dollar +1-246 BB##### ^(?:BB)*(\d{5})$ en-BB 3374084
69
+ BD BGD 050 BG Bangladesh Dhaka 144000 161356039 AS .bd BDT Taka 880 #### ^(\d{4})$ bn-BD,en 1210997 MM,IN
70
+ BE BEL 056 BE Belgium Brussels 30510 11422068 EU .be EUR Euro 32 #### ^(\d{4})$ nl-BE,fr-BE,de-BE 2802361 DE,NL,LU,FR
71
+ BF BFA 854 UV Burkina Faso Ouagadougou 274200 19751535 AF .bf XOF Franc 226 fr-BF,mos 2361809 NE,BJ,GH,CI,TG,ML
72
+ BG BGR 100 BU Bulgaria Sofia 110910 7000039 EU .bg BGN Lev 359 #### ^(\d{4})$ bg,tr-BG,rom 732800 MK,GR,RO,TR,RS
73
+ BH BHR 048 BA Bahrain Manama 665 1569439 AS .bh BHD Dinar 973 ####|### ^(\d{3}\d?)$ ar-BH,en,fa,ur 290291
74
+ BI BDI 108 BY Burundi Gitega 27830 11175378 AF .bi BIF Franc 257 fr-BI,rn 433561 TZ,CD,RW
75
+ BJ BEN 204 BN Benin Porto-Novo 112620 11485048 AF .bj XOF Franc 229 fr-BJ 2395170 NE,TG,BF,NG
76
+ BL BLM 652 TB Saint Barthelemy Gustavia 21 8450 NA .gp EUR Euro 590 ##### ^(\d{5})$ fr 3578476
77
+ BM BMU 060 BD Bermuda Hamilton 53 63968 NA .bm BMD Dollar +1-441 @@ ## ^([A-Z]{2}\d{2})$ en-BM,pt 3573345
78
+ BN BRN 096 BX Brunei Bandar Seri Begawan 5770 428962 AS .bn BND Dollar 673 @@#### ^([A-Z]{2}\d{4})$ ms-BN,en-BN 1820814 MY
79
+ BO BOL 068 BL Bolivia Sucre 1098580 11353142 SA .bo BOB Boliviano 591 es-BO,qu,ay 3923057 PE,CL,PY,BR,AR
80
+ BQ BES 535 Bonaire, Saint Eustatius and Saba 328 18012 NA .bq USD Dollar 599 nl,pap,en 7626844
81
+ BR BRA 076 BR Brazil Brasilia 8511965 209469333 SA .br BRL Real 55 #####-### ^\d{5}-\d{3}$ pt-BR,es,en,fr 3469034 SR,PE,BO,UY,GY,PY,GF,VE,CO,AR
82
+ BS BHS 044 BF Bahamas Nassau 13940 385640 NA .bs BSD Dollar +1-242 en-BS 3572887
83
+ BT BTN 064 BT Bhutan Thimphu 47000 754394 AS .bt BTN Ngultrum 975 dz 1252634 CN,IN
84
+ BV BVT 074 BV Bouvet Island 49 0 AN .bv NOK Krone 3371123
85
+ BW BWA 072 BC Botswana Gaborone 600370 2254126 AF .bw BWP Pula 267 en-BW,tn-BW 933860 ZW,ZA,NA
86
+ BY BLR 112 BO Belarus Minsk 207600 9485386 EU .by BYN Belarusian ruble 375 ###### ^(\d{6})$ be,ru 630336 PL,LT,UA,RU,LV
87
+ BZ BLZ 084 BH Belize Belmopan 22966 383071 NA .bz BZD Dollar 501 en-BZ,es 3582678 GT,MX
88
+ CA CAN 124 CA Canada Ottawa 9984670 37058856 NA .ca CAD Dollar 1 @#@ #@# ^([ABCEGHJKLMNPRSTVXY]\d[ABCEGHJKLMNPRSTVWXYZ]) ?(\d[ABCEGHJKLMNPRSTVWXYZ]\d)$ en-CA,fr-CA,iu 6251999 US
89
+ CC CCK 166 CK Cocos Islands West Island 14 628 AS .cc AUD Dollar 61 #### ^(\d{4})$ ms-CC,en 1547376
90
+ CD COD 180 CG Democratic Republic of the Congo Kinshasa 2345410 84068091 AF .cd CDF Franc 243 fr-CD,ln,ktu,kg,sw,lua 203312 TZ,CF,SS,RW,ZM,BI,UG,CG,AO
91
+ CF CAF 140 CT Central African Republic Bangui 622984 4666377 AF .cf XAF Franc 236 fr-CF,sg,ln,kg 239880 TD,SD,CD,SS,CM,CG
92
+ CG COG 178 CF Republic of the Congo Brazzaville 342000 5244363 AF .cg XAF Franc 242 fr-CG,kg,ln-CG 2260494 CF,GA,CD,CM,AO
93
+ CH CHE 756 SZ Switzerland Bern 41290 8516543 EU .ch CHF Franc 41 #### ^(\d{4})$ de-CH,fr-CH,it-CH,rm 2658434 DE,IT,LI,FR,AT
94
+ CI CIV 384 IV Ivory Coast Yamoussoukro 322460 25069229 AF .ci XOF Franc 225 fr-CI 2287781 LR,GH,GN,BF,ML
95
+ CK COK 184 CW Cook Islands Avarua 240 21388 OC .ck NZD Dollar 682 en-CK,mi 1899402
96
+ CL CHL 152 CI Chile Santiago 756950 18729160 SA .cl CLP Peso 56 ####### ^(\d{7})$ es-CL 3895114 PE,BO,AR
97
+ CM CMR 120 CM Cameroon Yaounde 475440 25216237 AF .cm XAF Franc 237 en-CM,fr-CM 2233387 TD,CF,GA,GQ,CG,NG
98
+ CN CHN 156 CH China Beijing 9596960 1411778724 AS .cn CNY Yuan Renminbi 86 ###### ^(\d{6})$ zh-CN,yue,wuu,dta,ug,za 1814991 LA,BT,TJ,KZ,MN,AF,NP,MM,KG,PK,KP,RU,VN,IN
99
+ CO COL 170 CO Colombia Bogota 1138910 49648685 SA .co COP Peso 57 ###### ^(\d{6})$ es-CO 3686110 EC,PE,PA,BR,VE
100
+ CR CRI 188 CS Costa Rica San Jose 51100 4999441 NA .cr CRC Colon 506 ##### ^(\d{5})$ es-CR,en 3624060 PA,NI
101
+ CU CUB 192 CU Cuba Havana 110860 11338138 NA .cu CUP Peso 53 CP ##### ^(?:CP)*(\d{5})$ es-CU,pap 3562981 US
102
+ CV CPV 132 CV Cabo Verde Praia 4033 543767 AF .cv CVE Escudo 238 #### ^(\d{4})$ pt-CV 3374766
103
+ CW CUW 531 UC Curacao Willemstad 444 159849 NA .cw ANG Guilder 599 nl,pap 7626836
104
+ CX CXR 162 KT Christmas Island Flying Fish Cove 135 1500 OC .cx AUD Dollar 61 #### ^(\d{4})$ en,zh,ms-CX 2078138
105
+ CY CYP 196 CY Cyprus Nicosia 9250 1189265 EU .cy EUR Euro 357 #### ^(\d{4})$ el-CY,tr-CY,en 146669
106
+ CZ CZE 203 EZ Czechia Prague 78866 10625695 EU .cz CZK Koruna 420 ### ## ^\d{3}\s?\d{2}$ cs,sk 3077311 PL,DE,SK,AT
107
+ DE DEU 276 GM Germany Berlin 357021 82927922 EU .de EUR Euro 49 ##### ^(\d{5})$ de 2921044 CH,PL,NL,DK,BE,CZ,LU,FR,AT
108
+ DJ DJI 262 DJ Djibouti Djibouti 23000 958920 AF .dj DJF Franc 253 fr-DJ,ar,so-DJ,aa 223816 ER,ET,SO
109
+ DK DNK 208 DA Denmark Copenhagen 43094 5797446 EU .dk DKK Krone 45 #### ^(\d{4})$ da-DK,en,fo,de-DK 2623032 DE
110
+ DM DMA 212 DO Dominica Roseau 754 71625 NA .dm XCD Dollar +1-767 en-DM 3575830
111
+ DO DOM 214 DR Dominican Republic Santo Domingo 48730 10627165 NA .do DOP Peso +1-809 and 1-829 ##### ^(\d{5})$ es-DO 3508796 HT
112
+ DZ DZA 012 AG Algeria Algiers 2381740 42228429 AF .dz DZD Dinar 213 ##### ^(\d{5})$ ar-DZ 2589581 NE,EH,LY,MR,TN,MA,ML
113
+ EC ECU 218 EC Ecuador Quito 283560 17084357 SA .ec USD Dollar 593 @####@ ^([a-zA-Z]\d{4}[a-zA-Z])$ es-EC 3658394 PE,CO
114
+ EE EST 233 EN Estonia Tallinn 45226 1320884 EU .ee EUR Euro 372 ##### ^(\d{5})$ et,ru 453733 RU,LV
115
+ EG EGY 818 EG Egypt Cairo 1001450 98423595 AF .eg EGP Pound 20 ##### ^(\d{5})$ ar-EG,en,fr 357994 LY,SD,IL,PS
116
+ EH ESH 732 WI Western Sahara El-Aaiun 266000 273008 AF .eh MAD Dirham 212 ar,mey 2461445 DZ,MR,MA
117
+ ER ERI 232 ER Eritrea Asmara 121320 6209262 AF .er ERN Nakfa 291 aa-ER,ar,tig,kun,ti-ER 338010 ET,SD,DJ
118
+ ES ESP 724 SP Spain Madrid 504782 46723749 EU .es EUR Euro 34 ##### ^(\d{5})$ es-ES,ca,gl,eu,oc 2510769 AD,PT,GI,FR,MA
119
+ ET ETH 231 ET Ethiopia Addis Ababa 1127127 109224559 AF .et ETB Birr 251 #### ^(\d{4})$ am,en-ET,om-ET,ti-ET,so-ET,sid 337996 ER,KE,SD,SS,SO,DJ
120
+ FI FIN 246 FI Finland Helsinki 337030 5518050 EU .fi EUR Euro 358 ##### ^(?:FI)*(\d{5})$ fi-FI,sv-FI,smn 660013 NO,RU,SE
121
+ FJ FJI 242 FJ Fiji Suva 18270 883483 OC .fj FJD Dollar 679 en-FJ,fj 2205218
122
+ FK FLK 238 FK Falkland Islands Stanley 12173 2638 SA .fk FKP Pound 500 FIQQ 1ZZ FIQQ 1ZZ en-FK 3474414
123
+ FM FSM 583 FM Micronesia Palikir 702 112640 OC .fm USD Dollar 691 ##### ^(\d{5})$ en-FM,chk,pon,yap,kos,uli,woe,nkr,kpg 2081918
