Datasets:
File size: 7,899 Bytes
6c2049b 7c2eb3a f9edd73 6c2049b f9edd73 6c2049b f9edd73 6c2049b f9edd73 6c2049b f9edd73 6b41470 f9edd73 6b41470 7c2eb3a 8b6e4cc 6b41470 8b6e4cc 6b41470 8b6e4cc 6b41470 7c2eb3a 6b41470 c7a369c 6b41470 f9edd73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
---
language:
- zh
license: apache-2.0
task_categories:
- text-to-speech
library_name: datasets
tags:
- speech
- emotional-speech
- voice-cloning
- mandarin
dataset_info:
features:
- name: audio
dtype: audio
- name: text
dtype: string
- name: emotion
dtype: string
- name: speaker
dtype: string
splits:
- name: train
num_bytes: 3610108297.64
num_examples: 4160
download_size: 3077432286
dataset_size: 3610108297.64
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# CSEMOTIONS: High-Quality Mandarin Emotional Speech Dataset
[Paper](https://huggingface.co/papers/2508.02038) | [Code](https://github.com/AIDC-AI/Marco-Voice)
[](LICENSE)
**CSEMOTIONS** is a high-quality Mandarin emotional speech dataset designed for expressive speech synthesis, emotion recognition, and voice cloning research. The dataset contains studio-quality recordings from six professional voice actors across seven carefully curated emotional categories, supporting research in controllable and natural language speech generation.
## Dataset Summary
- **Name:** CSEMOTIONS
- **Total Duration:** ~10 hours
- **Speakers:** 6 (3 male, 3 female) native Mandarin speakers, all professional voice actors
- **Emotions:** Neutral, Happy, Angry, Sad, Surprise, Playfulness, Fearful
- **Language:** Mandarin Chinese
- **Sampling Rate:** 48kHz, 24-bit PCM
- **Recording Setting:** Professional studio environment
- **Evaluation Prompts:** 100 per emotion, in both English and Chinese
## Dataset Structure
Each data sample includes:
- **audio**: The speech waveform (48kHz, 24-bit, WAV)
- **transcript**: The transcribed sentence in Mandarin
- **emotion**: One of {Neutral, Happy, Angry, Sad, Surprise, Playfulness, Fearful}
- **speaker_id**: An anonymized speaker identifier (e.g., `S01`)
- **gender**: Male/Female
- **prompt_id**: Unique identifier for each utterance
## Intended Uses
CSEMOTIONS is intended for:
- Expressive text-to-speech (TTS) and voice cloning systems
- Speech emotion recognition (SER) research
- Cross-lingual and cross-emotional synthesis experiments
- Benchmarking emotion transfer or disentanglement models
## Dataset Details
| Property | Value |
|-------------------------|---------------------------------------|
| Total audio hours | ~10 |
| Number of speakers | 6 (3♂, 3♀, anonymized IDs) |
| Emotions | Neutral, Happy, Angry, Sad, Surprise, Playfulness, Fearful |
| Language | Mandarin Chinese |
| Format | WAV, mono, 48kHz/24bit |
| Studio quality | Yes |
| Label | Duration | Sentences |
| -------- | -------- | --------- |
| Sad | 1.73h | 546 |
| Angry | 1.43h | 769 |
| Happy | 1.51h | 603 |
| Surprise | 1.25h | 508 |
| Fearful | 1.92h | 623 |
| Playfulness | 1.23h | 621 |
| Neutral | 1.14h | 490 |
| **Total**| **10.24h**| **4160** |
## Download and Usage
To use CSEMOTIONS with [🤗 Datasets](https://huggingface.co/docs/datasets):
```python
from datasets import load_dataset
dataset = load_dataset("AIDC-AI/CSEMOTIONS")
```
## Acknowledgements
We would like to thank our professional voice actors and the recording studio staff for their contributions.
---
## 📊 Benchmark Performance
We conducted a blind human evaluation with four annotators. The Likert scale ranges from 1 to 5 for all metrics, except for Speaker Similarity, which is rated on a scale from 0 to 1.
