Update README.md
Browse filesthis pr includes
* fix img embeddings
* better markdown for python codes
README.md
CHANGED
|
@@ -6,7 +6,7 @@ tags:
|
|
| 6 |
- ColBERT
|
| 7 |
---
|
| 8 |
<p align="center">
|
| 9 |
-
<img align="center" src="docs/images/colbertofficial.png" width="430px" />
|
| 10 |
</p>
|
| 11 |
<p align="left">
|
| 12 |
|
|
@@ -18,7 +18,7 @@ tags:
|
|
| 18 |
|
| 19 |
|
| 20 |
<p align="center">
|
| 21 |
-
<img align="center" src="docs/images/ColBERT-Framework-MaxSim-W370px.png" />
|
| 22 |
</p>
|
| 23 |
<p align="center">
|
| 24 |
<b>Figure 1:</b> ColBERT's late interaction, efficiently scoring the fine-grained similarity between a queries and a passage.
|
|
@@ -107,7 +107,7 @@ For fast retrieval, indexing precomputes the ColBERT representations of passages
|
|
| 107 |
|
| 108 |
Example usage:
|
| 109 |
|
| 110 |
-
```
|
| 111 |
from colbert.infra import Run, RunConfig, ColBERTConfig
|
| 112 |
from colbert import Indexer
|
| 113 |
|
|
@@ -127,7 +127,7 @@ if __name__=='__main__':
|
|
| 127 |
|
| 128 |
We typically recommend that you use ColBERT for **end-to-end** retrieval, where it directly finds its top-k passages from the full collection:
|
| 129 |
|
| 130 |
-
```
|
| 131 |
from colbert.data import Queries
|
| 132 |
from colbert.infra import Run, RunConfig, ColBERTConfig
|
| 133 |
from colbert import Searcher
|
|
@@ -161,7 +161,7 @@ Training requires a JSONL triples file with a `[qid, pid+, pid-]` list per line.
|
|
| 161 |
|
| 162 |
Example usage (training on 4 GPUs):
|
| 163 |
|
| 164 |
-
```
|
| 165 |
from colbert.infra import Run, RunConfig, ColBERTConfig
|
| 166 |
from colbert import Trainer
|
| 167 |
|
|
|
|
| 6 |
- ColBERT
|
| 7 |
---
|
| 8 |
<p align="center">
|
| 9 |
+
<img align="center" src="https://github.com/stanford-futuredata/ColBERT/blob/main/docs/images/colbertofficial.png?raw=true" width="430px" />
|
| 10 |
</p>
|
| 11 |
<p align="left">
|
| 12 |
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
<p align="center">
|
| 21 |
+
<img align="center" src="https://github.com/stanford-futuredata/ColBERT/blob/main/docs/images/ColBERT-Framework-MaxSim-W370px.png?raw=true" />
|
| 22 |
</p>
|
| 23 |
<p align="center">
|
| 24 |
<b>Figure 1:</b> ColBERT's late interaction, efficiently scoring the fine-grained similarity between a queries and a passage.
|
|
|
|
| 107 |
|
| 108 |
Example usage:
|
| 109 |
|
| 110 |
+
```python
|
| 111 |
from colbert.infra import Run, RunConfig, ColBERTConfig
|
| 112 |
from colbert import Indexer
|
| 113 |
|
|
|
|
| 127 |
|
| 128 |
We typically recommend that you use ColBERT for **end-to-end** retrieval, where it directly finds its top-k passages from the full collection:
|
| 129 |
|
| 130 |
+
```python
|
| 131 |
from colbert.data import Queries
|
| 132 |
from colbert.infra import Run, RunConfig, ColBERTConfig
|
| 133 |
from colbert import Searcher
|
|
|
|
| 161 |
|
| 162 |
Example usage (training on 4 GPUs):
|
| 163 |
|
| 164 |
+
```python
|
| 165 |
from colbert.infra import Run, RunConfig, ColBERTConfig
|
| 166 |
from colbert import Trainer
|
| 167 |
|