124
+ FO FRO 234 FO Faroe Islands Torshavn 1399 48497 EU .fo DKK Krone 298 ### ^(?:FO)*(\d{3})$ fo,da-FO 2622320
125
+ FR FRA 250 FR France Paris 547030 66987244 EU .fr EUR Euro 33 ##### ^(\d{5})$ fr-FR,frp,br,co,ca,eu,oc 3017382 CH,DE,BE,LU,IT,AD,MC,ES
126
+ GA GAB 266 GB Gabon Libreville 267667 2119275 AF .ga XAF Franc 241 fr-GA 2400553 CM,GQ,CG
127
+ GB GBR 826 UK United Kingdom London 244820 66488991 EU .uk GBP Pound 44 @# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA ^([Gg][Ii][Rr]\s?0[Aa]{2})|((([A-Za-z][0-9]{1,2})|(([A-Za-z][A-Ha-hJ-Yj-y][0-9]{1,2})|(([A-Za-z][0-9][A-Za-z])|([A-Za-z][A-Ha-hJ-Yj-y][0-9]?[A-Za-z]))))\s?[0-9][A-Za-z]{2})$ en-GB,cy-GB,gd 2635167 IE
128
+ GD GRD 308 GJ Grenada St. George's 344 111454 NA .gd XCD Dollar +1-473 en-GD 3580239
129
+ GE GEO 268 GG Georgia Tbilisi 69700 3731000 AS .ge GEL Lari 995 #### ^(\d{4})$ ka,ru,hy,az 614540 AM,AZ,TR,RU
130
+ GF GUF 254 FG French Guiana Cayenne 91000 195506 SA .gf EUR Euro 594 ##### ^((97|98)3\d{2})$ fr-GF 3381670 SR,BR
131
+ GG GGY 831 GK Guernsey St Peter Port 78 65228 EU .gg GBP Pound +44-1481 @# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA ^((?:(?:[A-PR-UWYZ][A-HK-Y]\d[ABEHMNPRV-Y0-9]|[A-PR-UWYZ]\d[A-HJKPS-UW0-9])\s\d[ABD-HJLNP-UW-Z]{2})|GIR\s?0AA)$ en,nrf 3042362
132
+ GH GHA 288 GH Ghana Accra 239460 29767108 AF .gh GHS Cedi 233 en-GH,ak,ee,tw 2300660 CI,TG,BF
133
+ GI GIB 292 GI Gibraltar Gibraltar 6.5 33718 EU .gi GIP Pound 350 GX11 1AA GX11 1AA en-GI,es,it,pt 2411586 ES
134
+ GL GRL 304 GL Greenland Nuuk 2166086 56025 NA .gl DKK Krone 299 #### ^(\d{4})$ kl,da-GL,en 3425505
135
+ GM GMB 270 GA Gambia Banjul 11300 2280102 AF .gm GMD Dalasi 220 en-GM,mnk,wof,wo,ff 2413451 SN
136
+ GN GIN 324 GV Guinea Conakry 245857 12414318 AF .gn GNF Franc 224 fr-GN 2420477 LR,SN,SL,CI,GW,ML
137
+ GP GLP 312 GP Guadeloupe Basse-Terre 1780 443000 NA .gp EUR Euro 590 ##### ^((97|98)\d{3})$ fr-GP 3579143
138
+ GQ GNQ 226 EK Equatorial Guinea Malabo 28051 1308974 AF .gq XAF Franc 240 es-GQ,fr,pt 2309096 GA,CM
139
+ GR GRC 300 GR Greece Athens 131940 10727668 EU .gr EUR Euro 30 ### ## ^(\d{5})$ el-GR,en,fr 390903 AL,MK,TR,BG
140
+ GS SGS 239 SX South Georgia and the South Sandwich Islands Grytviken 3903 30 AN .gs GBP Pound SIQQ 1ZZ SIQQ 1ZZ en 3474415
141
+ GT GTM 320 GT Guatemala Guatemala City 108890 17247807 NA .gt GTQ Quetzal 502 ##### ^(\d{5})$ es-GT 3595528 MX,HN,BZ,SV
142
+ GU GUM 316 GQ Guam Hagatna 549 165768 OC .gu USD Dollar +1-671 969## ^(969\d{2})$ en-GU,ch-GU 4043988
143
+ GW GNB 624 PU Guinea-Bissau Bissau 36120 1874309 AF .gw XOF Franc 245 #### ^(\d{4})$ pt-GW,pov 2372248 SN,GN
144
+ GY GUY 328 GY Guyana Georgetown 214970 779004 SA .gy GYD Dollar 592 en-GY 3378535 SR,BR,VE
145
+ HK HKG 344 HK Hong Kong Hong Kong 1092 7396076 AS .hk HKD Dollar 852 ###### ^(\d{6})$ zh-HK,yue,zh,en 1819730
146
+ HM HMD 334 HM Heard Island and McDonald Islands 412 0 AN .hm AUD Dollar #### ^(\d{4})$ 1547314
147
+ HN HND 340 HO Honduras Tegucigalpa 112090 9587522 NA .hn HNL Lempira 504 ##### ^(\d{6})$ es-HN,cab,miq 3608932 GT,NI,SV
148
+ HR HRV 191 HR Croatia Zagreb 56542 3871833 EU .hr EUR Euro 385 ##### ^(?:HR)*(\d{5})$ hr-HR,sr 3202326 HU,SI,BA,ME,RS
149
+ HT HTI 332 HA Haiti Port-au-Prince 27750 11123176 NA .ht HTG Gourde 509 HT#### ^(?:HT)*(\d{4})$ ht,fr-HT 3723988 DO
150
+ HU HUN 348 HU Hungary Budapest 93030 9768785 EU .hu HUF Forint 36 #### ^(\d{4})$ hu-HU 719819 SK,SI,RO,UA,HR,AT,RS
151
+ ID IDN 360 ID Indonesia Jakarta 1919440 267663435 AS .id IDR Rupiah 62 ##### ^(\d{5})$ id,en,nl,jv 1643084 PG,TL,MY
152
+ IE IRL 372 EI Ireland Dublin 70280 4853506 EU .ie EUR Euro 353 @@@ @@@@ ^(D6W|[AC-FHKNPRTV-Y][0-9]{2})\s?([AC-FHKNPRTV-Y0-9]{4}) en-IE,ga-IE 2963597 GB
153
+ IL ISR 376 IS Israel Jerusalem 20770 8883800 AS .il ILS Shekel 972 ####### ^(\d{7}|\d{5})$ he,ar-IL,en-IL, 294640 SY,JO,LB,EG,PS
154
+ IM IMN 833 IM Isle of Man Douglas 572 84077 EU .im GBP Pound +44-1624 @# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA ^((?:(?:[A-PR-UWYZ][A-HK-Y]\d[ABEHMNPRV-Y0-9]|[A-PR-UWYZ]\d[A-HJKPS-UW0-9])\s\d[ABD-HJLNP-UW-Z]{2})|GIR\s?0AA)$ en,gv 3042225
155
+ IN IND 356 IN India New Delhi 3287590 1352617328 AS .in INR Rupee 91 ###### ^(\d{6})$ en-IN,hi,bn,te,mr,ta,ur,gu,kn,ml,or,pa,as,bh,sat,ks,ne,sd,kok,doi,mni,sit,sa,fr,lus,inc 1269750 CN,NP,MM,BT,PK,BD
156
+ IO IOT 086 IO British Indian Ocean Territory Diego Garcia 60 4000 AS .io USD Dollar 246 BBND 1ZZ BBND 1ZZ en-IO 1282588
157
+ IQ IRQ 368 IZ Iraq Baghdad 437072 38433600 AS .iq IQD Dinar 964 ##### ^(\d{5})$ ar-IQ,ku,hy 99237 SY,SA,IR,JO,TR,KW
158
+ IR IRN 364 IR Iran Tehran 1648000 81800269 AS .ir IRR Rial 98 ########## ^(\d{10})$ fa-IR,ku 130758 TM,AF,IQ,AM,PK,AZ,TR
159
+ IS ISL 352 IC Iceland Reykjavik 103000 353574 EU .is ISK Krona 354 ### ^(\d{3})$ is,en,de,da,sv,no 2629691
160
+ IT ITA 380 IT Italy Rome 301230 60431283 EU .it EUR Euro 39 ##### ^(\d{5})$ it-IT,de-IT,fr-IT,sc,ca,co,sl 3175395 CH,VA,SI,SM,FR,AT
161
+ JE JEY 832 JE Jersey Saint Helier 116 90812 EU .je GBP Pound +44-1534 @# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA ^((?:(?:[A-PR-UWYZ][A-HK-Y]\d[ABEHMNPRV-Y0-9]|[A-PR-UWYZ]\d[A-HJKPS-UW0-9])\s\d[ABD-HJLNP-UW-Z]{2})|GIR\s?0AA)$ en,fr,nrf 3042142
162
+ JM JAM 388 JM Jamaica Kingston 10991 2934855 NA .jm JMD Dollar +1-876 en-JM 3489940
163
+ JO JOR 400 JO Jordan Amman 92300 9956011 AS .jo JOD Dinar 962 ##### ^(\d{5})$ ar-JO,en 248816 SY,SA,IQ,IL,PS
164
+ JP JPN 392 JA Japan Tokyo 377835 126529100 AS .jp JPY Yen 81 ###-#### ^\d{3}-\d{4}$ ja 1861060
165
+ KE KEN 404 KE Kenya Nairobi 582650 51393010 AF .ke KES Shilling 254 ##### ^(\d{5})$ en-KE,sw-KE 192950 ET,TZ,SS,SO,UG
166
+ KG KGZ 417 KG Kyrgyzstan Bishkek 198500 6315800 AS .kg KGS Som 996 ###### ^(\d{6})$ ky,uz,ru 1527747 CN,TJ,UZ,KZ
167
+ KH KHM 116 CB Cambodia Phnom Penh 181040 16249798 AS .kh KHR Riels 855 ##### ^(\d{5})$ km,fr,en 1831722 LA,TH,VN
168
+ KI KIR 296 KR Kiribati Tarawa 811 115847 OC .ki AUD Dollar 686 en-KI,gil 4030945
169
+ KM COM 174 CN Comoros Moroni 2170 832322 AF .km KMF Franc 269 ar,fr-KM 921929
170
+ KN KNA 659 SC Saint Kitts and Nevis Basseterre 261 52441 NA .kn XCD Dollar +1-869 en-KN 3575174
171
+ KP PRK 408 KN North Korea Pyongyang 120540 25549819 AS .kp KPW Won 850 ###-### ^(\d{6})$ ko-KP 1873107 CN,KR,RU
172
+ KR KOR 410 KS South Korea Seoul 98480 51635256 AS .kr KRW Won 82 ##### ^(\d{5})$ ko-KR,en 1835841 KP