### Voice Cloning Evaluation
| Metric | CosyVoice1 | CosyVoice2 | Marco-Voice |
|----------------------|------------|------------|-------------|
| Speech Clarity | 3.000 | 3.770 | **4.545** |
| Rhythm & Speed | 3.175 | 4.090 | **4.290** |
| Naturalness | 3.225 | 3.150 | **4.205** |
| Overall Satisfaction | 2.825 | 3.330 | **4.430** |
| Speaker Similarity | 0.700 | 0.605 | **0.8275** |
### Emotional Speech Generation Evaluation
| Metric | CosyVoice2 | Marco-Voice |
|----------------------|------------|-------------|
| Speech Clarity | 3.770 | **4.545** |
| Emotional Expression | 3.240 | **4.225** |
| Rhythm & Speed | 4.090 | **4.290** |
| Naturalness | 3.150 | **4.205** |
| Overall Satisfaction | 3.330 | **4.430** |
### Direct Comparison (A/B Tests)
| Compared System | Marco-Voice Win Rate |
|-----------------|----------------------|
| CosyVoice1 | 60% (12/20) |
| CosyVoice2 | 65% (13/20) |
### Objective Metrics Analysis
#### LibriTTS Dataset (English)
| System | WER ↓ | SS (SpeechBrain) ↑ | SS (ERes2Net) ↑ | Del&Ins ↓ | Sub ↓ | DNS-MOS ↑ |
|------------------|--------|--------------------|------------------|-----------|--------|-----------|
| CosyVoice1 | 12.1 | 64.1 | 80.1 | 413 | 251 | 3.899 |
| CosyVoice1* | 58.4 | 61.3 | 64.2 | 2437 | 2040 | 3.879 |
| Marco-Voice | **11.4** | 63.2 | 74.3 | **395** | **242**| 3.860 |
#### AISHELL-3 Dataset (Mandarin)
| System | WER ↓ | SS (SpeechBrain) ↑ | SS (ERes2Net) ↑ | Del&Ins ↓ | Sub ↓ | DNS-MOS ↑ |
|------------------|--------|--------------------|------------------|-----------|--------|-----------|
| CosyVoice1 | **3.0** | **10.7** | 73.5 | **11.0** | **97.0**| 3.673 |
| CosyVoice1* | 23.3 | 10.6 | 54.5 | 170 | 674 | **3.761** |
| Marco-Voice | 17.6 | 10.4 | **73.8** | 218 | 471 | 3.687 |
*Implementation Notes:*
- **CosyVoice1*** indicates continued training of the base model on the same dataset used by Marco-Voice, continual SFT on base model would naturally incur general performance degradation:
- Worse WER (58.4 vs 12.1 in LibriTTS, 23.3 vs 3.0 in AISHELL)
- Speaker similarity preservation challenges (SS-ERes2Net drops to 64.2/54.5 from 80.1/73.5)
- Marco-Voice achieves better WER (11.4 vs 58.4) and speaker similarity (74.3 vs 64.2) than CosyVoice1* in LibriTTS despite added emotional control capabilities
### Duration Impact on Emotion Recognition
<img src="assets/duration_impact.png" alt="Duration Impact" width="600">
### Gender Bias Analysis
<img src="assets/gender_performance_comparison.png" alt="Gender Analysis" width="600">
---
## License
The project is licensed under the Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0, SPDX-License-identifier: Apache-2.0).
## 📜 Citation
```bibtex
@misc{tian2025marcovoicetechnicalreport,
title={Marco-Voice Technical Report},
author={Fengping Tian and Chenyang Lyu and Xuanfan Ni and Haoqin Sun and Qingjuan Li and Zhiqiang Qian and Haijun Li and Longyue Wang and Zhao Xu and Weihua Luo and Kaifu Zhang},
year={2025},
eprint={2508.02038},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2508.02038},
}
```
## Disclaimer
We used compliance checking algorithms during the training process, to ensure the compliance of the trained model and dataset to the best of our ability. Due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the dataset is completely free of copyright issues or improper content. If you believe anything infringes on your rights or contains improper content, please contact us, and we will promptly address the matter.
--- |