nreimers
commited on
Commit
·
cb613d5
1
Parent(s):
67d6b31
up
Browse files
README.md
CHANGED
|
@@ -1,34 +1,61 @@
|
|
| 1 |
# Cross-Encoder for MS Marco
|
| 2 |
|
| 3 |
-
This model
|
| 4 |
|
| 5 |
-
|
| 6 |
|
| 7 |
-
The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Information Retrieval](https://github.com/UKPLab/sentence-transformers/tree/master/examples/applications/information-retrieval) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)
|
| 8 |
|
| 9 |
-
## Usage
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
from sentence_transformers import CrossEncoder
|
| 14 |
model = CrossEncoder('model_name', max_length=512)
|
| 15 |
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
|
| 16 |
```
|
| 17 |
|
|
|
|
|
|
|
| 18 |
In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.
|
| 19 |
|
| 20 |
|
| 21 |
-
| Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec
|
| 22 |
-
| ------------- |:-------------| -----| --- |
|
| 23 |
-
|
|
| 24 |
-
| cross-encoder/ms-marco-TinyBERT-L-
|
| 25 |
-
| cross-encoder/ms-marco-
|
| 26 |
-
| cross-encoder/ms-marco-
|
| 27 |
-
|
|
| 28 |
-
|
|
| 29 |
-
|
|
| 30 |
-
|
|
| 31 |
-
|
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
Note: Runtime was computed on a V100 GPU.
|
|
|
|
| 1 |
# Cross-Encoder for MS Marco
|
| 2 |
|
| 3 |
+
This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.
|
| 4 |
|
| 5 |
+
The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)
|
| 6 |
|
|
|
|
| 7 |
|
| 8 |
+
## Usage with Transformers
|
| 9 |
|
| 10 |
+
```python
|
| 11 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
model = AutoModelForSequenceClassification.from_pretrained('model_name')
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained('model_name')
|
| 16 |
+
|
| 17 |
+
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
|
| 18 |
+
|
| 19 |
+
model.eval()
|
| 20 |
+
with torch.no_grad():
|
| 21 |
+
scores = model(**features).logits
|
| 22 |
+
print(scores)
|
| 23 |
```
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
## Usage with SentenceTransformers
|
| 27 |
+
|
| 28 |
+
The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
|
| 29 |
+
```python
|
| 30 |
from sentence_transformers import CrossEncoder
|
| 31 |
model = CrossEncoder('model_name', max_length=512)
|
| 32 |
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
|
| 33 |
```
|
| 34 |
|
| 35 |
+
|
| 36 |
+
## Performance
|
| 37 |
In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.
|
| 38 |
|
| 39 |
|
| 40 |
+
| Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |
|
| 41 |
+
| ------------- |:-------------| -----| --- |
|
| 42 |
+
| **Version 2 models** | | |
|
| 43 |
+
| cross-encoder/ms-marco-TinyBERT-L-2-v2 | 69.84 | 32.56 | 9000
|
| 44 |
+
| cross-encoder/ms-marco-MiniLM-L-2-v2 | 71.01 | 34.85 | 4100
|
| 45 |
+
| cross-encoder/ms-marco-MiniLM-L-4-v2 | 73.04 | 37.70 | 2500
|
| 46 |
+
| cross-encoder/ms-marco-MiniLM-L-6-v2 | 74.30 | 39.01 | 1800
|
| 47 |
+
| cross-encoder/ms-marco-MiniLM-L-12-v2 | 74.31 | 39.02 | 960
|
| 48 |
+
| **Version 1 models** | | |
|
| 49 |
+
| cross-encoder/ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000
|
| 50 |
+
| cross-encoder/ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900
|
| 51 |
+
| cross-encoder/ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680
|
| 52 |
+
| cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340
|
| 53 |
+
| **Other models** | | |
|
| 54 |
+
| nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900
|
| 55 |
+
| nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340
|
| 56 |
+
| nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100
|
| 57 |
+
| Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340
|
| 58 |
+
| amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330
|
| 59 |
+
| sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720
|
| 60 |
|
| 61 |
+
Note: Runtime was computed on a V100 GPU.
|