173
+ XK XKX 0 KV Kosovo Pristina 10908 1845300 EU EUR Euro sq,sr 831053 RS,AL,MK,ME
174
+ KW KWT 414 KU Kuwait Kuwait City 17820 4137309 AS .kw KWD Dinar 965 ##### ^(\d{5})$ ar-KW,en 285570 SA,IQ
175
+ KY CYM 136 CJ Cayman Islands George Town 262 64174 NA .ky KYD Dollar +1-345 en-KY 3580718
176
+ KZ KAZ 398 KZ Kazakhstan Nur-Sultan 2717300 18276499 AS .kz KZT Tenge 7 ###### ^(\d{6})$ kk,ru 1522867 TM,CN,KG,UZ,RU
177
+ LA LAO 418 LA Laos Vientiane 236800 7061507 AS .la LAK Kip 856 ##### ^(\d{5})$ lo,fr,en 1655842 CN,MM,KH,TH,VN
178
+ LB LBN 422 LE Lebanon Beirut 10400 6848925 AS .lb LBP Pound 961 #### ####|#### ^(\d{4}(\d{4})?)$ ar-LB,fr-LB,en,hy 272103 SY,IL
179
+ LC LCA 662 ST Saint Lucia Castries 616 181889 NA .lc XCD Dollar +1-758 en-LC 3576468
180
+ LI LIE 438 LS Liechtenstein Vaduz 160 37910 EU .li CHF Franc 423 #### ^(\d{4})$ de-LI 3042058 CH,AT
181
+ LK LKA 144 CE Sri Lanka Colombo 65610 21670000 AS .lk LKR Rupee 94 ##### ^(\d{5})$ si,ta,en 1227603
182
+ LR LBR 430 LI Liberia Monrovia 111370 4818977 AF .lr LRD Dollar 231 #### ^(\d{4})$ en-LR 2275384 SL,CI,GN
183
+ LS LSO 426 LT Lesotho Maseru 30355 2108132 AF .ls LSL Loti 266 ### ^(\d{3})$ en-LS,st,zu,xh 932692 ZA
184
+ LT LTU 440 LH Lithuania Vilnius 65200 2789533 EU .lt EUR Euro 370 LT-##### ^(?:LT)*(\d{5})$ lt,ru,pl 597427 PL,BY,RU,LV
185
+ LU LUX 442 LU Luxembourg Luxembourg 2586 607728 EU .lu EUR Euro 352 L-#### ^(?:L-)?\d{4}$ lb,de-LU,fr-LU 2960313 DE,BE,FR
186
+ LV LVA 428 LG Latvia Riga 64589 1926542 EU .lv EUR Euro 371 LV-#### ^(?:LV)*(\d{4})$ lv,ru,lt 458258 LT,EE,BY,RU
187
+ LY LBY 434 LY Libya Tripoli 1759540 6678567 AF .ly LYD Dinar 218 ar-LY,it,en 2215636 TD,NE,DZ,SD,TN,EG
188
+ MA MAR 504 MO Morocco Rabat 446550 36029138 AF .ma MAD Dirham 212 ##### ^(\d{5})$ ar-MA,ber,fr 2542007 DZ,EH,ES
189
+ MC MCO 492 MN Monaco Monaco 1.95 38682 EU .mc EUR Euro 377 ##### ^(\d{5})$ fr-MC,en,it 2993457 FR
190
+ MD MDA 498 MD Moldova Chisinau 33843 3545883 EU .md MDL Leu 373 MD-#### ^MD-\d{4}$ ro,ru,gag,tr 617790 RO,UA
191
+ ME MNE 499 MJ Montenegro Podgorica 14026 622345 EU .me EUR Euro 382 ##### ^(\d{5})$ sr,hu,bs,sq,hr,rom 3194884 AL,HR,BA,RS,XK
192
+ MF MAF 663 RN Saint Martin Marigot 53 37264 NA .gp EUR Euro 590 ##### ^(\d{5})$ fr 3578421 SX
193
+ MG MDG 450 MA Madagascar Antananarivo 587040 26262368 AF .mg MGA Ariary 261 ### ^(\d{3})$ fr-MG,mg 1062947
194
+ MH MHL 584 RM Marshall Islands Majuro 181.3 58413 OC .mh USD Dollar 692 #####-#### ^969\d{2}(-\d{4})$ mh,en-MH 2080185
195
+ MK MKD 807 MK North Macedonia Skopje 25333 2082958 EU .mk MKD Denar 389 #### ^(\d{4})$ mk,sq,tr,rmm,sr 718075 AL,GR,BG,RS,XK
196
+ ML MLI 466 ML Mali Bamako 1240000 19077690 AF .ml XOF Franc 223 fr-ML,bm 2453866 SN,NE,DZ,CI,GN,MR,BF
197
+ MM MMR 104 BM Myanmar Nay Pyi Taw 678500 53708395 AS .mm MMK Kyat 95 ##### ^(\d{5})$ my 1327865 CN,LA,TH,BD,IN
198
+ MN MNG 496 MG Mongolia Ulaanbaatar 1565000 3170208 AS .mn MNT Tugrik 976 ###### ^(\d{6})$ mn,ru 2029969 CN,RU
199
+ MO MAC 446 MC Macao Macao 254 631636 AS .mo MOP Pataca 853 ###### ^(\d{6})$ zh,zh-MO,pt 1821275
200
+ MP MNP 580 CQ Northern Mariana Islands Saipan 477 56882 OC .mp USD Dollar +1-670 ##### ^9695\d{1}$ fil,tl,zh,ch-MP,en-MP 4041468
201
+ MQ MTQ 474 MB Martinique Fort-de-France 1100 432900 NA .mq EUR Euro 596 ##### ^(\d{5})$ fr-MQ 3570311
202
+ MR MRT 478 MR Mauritania Nouakchott 1030700 4403319 AF .mr MRU Ouguiya 222 ar-MR,fuc,snk,fr,mey,wo 2378080 SN,DZ,EH,ML
203
+ MS MSR 500 MH Montserrat Plymouth 102 9341 NA .ms XCD Dollar +1-664 en-MS 3578097
204
+ MT MLT 470 MT Malta Valletta 316 483530 EU .mt EUR Euro 356 @@@ #### ^[A-Z]{3}\s?\d{4}$ mt,en-MT 2562770
205
+ MU MUS 480 MP Mauritius Port Louis 2040 1265303 AF .mu MUR Rupee 230 en-MU,bho,fr 934292
206
+ MV MDV 462 MV Maldives Male 300 515696 AS .mv MVR Rufiyaa 960 ##### ^(\d{5})$ dv,en 1282028
207
+ MW MWI 454 MI Malawi Lilongwe 118480 17563749 AF .mw MWK Kwacha 265 ###### ^(\d{6})$ ny,yao,tum,swk 927384 TZ,MZ,ZM
208
+ MX MEX 484 MX Mexico Mexico City 1972550 126190788 NA .mx MXN Peso 52 ##### ^(\d{5})$ es-MX 3996063 GT,US,BZ
209
+ MY MYS 458 MY Malaysia Kuala Lumpur 329750 31528585 AS .my MYR Ringgit 60 ##### ^(\d{5})$ ms-MY,en,zh,ta,te,ml,pa,th 1733045 BN,TH,ID
210
+ MZ MOZ 508 MZ Mozambique Maputo 801590 29495962 AF .mz MZN Metical 258 #### ^(\d{4})$ pt-MZ,vmw 1036973 ZW,TZ,SZ,ZA,ZM,MW
211
+ NA NAM 516 WA Namibia Windhoek 825418 2448255 AF .na NAD Dollar 264 en-NA,af,de,hz,naq 3355338 ZA,BW,ZM,AO
212
+ NC NCL 540 NC New Caledonia Noumea 19060 284060 OC .nc XPF Franc 687 ##### ^(\d{5})$ fr-NC 2139685
213
+ NE NER 562 NG Niger Niamey 1267000 22442948 AF .ne XOF Franc 227 #### ^(\d{4})$ fr-NE,ha,kr,dje 2440476 TD,BJ,DZ,LY,BF,NG,ML
214
+ NF NFK 574 NF Norfolk Island Kingston 34.6 1828 OC .nf AUD Dollar 672 #### ^(\d{4})$ en-NF 2155115
215
+ NG NGA 566 NI Nigeria Abuja 923768 195874740 AF .ng NGN Naira 234 ###### ^(\d{6})$ en-NG,ha,yo,ig,ff 2328926 TD,NE,BJ,CM
216
+ NI NIC 558 NU Nicaragua Managua 129494 6465513 NA .ni NIO Cordoba 505 ###-###-# ^(\d{7})$ es-NI,en 3617476 CR,HN
217
+ NL NLD 528 NL The Netherlands Amsterdam 41526 17231017 EU .nl EUR Euro 31 #### @@ ^(\d{4}\s?[a-zA-Z]{2})$ nl-NL,fy-NL 2750405 DE,BE
218
+ NO NOR 578 NO Norway Oslo 324220 5314336 EU .no NOK Krone 47 #### ^(\d{4})$ no,nb,nn,se,fi 3144096 FI,RU,SE
219
+ NP NPL 524 NP Nepal Kathmandu 140800 28087871 AS .np NPR Rupee 977 ##### ^(\d{5})$ ne,en 1282988 CN,IN
220
+ NR NRU 520 NR Nauru Yaren 21 12704 OC .nr AUD Dollar 674 NRU68 NRU68 na,en-NR 2110425
221
+ NU NIU 570 NE Niue Alofi 260 2166 OC .nu NZD Dollar 683 #### ^(\d{4})$ niu,en-NU 4036232
222
+ NZ NZL 554 NZ New Zealand Wellington 268680 4885500 OC .nz NZD Dollar 64 #### ^(\d{4})$ en-NZ,mi 2186224
223
+ OM OMN 512 MU Oman Muscat 212460 4829483 AS .om OMR Rial 968 ### ^(\d{3})$ ar-OM,en,bal,ur 286963 SA,YE,AE
224
+ PA PAN 591 PM Panama Panama City 78200 4176873 NA .pa PAB Balboa 507 ##### ^(\d{5})$ es-PA,en 3703430 CR,CO
225
+ PE PER 604 PE Peru Lima 1285220 31989256 SA .pe PEN Sol 51 ##### ^(\d{5})$ es-PE,qu,ay 3932488 EC,CL,BO,BR,CO
226
+ PF PYF 258 FP French Polynesia Papeete 4167 277679 OC .pf XPF Franc 689 ##### ^((97|98)7\d{2})$ fr-PF,ty 4030656
227
+ PG PNG 598 PP Papua New Guinea Port Moresby 462840 8606316 OC .pg PGK Kina 675 ### ^(\d{3})$ en-PG,ho,meu,tpi 2088628 ID
228
+ PH PHL 608 RP Philippines Manila 300000 106651922 AS .ph PHP Peso 63 #### ^(\d{4})$ tl,en-PH,fil,ceb,ilo,hil,war,pam,bik,bcl,pag,mrw,tsg,mdh,cbk,krj,sgd,msb,akl,ibg,yka,mta,abx 1694008
229
+ PK PAK 586 PK Pakistan Islamabad 803940 212215030 AS .pk PKR Rupee 92 ##### ^(\d{5})$ ur-PK,en-PK,pa,sd,ps,brh 1168579 CN,AF,IR,IN
230
+ PL POL 616 PL Poland Warsaw 312685 37978548 EU .pl PLN Zloty 48 ##-### ^\d{2}-\d{3}$ pl 798544 DE,LT,SK,CZ,BY,UA,RU
231
+ PM SPM 666 SB Saint Pierre and Miquelon Saint-Pierre 242 7012 NA .pm EUR Euro 508 ##### ^(97500)$ fr-PM 3424932
232
+ PN PCN 612 PC Pitcairn Adamstown 47 46 OC .pn NZD Dollar 870 PCRN 1ZZ PCRN 1ZZ en-PN 4030699
233
+ PR PRI 630 RQ Puerto Rico San Juan 9104 3195153 NA .pr USD Dollar +1-787 and 1-939 #####-#### ^00[679]\d{2}(?:-\d{4})?$ en-PR,es-PR 4566966
234
+ PS PSE 275 WE Palestinian Territory East Jerusalem 5970 4569087 AS .ps ILS Shekel 970 ar-PS 6254930 JO,IL,EG
235
+ PT PRT 620 PO Portugal Lisbon 92391 10281762 EU .pt EUR Euro 351 ####-### ^\d{4}-\d{3}\s?[a-zA-Z]{0,25}$ pt-PT,mwl 2264397 ES
236
+ PW PLW 585 PS Palau Melekeok 458 17907 OC .pw USD Dollar 680 96940 ^(96940)$ pau,sov,en-PW,tox,ja,fil,zh 1559582
237
+ PY PRY 600 PA Paraguay Asuncion 406750 6956071 SA .py PYG Guarani 595 #### ^(\d{4})$ es-PY,gn 3437598 BO,BR,AR
238
+ QA QAT 634 QA Qatar Doha 11437 2781677 AS .qa QAR Rial 974 ar-QA,es 289688 SA
239
+ RE REU 638 RE Reunion Saint-Denis 2517 776948 AF .re EUR Euro 262 ##### ^((97|98)(4|7|8)\d{2})$ fr-RE 935317
240
+ RO ROU 642 RO Romania Bucharest 237500 19473936 EU .ro RON Leu 40 ###### ^(\d{6})$ ro,hu,rom 798549 MD,HU,UA,BG,RS
241
+ RS SRB 688 RI Serbia Belgrade 88361 6982084 EU .rs RSD Dinar 381 ##### ^(\d{5})$ sr,hu,bs,rom 6290252 AL,HU,MK,RO,HR,BA,BG,ME,XK
242
+ RU RUS 643 RS Russia Moscow 17100000 144478050 EU .ru RUB Ruble 7 ###### ^(\d{6})$ ru,tt,xal,cau,ady,kv,ce,tyv,cv,udm,tut,mns,bua,myv,mdf,chm,ba,inh,kbd,krc,av,sah,nog 2017370 GE,CN,BY,UA,KZ,LV,PL,EE,LT,FI,MN,NO,AZ,KP
243
+ RW RWA 646 RW Rwanda Kigali 26338 12301939 AF .rw RWF Franc 250 rw,en-RW,fr-RW,sw 49518 TZ,CD,BI,UG
244
+ SA SAU 682 SA Saudi Arabia Riyadh 1960582 33699947 AS .sa SAR Rial 966 ##### ^(\d{5})$ ar-SA 102358 QA,OM,IQ,YE,JO,AE,KW
245
+ SB SLB 090 BP Solomon Islands Honiara 28450 652858 OC .sb SBD Dollar 677 en-SB,tpi 2103350
246
+ SC SYC 690 SE Seychelles Victoria 455 96762 AF .sc SCR Rupee 248 en-SC,fr-SC 241170
247
+ SD SDN 729 SU Sudan Khartoum 1861484 41801533 AF .sd SDG Pound 249 ##### ^(\d{5})$ ar-SD,en,fia 366755 SS,TD,EG,ET,ER,LY,CF
248
+ SS SSD 728 OD South Sudan Juba 644329 8260490 AF .ss SSP Pound 211 en 7909807 CD,CF,ET,KE,SD,UG
249
+ SE SWE 752 SW Sweden Stockholm 449964 10183175 EU .se SEK Krona 46 ### ## ^(?:SE)?\d{3}\s\d{2}$ sv-SE,se,sma,fi-SE 2661886 NO,FI
250
+ SG SGP 702 SN Singapore Singapore 692.7 5638676 AS .sg SGD Dollar 65 ###### ^(\d{6})$ cmn,en-SG,ms-SG,ta-SG,zh-SG 1880251
251
+ SH SHN 654 SH Saint Helena Jamestown 410 7460 AF .sh SHP Pound 290 STHL 1ZZ ^(STHL1ZZ)$ en-SH 3370751
252
+ SI SVN 705 SI Slovenia Ljubljana 20273 2067372 EU .si EUR Euro 386 #### ^(?:SI)*(\d{4})$ sl,sh 3190538 HU,IT,HR,AT
253
+ SJ SJM 744 SV Svalbard and Jan Mayen Longyearbyen 62049 2550 EU .sj NOK Krone 47 #### ^(\d{4})$ no,ru 607072
254
+ SK SVK 703 LO Slovakia Bratislava 48845 5447011 EU .sk EUR Euro 421 ### ## ^\d{3}\s?\d{2}$ sk,hu 3057568 PL,HU,CZ,UA,AT
255
+ SL SLE 694 SL Sierra Leone Freetown 71740 7650154 AF .sl SLE Leone 232 en-SL,men,tem 2403846 LR,GN
256
+ SM SMR 674 SM San Marino San Marino 61.2 33785 EU .sm EUR Euro 378 4789# ^(4789\d)$ it-SM 3168068 IT
257
+ SN SEN 686 SG Senegal Dakar 196190 15854360 AF .sn XOF Franc 221 ##### ^(\d{5})$ fr-SN,wo,fuc,mnk 2245662 GN,MR,GW,GM,ML
258
+ SO SOM 706 SO Somalia Mogadishu 637657 15008154 AF .so SOS Shilling 252 @@ ##### ^([A-Z]{2}\d{5})$ so-SO,ar-SO,it,en-SO 51537 ET,KE,DJ
259
+ SR SUR 740 NS Suriname Paramaribo 163270 575991 SA .sr SRD Dollar 597 nl-SR,en,srn,hns,jv 3382998 GY,BR,GF
260
+ ST STP 678 TP Sao Tome and Principe Sao Tome 1001 197700 AF .st STN Dobra 239 pt-ST 2410758
261
+ SV SLV 222 ES El Salvador San Salvador 21040 6420744 NA .sv USD Dollar 503 CP #### ^(?:CP)*(\d{4})$ es-SV 3585968 GT,HN
262
+ SX SXM 534 NN Sint Maarten Philipsburg 21 40654 NA .sx ANG Guilder 599 nl,en 7609695 MF
263
+ SY SYR 760 SY Syria Damascus 185180 16906283 AS .sy SYP Pound 963 ar-SY,ku,hy,arc,fr,en 163843 IQ,JO,IL,TR,LB
264
+ SZ SWZ 748 WZ Eswatini Mbabane 17363 1136191 AF .sz SZL Lilangeni 268 @### ^([A-Z]\d{3})$ en-SZ,ss-SZ 934841 ZA,MZ
265
+ TC TCA 796 TK Turks and Caicos Islands Cockburn Town 430 37665 NA .tc USD Dollar +1-649 TKCA 1ZZ ^(TKCA 1ZZ)$ en-TC 3576916
266
+ TD TCD 148 CD Chad N'Djamena 1284000 15477751 AF .td XAF Franc 235 TKCA 1ZZ ^(TKCA 1ZZ)$ fr-TD,ar-TD,sre 2434508 NE,LY,CF,SD,CM,NG
267
+ TF ATF 260 FS French Southern Territories Port-aux-Francais 7829 140 AN .tf EUR Euro fr 1546748
268
+ TG TGO 768 TO Togo Lome 56785 7889094 AF .tg XOF Franc 228 fr-TG,ee,hna,kbp,dag,ha 2363686 BJ,GH,BF
269
+ TH THA 764 TH Thailand Bangkok 514000 69428524 AS .th THB Baht 66 ##### ^(\d{5})$ th,en 1605651 LA,MM,KH,MY
270
+ TJ TJK 762 TI Tajikistan Dushanbe 143100 9100837 AS .tj TJS Somoni 992 ###### ^(\d{6})$ tg,ru 1220409 CN,AF,KG,UZ
271
+ TK TKL 772 TL Tokelau 10 1466 OC .tk NZD Dollar 690 tkl,en-TK 4031074
272
+ TL TLS 626 TT Timor Leste Dili 15007 1267972 OC .tl USD Dollar 670 tet,pt-TL,id,en 1966436 ID
273
+ TM TKM 795 TX Turkmenistan Ashgabat 488100 5850908 AS .tm TMT Manat 993 ###### ^(\d{6})$ tk,ru,uz 1218197 AF,IR,UZ,KZ
274
+ TN TUN 788 TS Tunisia Tunis 163610 11565204 AF .tn TND Dinar 216 #### ^(\d{4})$ ar-TN,fr 2464461 DZ,LY
275
+ TO TON 776 TN Tonga Nuku'alofa 748 103197 OC .to TOP Pa'anga 676 to,en-TO 4032283
276
+ TR TUR 792 TU Turkey Ankara 780580 82319724 AS .tr TRY Lira 90 ##### ^(\d{5})$ tr-TR,ku,diq,az,av 298795 SY,GE,IQ,IR,GR,AM,AZ,BG
277
+ TT TTO 780 TD Trinidad and Tobago Port of Spain 5128 1389858 NA .tt TTD Dollar +1-868 en-TT,hns,fr,es,zh 3573591
278
+ TV TUV 798 TV Tuvalu Funafuti 26 11508 OC .tv AUD Dollar 688 tvl,en,sm,gil 2110297
279
+ TW TWN 158 TW Taiwan Taipei 35980 23451837 AS .tw TWD Dollar 886 ##### ^(\d{5})$ zh-TW,zh,nan,hak 1668284
280
+ TZ TZA 834 TZ Tanzania Dodoma 945087 56318348 AF .tz TZS Shilling 255 sw-TZ,en,ar 149590 MZ,KE,CD,RW,ZM,BI,UG,MW
281
+ UA UKR 804 UP Ukraine Kyiv 603700 44622516 EU .ua UAH Hryvnia 380 ##### ^(\d{5})$ uk,ru-UA,rom,pl,hu 690791 PL,MD,HU,SK,BY,RO,RU
282
+ UG UGA 800 UG Uganda Kampala 236040 42723139 AF .ug UGX Shilling 256 en-UG,lg,sw,ar 226074 TZ,KE,SS,CD,RW
283
+ UM UMI 581 United States Minor Outlying Islands 0 0 OC .um USD Dollar 1 en-UM 5854968
284
+ US USA 840 US United States Washington 9629091 327167434 NA .us USD Dollar 1 #####-#### ^\d{5}(-\d{4})?$ en-US,es-US,haw,fr 6252001 CA,MX,CU
285
+ UY URY 858 UY Uruguay Montevideo 176220 3449299 SA .uy UYU Peso 598 ##### ^(\d{5})$ es-UY 3439705 BR,AR
286
+ UZ UZB 860 UZ Uzbekistan Tashkent 447400 32955400 AS .uz UZS Som 998 ###### ^(\d{6})$ uz,ru,tg 1512440 TM,AF,KG,TJ,KZ
287
+ VA VAT 336 VT Vatican Vatican City 0.44 921 EU .va EUR Euro 379 ##### ^(\d{5})$ la,it,fr 3164670 IT
288
+ VC VCT 670 VC Saint Vincent and the Grenadines Kingstown 389 110211 NA .vc XCD Dollar +1-784 en-VC,fr 3577815
289
+ VE VEN 862 VE Venezuela Caracas 912050 28870195 SA .ve VES Bolivar Soberano 58 #### ^(\d{4})$ es-VE 3625428 GY,BR,CO
290
+ VG VGB 092 VI British Virgin Islands Road Town 153 29802 NA .vg USD Dollar +1-284 en-VG 3577718
291
+ VI VIR 850 VQ U.S. Virgin Islands Charlotte Amalie 352 106977 NA .vi USD Dollar +1-340 #####-#### ^008\d{2}(?:-\d{4})?$ en-VI 4796775
292
+ VN VNM 704 VM Vietnam Hanoi 329560 95540395 AS .vn VND Dong 84 ###### ^(\d{6})$ vi,en,fr,zh,km 1562822 CN,LA,KH
293
+ VU VUT 548 NH Vanuatu Port Vila 12200 292680 OC .vu VUV Vatu 678 bi,en-VU,fr-VU 2134431
294
+ WF WLF 876 WF Wallis and Futuna Mata Utu 274 16025 OC .wf XPF Franc 681 ##### ^(986\d{2})$ wls,fud,fr-WF 4034749
295
+ WS WSM 882 WS Samoa Apia 2944 196130 OC .ws WST Tala 685 AS 96799 AS 96799 sm,en-WS 4034894
296
+ YE YEM 887 YM Yemen Sanaa 527970 28498687 AS .ye YER Rial 967 ar-YE 69543 SA,OM
297
+ YT MYT 175 MF Mayotte Mamoudzou 374 279471 AF .yt EUR Euro 262 ##### ^(\d{5})$ fr-YT 1024031
298
+ ZA ZAF 710 SF South Africa Pretoria 1219912 57779622 AF .za ZAR Rand 27 #### ^(\d{4})$ zu,xh,af,nso,en-ZA,tn,st,ts,ss,ve,nr 953987 ZW,SZ,MZ,BW,NA,LS
299
+ ZM ZMB 894 ZA Zambia Lusaka 752614 17351822 AF .zm ZMW Kwacha 260 ##### ^(\d{5})$ en-ZM,bem,loz,lun,lue,ny,toi 895949 ZW,TZ,MZ,CD,NA,MW,AO
300
+ ZW ZWE 716 ZI Zimbabwe Harare 390580 16868409 AF .zw ZWG Zimbabwe Gold 263 en-ZW,sn,nr,nd 878675 ZA,MZ,BW,ZM
301
+ CS SCG 891 YI Serbia and Montenegro Belgrade 102350 10829175 EU .cs RSD Dinar 381 ##### ^(\d{5})$ cu,hu,sq,sr 8505033 AL,HU,MK,RO,HR,BA,BG
302
+ AN ANT 530 NT Netherlands Antilles Willemstad 960 300000 NA .an ANG Guilder 599 nl-AN,en,es 8505032 GP
release_2025_09_15/data/input/imf_gdp_raw_2024.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8583c093381da17225f57ee69ab39285f4c9557d53fa1ce5a8ce1160950c509
3
+ size 265358
release_2025_09_15/data/input/onet_task_statements_raw.xlsx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:373cdc961891d04bcd29db66c43c7cf412d61fe3ef1f49e634dd979f4d5a3a95
3
+ size 1204658
release_2025_09_15/data/input/sc-est2024-agesex-civ.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:334210a5080a6e470db22e42346ba7e6d0d43490887e08c5ed3ece62a7adfa9c
3
+ size 818707
release_2025_09_15/data/input/soc_structure_raw.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05eb5e689fb471b7a66962b57bba6666dee2c3e6a6854f0f84faf423af68dd17
3
+ size 77176
release_2025_09_15/data/input/task_pct_v1.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8de89c99f762146c9e46b2202c3501e2a14f11c5b44c61c8007021127b6c676e
3
+ size 461306
release_2025_09_15/data/input/task_pct_v2.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c20f184cd4a1e3d8ef3d77f500b32b62431ce61a3c2f133c3af7fa8429f97db
3
+ size 435372
release_2025_09_15/data/input/working_age_pop_2024_country_raw.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c86dcb133a3f9f54f5f22e74683f5d6c5cc97faa9ddc2cdd466a4422cd4124c
3
+ size 22974
release_2025_09_15/data/intermediate/aei_raw_1p_api_2025-08-04_to_2025-08-11.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0fc061ea7d4feb71a7bd88c528d54e2d3a11e2045574f1e1fb2d594eebffd0f
3
+ size 7027019
release_2025_09_15/data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8ef9c5eee0c42febc73e358ecc7d2358e0a0ce3b50122c0c15ae8ec569aceff
3
+ size 18894517
release_2025_09_15/data/intermediate/gdp_2024_country.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0618d6ba634a612b97b1c82f521ab38a387216069818a86f50c9aaf8e2bda6c
3
+ size 4115
release_2025_09_15/data/intermediate/gdp_2024_us_state.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb1573e8143bd407c2ea7c43f5a6822852568c596dbde843fc5d8692c9e967ec
3
+ size 2179
release_2025_09_15/data/intermediate/iso_country_codes.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eee318d4ab2c2c30f5a7da11f2bc7e0e36c246f6be5bb9b323fdb12b8e4809e0
3
+ size 4564
release_2025_09_15/data/intermediate/onet_task_statements.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88427f8d2a9f37a7c08b5420c6c66a01cdae6467b716bbbd31989128504b8ebb
3
+ size 3650862
release_2025_09_15/data/intermediate/soc_structure.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97dee70470182ac642872839f71a4a938c03677829aadca9bfbf250cb4021863
3
+ size 78834
release_2025_09_15/data/intermediate/working_age_pop_2024_country.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a9e0edc0453702e8efb63d7cab57e5b1a689bc09e070626bbf513e37edd5dd3
3
+ size 6321
release_2025_09_15/data/intermediate/working_age_pop_2024_us_state.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2d0fb7239934f4f6d0ae3444ab12ad8ff1dd323b71ccfc4295d074b537f17ec
3
+ size 1079
release_2025_09_15/data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48a2c39f8a98ce7c2ba72767cbe3760fd55ba4a64a193abfecefc76d19852c09
3
+ size 26840881
release_2025_09_15/data/output/request_hierarchy_tree_1p_api.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c0ef84206a84df500387d7139e333081aea27e67c6b51162f42d17f418c045d
3
+ size 304162
release_2025_09_15/data/output/request_hierarchy_tree_claude_ai.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79f9f7939ba8c2dda1a5e52967dd9c6def3238e9fe024772330a411c849de7e0
3
+ size 438531
release_2025_09_15/data_documentation.md ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Data Documentation
2
+
3
+ This document describes the data sources and variables used in the third Anthropic Economic Index (AEI) report.
4
+
5
+ ## Claude.ai Usage Data
6
+
7
+ ### Overview
8
+ The core dataset contains Claude AI usage metrics aggregated by geography and analysis dimensions (facets).
9
+
10
+ **Source files**:
11
+ - `aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv` (pre-enrichment data in data/intermediate/)
12
+ - `aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv` (enriched data in data/output/)
13
+
14
+ **Note on data sources**: The AEI raw file contains raw counts and percentages. Derived metrics (indices, tiers, per capita calculations, automation/augmentation percentages) are calculated during the enrichment process in `aei_report_v3_preprocessing_claude_ai.ipynb`.
15
+
16
+ ### Data Schema
17
+ Each row represents one metric value for a specific geography and facet combination:
18
+
19
+ | Column | Type | Description |
20
+ |--------|------|-------------|
21
+ | `geo_id` | string | Geographic identifier (ISO-2 country code for countries, US state code, or "GLOBAL", ISO-3 country codes in enriched data) |
22
+ | `geography` | string | Geographic level: "country", "state_us", or "global" |
23
+ | `date_start` | date | Start of data collection period |
24
+ | `date_end` | date | End of data collection period |
25
+ | `platform_and_product` | string | "Claude AI (Free and Pro)" |
26
+ | `facet` | string | Analysis dimension (see Facets below) |
27
+ | `level` | integer | Sub-level within facet (0-2) |
28
+ | `variable` | string | Metric name (see Variables below) |
29
+ | `cluster_name` | string | Specific entity within facet (task, pattern, etc.). For intersections, format is "base::category" |
30
+ | `value` | float | Numeric metric value |
31
+
32
+ ### Facets
33
+ - **country**: Country-level aggregations
34
+ - **state_us**: US state-level aggregations
35
+ - **onet_task**: O*NET occupational tasks
36
+ - **collaboration**: Human-AI collaboration patterns
37
+ - **request**: Request complexity levels (0=highest granularity, 1=middle granularity, 2=lowest granularity)
38
+ - **onet_task::collaboration**: Intersection of tasks and collaboration patterns
39
+ - **request::collaboration**: Intersection of request categories and collaboration patterns
40
+
41
+ ### Core Variables
42
+
43
+ Variables follow the pattern `{prefix}_{suffix}` with specific meanings:
44
+
45
+ **From AEI processing**: `*_count`, `*_pct`
46
+ **From enrichment**: `*_per_capita`, `*_per_capita_index`, `*_pct_index`, `*_tier`, `automation_pct`, `augmentation_pct`, `soc_pct`
47
+
48
+ #### Usage Metrics
49
+ - **usage_count**: Total number of conversations/interactions in a geography
50
+ - **usage_pct**: Percentage of total usage (relative to parent geography - gobal for countries, US for states)
51
+ - **usage_per_capita**: Usage count divided by working age population
52
+ - **usage_per_capita_index**: Concentration index showing if a geography has more/less usage than expected based on population share (1.0 = proportional, >1.0 = over-representation, <1.0 = under-representation)
53
+ - **usage_tier**: Usage adoption tier (0 = no/little adoption, 1-4 = quartiles of adoption among geographies with sufficient usage)
54
+
55
+ #### Content Facet Metrics
56
+ **O*NET Task Metrics**:
57
+ - **onet_task_count**: Number of conversations using this specific O*NET task
58
+ - **onet_task_pct**: Percentage of geographic total using this task
59
+ - **onet_task_pct_index**: Specialization index comparing task usage to baseline (global for countries, US for states)
60
+ - **onet_task_collaboration_count**: Number of conversations with both this task and collaboration pattern (intersection)
61
+ - **onet_task_collaboration_pct**: Percentage of the base task's total that has this collaboration pattern (sums to 100% within each task)
62
+
63
+ #### Occupation Metrics
64
+ - **soc_pct**: Percentage of classified O*NET tasks associated with this SOC major occupation group (e.g., Management, Computer and Mathematical)
65
+
66
+ **Request Metrics**:
67
+ - **request_count**: Number of conversations in this request category level
68
+ - **request_pct**: Percentage of geographic total in this category
69
+ - **request_pct_index**: Specialization index comparing request usage to baseline
70
+ - **request_collaboration_count**: Number of conversations with both this request category and collaboration pattern (intersection)
71
+ - **request_collaboration_pct**: Percentage of the base request's total that has this collaboration pattern (sums to 100% within each request)
72
+
73
+ **Collaboration Pattern Metrics**:
74
+ - **collaboration_count**: Number of conversations with this collaboration pattern
75
+ - **collaboration_pct**: Percentage of geographic total with this pattern
76
+ - **collaboration_pct_index**: Specialization index comparing pattern to baseline
77
+ - **automation_pct**: Percentage of classifiable collaboration that is automation-focused (directive, feedback loop patterns)
78
+ - **augmentation_pct**: Percentage of classifiable collaboration that is augmentation-focused (validation, task iteration, learning patterns)
79
+
80
+ #### Demographic & Economic Metrics
81
+ - **working_age_pop**: Population aged 15-64 (working age definition used by World Bank)
82
+ - **gdp_per_working_age_capita**: Total GDP divided by working age population (in USD)
83
+
84
+ #### Special Values
85
+ - **not_classified**: Indicates data that was filtered for privacy protection or could not be classified
86
+ - **none**: Indicates the absence of the attribute (e.g., no collaboration, no task selected)
87
+
88
+ ### Data Processing Notes
89
+ - **Minimum Observations**: 200 conversations per country, 100 per US state (applied in enrichment step, not raw preprocessing)
90
+ - **Population Base**: Working-age population (ages 15-64)
91
+ - **not_classified**:
92
+ - For regular facets: Captures filtered/unclassified conversations
93
+ - For intersection facets: Each base cluster has its own not_classified (e.g., "task1::not_classified")
94
+ - **Intersection Percentages**: Calculated relative to base cluster totals, ensuring each base cluster's percentages sum to 100%
95
+ - **Percentage Index Calculations**:
96
+ - Exclude `not_classified` and `none` categories from index calculations as they are not meaningful
97
+ - **Country Codes**: ISO-2 format (e.g., "US" in raw data), ISO-3 (e.g., "USA", "GBR", "FRA") for countries after enrichment
98
+ - **Variable Definitions**: See Core Variables section above
99
+
100
+ ## 1P API Usage Data
101
+
102
+ ### Overview
103
+ Dataset containing first-party API usage metrics along various dimensions based on a sample of 1P API traffic and analyzed using privacy-preserving methods.
104
+
105
+ **Source file**: `aei_raw_1p_api_2025-08-04_to_2025-08-11.csv` (in data/intermediate/)
106
+
107
+ ### Data Schema
108
+ Each row represents one metric value for a specific facet combination at global level:
109
+
110
+ | Column | Type | Description |
111
+ |--------|------|-------------|
112
+ | `geo_id` | string | Geographic identifier (always "GLOBAL" for API data) |
113
+ | `geography` | string | Geographic level (always "global" for API data) |
114
+ | `date_start` | date | Start of data collection period |
115
+ | `date_end` | date | End of data collection period |
116
+ | `platform_and_product` | string | "1P API" |
117
+ | `facet` | string | Analysis dimension (see Facets below) |
118
+ | `level` | integer | Sub-level within facet (0-2) |
119
+ | `variable` | string | Metric name (see Variables below) |
120
+ | `cluster_name` | string | Specific entity within facet. For intersections, format is "base::category" or "base::index"/"base::count" for mean value metrics |
121
+ | `value` | float | Numeric metric value |
122
+
123
+ ### Facets
124
+ - **onet_task**: O*NET occupational tasks
125
+ - **collaboration**: Human-AI collaboration patterns
126
+ - **request**: Request categories (hierarchical levels 0-2 from bottom-up taxonomy)
127
+ - **onet_task::collaboration**: Intersection of tasks and collaboration patterns
128
+ - **onet_task::prompt_tokens**: Mean prompt tokens per task (normalized, average = 1.0)
129
+ - **onet_task::completion_tokens**: Mean completion tokens per task (normalized, average = 1.0)
130
+ - **onet_task::cost**: Mean cost per task (normalized, average = 1.0)
131
+ - **request::collaboration**: Intersection of request categories and collaboration patterns
132
+
133
+ ### Core Variables
134
+
135
+ #### Usage Metrics
136
+ - **collaboration_count**: Number of 1P API records with this collaboration pattern
137
+ - **collaboration_pct**: Percentage of total with this pattern
138
+
139
+ #### Content Facet Metrics
140
+ **O*NET Task Metrics**:
141
+ - **onet_task_count**: Number of 1P API records using this specific O*NET task
142
+ - **onet_task_pct**: Percentage of total using this task
143
+ - **onet_task_collaboration_count**: Records with both this task and collaboration pattern
144
+ - **onet_task_collaboration_pct**: Percentage of the task's total with this collaboration pattern
145
+
146
+ **Mean Value Intersection Metrics** (unique to API data):
147
+ - **prompt_tokens_index**: Re-indexed mean prompt tokens (1.0 = average across all tasks)
148
+ - **prompt_tokens_count**: Number of records for this metric
149
+ - **completion_tokens_index**: Re-indexed mean completion tokens (1.0 = average across all tasks)
150
+ - **completion_tokens_count**: Number of records for this metric
151
+ - **cost_index**: Re-indexed mean cost (1.0 = average across all tasks)
152
+ - **cost_count**: Number of records for this metric
153
+
154
+ **Request Metrics**:
155
+ - **request_count**: Number of 1P API records in this request category
156
+ - **request_pct**: Percentage of total in this category
157
+ - **request_collaboration_count**: Records with both this request category and collaboration pattern
158
+ - **request_collaboration_pct**: Percentage of the request's total with this collaboration pattern
159
+
160
+ ## Claude.ai Request Hierarchy
161
+
162
+ Contains the hierarchy of request clusters for Claude.ai usage with their names and descriptions.
163
+
164
+ **Source file**: `request_hierarchy_tree_claude_ai.json` (in data/output/)
165
+
166
+ ## 1P API Request Hierarchy
167
+
168
+ Contains the hierarchy of request clusters for 1P API usage with their names and descriptions.
169
+
170
+ **Source file**: `request_hierarchy_tree_1p_api.json` (in data/output/)
171
+
172
+ ## Claude.ai Usage Data from Prior Anthropic Economic Index Releases
173
+
174
+ Data on task usage and automation/augmentation patterns from the first and second Anthropic Economic Index reports.
175
+
176
+ - **Source**: Anthropic/EconomicIndex dataset on Hugging Face
177
+ - **URL**: https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_03_27
178
+ - **License**: Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)
179
+ - **Files**:
180
+ - `automation_vs_augmentation_v1.csv`
181
+ - `automation_vs_augmentation_v2.csv`
182
+ - `task_pct_v1.csv`
183
+ - `task_pct_v2.csv`
184
+
185
+ ## External Data Sources
186
+
187
+ We use external data to enrich Claude usage data with external economic and demographic sources.
188
+
189
+ ### ISO Country Codes
190
+
191
+ **ISO 3166 Country Codes**
192
+
193
+ International standard codes for representing countries and territories, used for mapping IP-based geolocation data to standardized country identifiers.
194
+
195
+ - **Standard**: ISO 3166-1
196
+ - **Source**: GeoNames geographical database
197
+ - **URL**: https://download.geonames.org/export/dump/countryInfo.txt
198
+ - **License**: Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)
199
+ - **Attribution note**: Data in the data/intermediate and data/output folders have been processed and modified from original source; modifications to data in data/intermediate include extracting only tabular data, selecting a subset of columns, and renaming columns; modifications to data in data/output include transforming data to long format
200
+ - **Download date**: September 2, 2025
201
+ - **Output files**:
202
+ - `geonames_countryInfo.txt` (raw GeoNames data in data/input/)
203
+ - `iso_country_codes.csv` (processed country codes in data/intermediate/)
204
+ - **Key fields**:
205
+ - `iso_alpha_2`: Two-letter country code (e.g., "US", "GB", "FR")
206
+ - `iso_alpha_3`: Three-letter country code (e.g., "USA", "GBR", "FRA")
207
+ - `country_name`: Country name from GeoNames
208
+ - **Usage**: Maps IP-based country identification to standardized ISO codes for consistent geographic aggregation
209
+
210
+ ### US State Codes
211
+
212
+ **State FIPS Codes and USPS Abbreviations**
213
+
214
+ Official state and territory codes including FIPS codes and two-letter USPS abbreviations for all U.S. states, territories, and the District of Columbia.
215
+
216
+ - **Series**: State FIPS Codes
217
+ - **Source**: U.S. Census Bureau, Geography Division
218
+ - **URL**: https://www2.census.gov/geo/docs/reference/state.txt
219
+ - **License**: Public Domain (U.S. Government Work)
220
+ - **Download date**: September 2, 2025
221
+ - **Output files**:
222
+ - `census_state_codes.txt` (raw pipe-delimited text file in data/input/)
223
+ - **Usage**: Maps state names to two-letter abbreviations (e.g., "California" → "CA")
224
+
225
+ ### Population Data
226
+
227
+ ### US State Population
228
+
229
+ **State Characteristics Estimates - Age and Sex - Civilian Population**
230
+
231
+ Annual estimates of the civilian population by single year of age, sex, race, and Hispanic origin for states and the District of Columbia.
232
+
233
+ - **Series**: SC-EST2024-AGESEX-CIV
234
+ - **Source**: U.S. Census Bureau, Population Division
235
+ - **URL**: https://www2.census.gov/programs-surveys/popest/datasets/2020-2024/state/asrh/sc-est2024-agesex-civ.csv
236
+ - **License**: Public Domain (U.S. Government Work)
237
+ - **Download date**: September 2, 2025
238
+ - **Output files**:
239
+ - `sc-est2024-agesex-civ.csv` (raw Census data in data/input/)
240
+ - `working_age_pop_2024_us_state.csv` (processed data summed for ages 15-64 by state in data/intermediate/)
241
+ - **Documentation**: https://www2.census.gov/programs-surveys/popest/technical-documentation/file-layouts/2020-2024/SC-EST2024-AGESEX-CIV.pdf
242
+
243
+ ### Country Population
244
+
245
+ **Population ages 15-64, total**
246
+
247
+ Total population between the ages 15 to 64. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
248
+
249
+ - **Series**: SP.POP.1564.TO
250
+ - **Source**: World Population Prospects, United Nations (UN), publisher: UN Population Division; Staff estimates, World Bank (WB)
251
+ - **URL**: https://api.worldbank.org/v2/country/all/indicator/SP.POP.1564.TO?format=json&date=2024&per_page=1000
252
+ - **License**: Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)
253
+ - **Attribution note**: Data in the data/intermediate folder have been processed and modified from original source; modifications to data in data/input include changing the file format; modifications to data/intermediate include adding Taiwan population data, removing non-country aggregates, removing invalid country codes, removing excluded countries, and renaming columns; modifications to data in data/output include transforming data to long format
254
+ - **Download date**: September 2, 2025
255
+ - **Output files**:
256
+ - `working_age_pop_2024_country_raw.csv` (raw World Bank data in data/input/)
257
+ - `working_age_pop_2024_country.csv` (processed country-level data including Taiwan in data/intermediate/)
258
+
259
+ ### Taiwan Population
260
+
261
+ **Population by single age**
262
+
263
+ Population projections by single year of age for Taiwan (Republic of China). This data supplements the World Bank country data which excludes Taiwan.
264
+
265
+ - **Series**: Population by single age (Medium variant, Total gender)
266
+ - **Source**: National Development Council, Population Projections for the R.O.C (Taiwan)
267
+ - **URL**: https://pop-proj.ndc.gov.tw/main_en/Custom_Detail_Statistics_Search.aspx?n=175&_Query=258170a1-1394-49fe-8d21-dc80562b72fb&page=1&PageSize=10&ToggleType=
268
+ - **License**: Open Government Data License (Taiwan) (https://data.gov.tw/en/license)
269
+ - **Update date**: 2025.06.17
270
+ - **Download date**: September 2, 2025
271
+ - **Reference year**: 2024
272
+ - **Variable name in script**: `df_taiwan` (raw data), added to `df_working_age_pop_country`
273
+ - **Output files**:
274
+ - `Population by single age _20250802235608.csv` (raw data in data/input/, pre-filtered to ages 15-64)
275
+ - Merged into `working_age_pop_2024_country.csv` (processed country-level data in data/intermediate/)
276
+
277
+ ## GDP Data
278
+
279
+ ### Country GDP
280
+
281
+ **Gross Domestic Product, Current Prices (Billions of U.S. Dollars)**
282
+
283
+ Total gross domestic product at current market prices for all countries and territories.
284
+
285
+ - **Series**: NGDPD
286
+ - **Source**: International Monetary Fund (IMF), World Economic Outlook Database
287
+ - **URL**: https://www.imf.org/external/datamapper/api/v1/NGDPD
288
+ - **License**: IMF Data Terms and Conditions (https://www.imf.org/en/About/copyright-and-terms#data)
289
+ - **Reference year**: 2024
290
+ - **Download date**: September 2, 2025
291
+ - **Output files**:
292
+ - `imf_gdp_raw_2024.json` (raw API response in data/input/)
293
+ - `gdp_2024_country.csv` (processed country GDP data in data/intermediate/)
294
+
295
+ ### US State GDP
296
+
297
+ **SASUMMARY State Annual Summary Statistics: Personal Income, GDP, Consumer Spending, Price Indexes, and Employment**
298
+
299
+ Gross domestic product by state in millions of current U.S. dollars.
300
+
301
+ - **Series**: SASUMMARY (Gross Domestic Product by State)
302
+ - **Source**: U.S. Bureau of Economic Analysis (BEA)
303
+ - **URL**: https://apps.bea.gov/itable/?ReqID=70&step=1
304
+ - **License**: Public Domain (U.S. Government Work)
305
+ - **Download date**: September 2, 2025
306
+ - **Reference year**: 2024
307
+ - **Output files**:
308
+ - `bea_us_state_gdp_2024.csv` (raw data in data/input/, manually downloaded from BEA)
309
+ - `gdp_2024_us_state.csv` (processed state GDP data in data/intermediate/)
310
+ - **Citation**: U.S. Bureau of Economic Analysis, "SASUMMARY State annual summary statistics: personal income, GDP, consumer spending, price indexes, and employment" (accessed September 2, 2025)
311
+
312
+ ## SOC and O*NET Data
313
+
314
+ ### O*NET Task Statements
315
+
316
+ **O*NET Task Statements Dataset**
317
+
318
+ Comprehensive database of task statements associated with occupations in the O*NET-SOC taxonomy, providing detailed work activities for each occupation.
319
+
320
+ - **Database Version**: O*NET Database 20.1
321
+ - **Source**: O*NET Resource Center, U.S. Department of Labor
322
+ - **URL**: https://www.onetcenter.org/dl_files/database/db_20_1_excel/Task%20Statements.xlsx
323
+ - **License**: Public Domain (U.S. Government Work)
324
+ - **Download date**: September 2, 2025
325
+ - **Output files**:
326
+ - `onet_task_statements_raw.xlsx` (raw Excel file in data/input/)
327
+ - `onet_task_statements.csv` (processed data with soc_major_group in data/intermediate/)
328
+ - **Key fields**:
329
+ - `O*NET-SOC Code`: Full occupation code (e.g., "11-1011.00")
330
+ - `Title`: Occupation title
331
+ - `Task ID`: Unique task identifier
332
+ - `Task`: Description of work task
333
+ - `Task Type`: Core or Supplemental
334
+ - `soc_major_group`: First 2 digits of SOC code (e.g., "11" for Management)
335
+ - **Notes**:
336
+ - SOC major group codes extracted from O*NET-SOC codes for aggregation
337
+ - Used to map Claude usage patterns to occupational categories
338
+
339
+ ### SOC Structure
340
+
341
+ **Standard Occupational Classification (SOC) Structure**
342
+
343
+ Hierarchical classification system for occupations, providing standardized occupation titles and codes.
344
+
345
+ - **SOC Version**: 2019
346
+ - **Source**: O*NET Resource Center (SOC taxonomy)
347
+ - **URL**: https://www.onetcenter.org/taxonomy/2019/structure/?fmt=csv
348
+ - **License**: Public Domain (U.S. Government Work)
349
+ - **Download date**: September 2, 2025
350
+ - **Variable name in script**: `df_soc` (SOC structure dataframe)
351
+ - **Output files**:
352
+ - `soc_structure_raw.csv` (raw data in data/input/)
353
+ - `soc_structure.csv` (processed SOC structure in data/intermediate/)
354
+ - **Key fields**:
355
+ - `Major Group`: SOC major group code (e.g., "11-0000")
356
+ - `Minor Group`: SOC minor group code
357
+ - `Broad Occupation`: Broad occupation code
358
+ - `Detailed Occupation`: Detailed occupation code
359
+ - `soc_major_group`: 2-digit major group code (e.g., "11")
360
+ - `SOC or O*NET-SOC 2019 Title`: Occupation group title
361
+ - **Notes**:
362
+ - Provides hierarchical structure for occupational classification
363
+
364
+ ### Business Trends and Outlook Survey
365
+
366
+ Core questions, National.
367
+
368
+ - **Source**: U.S. Census Bureau
369
+ - **URL**: https://www.census.gov/hfp/btos/downloads/National.xlsx
370
+ - **License**: Public Domain (U.S. Government Work)
371
+ - **Download date**: September 5, 2025
372
+ - **Reference periods**: Ending in September 2023 and August 2025
373
+ - **Input file**: `BTOS_National.xlsx`